doi: 10.5004/dwt.2019.24068

$Pt/g-C_{3}N_{4}$ composites for photocatalytic H_{2} production and •OH formation

Kezhen Qi^{a,b}, Shu-yuan Liu^{c,f,*}, Ruidan Wang^{a,*}, Zhe Chen^{d,*}, Rengaraj Selvaraj^e

^aInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China, emails: wangruidan1980@163.com (R. Wang), qkzh2003@aliyun.com (K. Qi)

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China

°Department of Pharmacology, Shenyang Medical College, Shenyang 110034, China, email: liushuyuan@symc.edu.cn ^dSchool of Material Science and Technology, Jilin Institute of Chemical Technology, Jilin 130010, China, email: chenzhecz999@163.com

^eDepartment of Chemistry, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman,

email: srengaraj1971@yahoo.com

^fKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

Received 27 October 2018; Accepted 1 March 2019

ABSTRACT

A simple method has been reported to prepare the Pt/g-C₃N₄ composites with different loading amount of Pt nanoparticles (NPs). These Pt/g-C₃N₄ composites have a better photocatalytic performance than pure g-C₃N₄ offering for water splitting into hydrogen. The Pt NPs are uniformly spread on g-C₃N₄ surfaces, with their diameters in the range of 4–8 nm. Loading of Pt NPs can expand the response of visible light for g-C₃N₄ and reduce the recombination rate of photogenerated carriers. Therefore, the performance of water splitting into hydrogen via g-C₃N₄ photocatalysis under sunlight is enhanced by using the cocatalyst of Pt. Pt/g-C₃N₄ (3 wt.% of Pt) shows the highest activity (841 µmol g⁻¹ h⁻¹) among the as-prepared samples, while the pure g-C₃N₄ almost no hydrogen production. This work demonstrates that the Pt/g-C₃N₄ composite is one of potential photocatalysts for hydrogen generation.

Keywords: g-C₂N₄; Pt nanoparticles; Photocatalysis; Water splitting; H₂ production

1. Introduction

With the population growth and industry development, energy crisis and environmental pollution threaten humans [1–3]. Solar energy is a green, renewable, non-polluting and abundant energy source [4–10]. Although hydrogen is a clean energy which can be generated from photocatalytic splitting of water, the power conversion efficiency is lower rather than it is in applications [11–15]. Photocatalytic water splitting on TiO₂ photoelectrode is first reported by Fujishima and Honda [16], which opens up a new way to produce hydrogen. Up to now, many semiconductor materials, including g-C₃N₄/ CdS, TiO₂ and CoP, have been developed to be used as photocatalysts for H₂ production [17–27].

Among the above photocatalysts, $g-C_3N_4$ has received much attention. It has some unique characteristics, such as metal free, non-toxic, simpler synthesis and suitable band gap [28–36]. The basic mechanism of g-C₃N₄ photocatalysis is as shown in Fig. 1. For the thermodynamic requirement, the location of conduction band (CB) and valence band (VB) for $g-C_3N_4$ is suitable for reducing water to produce $H_{2/2}$ because CB bottom g-C3N4 (-1.3 V vs. NHE) is lower than the electrode potential (0 V vs. NHE). Unfortunately, its activity is quite low, due to its low visible light absorption and the low recombination efficiency of charge separation. At present, various methods have been developed to enhance its photocatalytic activity of $g-C_3N_4$, which include doping ion, heterojunction design, copolymerization, loading noble metal, etc. [37-44]. In above methods, loading noble metals, including Pt, Ag, Pd or Au, is a very useful way to improve the photocatalytic performance of g-C₃N₄. Particularly, Pt enhances photocatalytic activity of H2-generation for g-C₃N₄ since Pt can reduce the over potential as well as activation energy in the process of H⁺ reducing to H₂. Also Pt

^{*} Corresponding authors.

^{1944-3994/1944-3986 © 2019} Desalination Publications. All rights reserved.

Fig. 1. Basic photocatalytic mechanism of $g-C_3N_4$. E_{hv} is the irradiated photon energy, *R* is the electron acceptor and *D* is the electron donor.

can capture electrons from $g-C_3N_4$ and increase the charge separation efficiency [45–47].

Herein, a facile method is reported to synthesize the g-C₃N₄/Pt composites using for photocatalytic H₂-production. The g-C₃N₄ nanosheets are synthesized via polymerization of urea and Pt/g-C₃N₄ composites are prepared through coating of Pt nanoparticles (NPs) on g-C₃N₄ surfaces by a liquid-phase reduction method. These prepared Pt/g-C₃N₄ composites are used as photocatalysts, showing an enhanced photocatalytic activity for H₂-production. Pt/g-C₃N₄ with 3 wt.% loading amount of Pt exhibits the highest photocatalytic activity among them. The enhanced photocatalytic performance is because loading Pt NPs effectively reduces the recombination of photogenerated electron–hole (e⁻-h⁺) pairs. This research reported a facile method for preparing Pt/g-C₃N₄ composites, which may help to develop high activity photocatalysts for H₂ generation.

2. Experimental

2.1. Syntheses

The $g-C_3N_4$ materials are synthesized through direct heating of urea at 500°C with the heating rate of 10°C min⁻¹, then maintaining for 5 h. After the reaction, it cooled down to ambient temperature naturally. These Pt/g-C₃N₄ composites are synthesized via a liquid-phase reduction method. 0.5 g of $g-C_2N_4$ is put into 50 mL of water and ultrasonic treated for 5 min. Second, different amounts of H₂PtCl₆·6H₂O (1 g L⁻¹) aqueous solution is put into the above solution and stirring was maintained. Third, a certain amount of NaBH, was dissolved in 30 mL of water (the molar ratio of $n(H_2PtCl_6):n(NaBH_4) = 1:5)$, and then put into the above solution, stirring for 1 h. Finally, the product is centrifuged and washed with absolute ethanol and distilled water, respectively, dried at 70°C for 5 h in vacuum oven. By different loading of Pt NPs, various ratio of $(m[Pt]:n[g-C_2N_4] = 1\%)$ 2%, 3%, 4% and 5%) Pt/g-C₃N₄ composites are synthesized and named as 1%-Pt/g-C₃N₄, 2%-Pt/g-C₃N₄, 3%-Pt/g-C₃N₄, 4%-Pt/g-C₃N₄ and 5%-Pt/g-C₃N₄, respectively.

2.2. Characterization

The crystal phase of the as-synthesized samples is investigated by X-ray diffraction (XRD, Bruker D5005 X-ray diffractometer, Cu K α radiation source, $\lambda = 1.54056$ Å). Fourier transform infrared (FTIR) spectra are recorded on a Nicolet Magna 560 spectrophotometer. The morphology of samples is observed by high resolution transmission electron microscopy (HRTEM, JEOL JEM-2100F, Japan). UV–Vis diffuse reflectance spectra are recorded on a Shimadzu UV-3100 (Japan) spectrophotometer, with a BaSO₄ reference standard. X-ray photoelectron spectroscopy (XPS, PHI Quantum 1600, Japan) measurements are conducted to examine the surface chemical composition. Photoluminescence (PL) spectra excited at 325 nm are recorded on a Varian Cary Eclipse spectrometer.

2.3. Photocatalytic splitting

The photocatalytic H_2 production is conducted in a 100 mL Pyrex flask with closed system. A 350 W Xe lamp is used as the simulated sunlight source. 10 mg photocatalyst was put into 70 mL water with 10 mL triethanolamine as the sacrificial reagent. Before irradiation, the above reaction solution is aerated by using N_2 for 30 min to remove the dissolved oxygen. Under irradiation, the reaction solution is undertaken continuous stirring to keep photocatalysts effective suspension. The generation of H_2 is analyzed by using a Shimadzu GC-14C gas chromatograph.

2.4. Photoelectrochemical test

The transient photocurrent is investigated on a CHI660D electrochemical work station using a standard three-electrode system. 5 mg g-C₃N₄ or Pt/g-C₃N₄ is dispersed in 1 mL ethanol to get slurry. The working electrode is prepared by putting the obtained slurry on the ITO glass substrate (2 cm × 4 cm). A Pt wire is used as the counter electrode, and a calomel electrode as the reference. The electrolyte is 0.1 M aqueous Na₂SO₄ solution. The electrochemical impedance spectroscopy (EIS) Nyquist plots are obtained with an amplitude of 5 mV in the frequency range from 10⁵ to 1 Hz at an open potential.

3. Results and discussion

3.1. XRD

Fig. 2 shows the XRD patterns of as-prepared samples. All the samples have two peaks at 13.1° and 27.5°, which are assigned to (100) and (002) of $g-C_3N_4$ (JCPDS 87-1526) [48]. The relative intensity of peak at 27.5° is weaker with increasing the loading amount of Pt on $g-C_3N_4$. No obvious reflection related to Pt is found due to the low amount and the high dilution effect of Pt NPs on the surface of $g-C_3N_4$ [49].

3.2. FTIR

The FTIR spectra of pure $g-C_3N_4$ nanosheets and Pt/g- C_3N_4 composites are as shown in Fig. 3. The peak at 1,639 cm⁻¹ belongs to the skeletal aromatic vibration C–N. The peaks at 1,249, 1,319 and 1,433 cm⁻¹ are associated with the C–N stretching vibration [50]. The peak at 804 cm⁻¹ represents the typical breathing mode of the triazine units [51].

Fig. 2. XRD patterns of pure g-C₃N₄ and Pt/g-C₃N₄ samples.

Fig. 3. FTIR spectra of pure g-C₃N₄ and Pt/g-C₃N₄ samples.

The broad peak at 3,255 cm⁻¹ is attributed to the residual N–H groups [52]. It is found that there are no obvious changes for the characteristic FTIR peaks, meaning that the overall original structure of $g-C_3N_4$ is not changed by Pt NPs loading. It means that the Pt NPs are just adsorbed on $g-C_3N_4$ surfaces, agreeing well with the XRD result.

3.3. UV–Vis DRS

The UV–DRS measurement is used to study the optical adsorption property and the band structure of the as-prepared samples (Fig. 4). The pure g-C₃N₄ nanosheet shows a light absorption edge at 440 nm, which is consistent to its intrinsic band gap of bulk g-C₃N₄ [53]. The Pt/g-C₃N₄ composite exhibits a similar light absorption range compared with that pure g-C₃N₄, but the visible light adsorption is enhanced with increasing amount of Pt loading. The background absorption is enhanced with Pt loading amount increasing in the visible light region, because of the localized surface plasmon resonance effect [54].

Fig. 4. UV–Vis DRS of pure $g-C_3N_4$ and $Pt/g-C_3N_4$ samples.

3.4. XPS

The surface chemical composition of Pt/g-C₃N₄ is studied by XPS, here 3%-Pt/g-C₃N₄ is selected for investigation. From the survey spectra of the both samples, the elements of C, O and N are observed, Pt is observed in 3%-Pt/g-C₃N₄ (Fig. 5a). The peaks at 284.6 and 288.0 eV are assigned to C 1s (Fig. 5b). The peaks at 284.6 and 288.0 eV are assigned to sp²-hybridized carbon and carbon from N-C=N, coordination, respectively [55]. The N 1s peaks at 398.7, 399.8 and 401.0 eV are ascribed to sp²-hybridized nitrogen of C-N-C, tertiary nitrogen of N-(C)₂ and amino functional C-N-H, respectively [48]. The peaks at 398.9, 400.1 and 401.2 eV for N 1s in pure g-C₃N₄ slightly moved to higher binding energies after Pt loading, as shown in Fig. 5c. The delocalized pi bond in $g-C_3N_4$ induce $g-C_3N_4$ has high electron density, which induce g-C₃N₄ can provide lone electron pairs and electrons transfer to *d* orbitals of Pt. Compared with pure $g-C_3N_4$, the shift in binding energy is observed in Pt/g-C₃N₄, indicating that Pt bonds with g-C₃N₄ strongly. For the Pt 4f XPS spectra (Fig. 5d), the two peaks are located at 71.11 and 74.30 eV, which are indexed as Pt 4f7/2 and Pt 4f5/2, respectively, indicating that Pt on g-C₂N₄ [54]. The splitting value is 3.19 eV between the two peaks, which also support the existence of metallic Pt [56]. The XPS result confirms the presence of Pt NPs on the surface of $g-C_3N_4$.

3.5. TEM

The TEM measurement is used to study the morphology of pure g-C₃N₄ and 3%-Pt/g-C₃N₄ samples. The TEM image of 3%-Pt/g-C₃N₄ (Fig. 6a) shows that Pt NPs are observed as black dots and dispersed on the g-C₃N₄ surface uniformly. The size of Pt NPs is in range from 4 to 8 nm, indicating that the Pt NPs are Pt clusters [57]. The HRTEM image demonstrates that the Pt NPs strongly bind to g-C₃N₄ (Fig. 6b), and the interplanar distance of Pt is 0.215 nm, which is assigned to the Pt (111) plane. The above TEM analysis confirms that these Pt NPs uniformly adsorb on g-C₃N₄ surface.

Fig. 5. XPS spectra of 3%-Pt/g-C₃N₄ composites: (a) survey XPS spectrum; high resolution of (b) C1s spectra; (c) N1s spectrum and (d) Pt 4f spectrum.

Fig. 6. TEM (a) and HRTEM (b) images of 3%-Pt/g-C₃N₄.

3.6. Photocatalytic performance

The photocatalytic activity of Pt/g-C₃N₄ composites is studied by photocatalytic H₂-generation (Fig. 7). The photocatalytic H₂-generation rate is very low for pure g-C₃N₄/ almost no hydrogen production. After modification by Pt, the rate of hydrogen production is enhanced for g-C₃N₄. When Pt loading amounts is up to 3 wt.%, 3%-Pt/g-C₃N₄ shows the best photocatalytic performance of water splitting for hydrogen production (841 µmol g⁻¹ h⁻¹) among these as-prepared samples. When the loading amount of Pt increases to 5 wt.%, the hydrogen evolution rate is declined to 665 µmol g⁻¹ h⁻¹. This excessive loading of Pt causes a weaker photocatalytic activity, which is due to the excess Pt clusters working as recombination centers, or the active site is covered. A similar phenomenon was observed in photocatalytic reduction of CO₂ to produce CH₄ over Pt/g-C₃N₄ [58]. Thus, loading appropriate amount of Pt NPs on the g-C₃N₄ surface is a key point to ensure the high photocatalytic activity for H₂-generation.

3.7. Hydroxyl radical generation

The reaction of terephthalic acid (TA) to 2-hydroxyterephthalic acid (TAOH) is an useful method to study the efficiency of hydroxyl radical (•OH) generation [59]. In this

Fig. 7. (a) Plots of photocatalytic H_2 -generation amount simulated sunlight irradiation time and (b) comparison of hydrogen evolution rate for different loading amount of Pt on g-C₃N₄ photocatalysts.

work, the reaction solution is made up of 3 mmol L⁻¹ TA and 10 mmol L⁻¹ NaOH. Under irradiation, TA can react with **•**OH and form TAOH, TAOH can generate fluorescence at an emission band at $\lambda_{max} = 425$ nm by excited light of $\lambda_{exc} = 315$ nm. TA to TAOH is tested to check the efficiency of **•**OH generation between pure g-C₃N₄ and 3%-Pt/g-C₃N₄, meaning to check the h⁺ generation rate. It is known that **•**OH generation from h⁺ react with OH⁻. With simulated sunlight irradiation, the TAOH concentration is monitored within 30 min, every 5 min one sample is taken (Fig. 8). Comparing with that of pure g-C₃N₄, 3%-Pt/g-C₃N₄ demonstrates a higher generation rate of **•**OH, due to loading of Pt NPs on the g-C₃N₄ surface promotes the separation efficiency of photogenerated e⁻-h⁺ pairs.

3.8. PL spectra

The excess energy of excited electrons can be released by three ways: emitted as PL, photogenerated e^-h^+ recombination, and thermal energy dissipation. Thus, PL measurement is carried out to study the separation efficiency of photogenerated e^-h^+ pairs. Fig. 9 illustrates that all

Fig. 8. TA react with **•**OH to TAOH generation by simulated solar irradiation.

Fig. 9. PL spectra of pure g-C_ $_3N_4$, 3%-Pt/g-C $_3N_4$ and 5%-Pt/g-C $_3N_4$ samples.

the samples present an emission peak at ca. 460 nm. After loading of Pt NPs, the PL intensity of $g-C_3N_4$ reduces clearly. The weaker peak intensity of PL results in the relay effect of the cocatalyst Pt for the excited electrons, which diminishes the recombination rate of photogenerated carriers [49]. This improved separation of e^- and h^+ pairs can speed up the water splitting process. Thus, the Pt/g-C₃N₄ composites have a potential to be used as photocatalysts with high activity. However, over loading of Pt on $g-C_3N_{4'}$ for example, 5%-Pt/g-C₃N₄, the PL intensity is increasing and stronger than that of 3%-Pt/g-C₃N₄, which indicates an increasing combination of photogenerated carriers [54]. Thus the suitable content of loading Pt NPs is a key point on improving the photocatalytic performance of $g-C_3N_4$.

3.9. Photoelectrochemical property

The photogenerated e^-h^+ separation efficiency of photocatalysts is investigated under simulated sunlight irradiation by the photoelectrochemical measurements. The photocurrent disappeared when the light was turned off, and restarted when the light was turned on (Fig. 10a). The

Fig. 10. (a) Photocurrent response and (b) electrochemical impedance spectroscopy of pure $g-C_3N_4$ and $3\%-Pt/g-C_3N_4$ samples.

3%-Pt/g-C₃N₄ samples show a little decrease for the reproducible photocurrent responses during the four turn off and turn on of the light. The photocurrent density of 3%-Pt/g-C₃N₄ with 0.7–1.2 μ A cm⁻² is stronger than that of pure g-C₃N₄ with ~0.1 μ A cm⁻², which is due to the higher separation rate of photogenerated carriers in Pt/g-C₃N₄. This more efficient separation of photoinduced e⁻/h⁺ pairs in Pt/g-C₃N₄ is consistent with its higher H₂-evolution rate.

In order to further study the charge separation, the EIS Nyquist plots is used, as shown in Fig. 10b. The previous report suggested that the smaller arc radius of EIS Nyquist plots, the higher charge-transfer rate [60]. The radius on the EIS Nyquist plot of 3%-Pt/g-C₃N₄ is smaller than that of pure g-C₃N_{4'} indicating that Pt modification could reduce the charge recombination and promote the photogenerated e⁻-h⁺ separation in g-C₃N_{4'} agreeing well with PL spectra and H₂-generation data.

3.10. Photocatalytic mechanism of water splitting

Fig. 11 shows a proposed mechanism of $Pt/g-C_3N_4$ during the photocatalytic H₂-generation. When $Pt/g-C_3N_4$ is under simulated sunlight irradiation, electrons can be excited to $g-C_3N_4$ (CB, and holes leave at VB. The CB edge of $g-C_3N_4$ (-3.08 eV vs. vacuum) is higher that Fermi level of

Fig. 11. Photocatalytic mechanism of water splitting for hydrogen generation over $Pt/g-C_3N_4$ composites.

Pt (-5.1 eV vs. vacuum) [61]. Thus, the excited electrons on the g-C₂N₄ CB will surmount the Schottky barrier and escape to the Fermi energy level (F_i) of Pt, causing the increase separation of e-h+ pairs. The coordination of bands between $g-C_3N_4$ and Pt will increase the conductivity of $g-C_3N_4$, and enhance electrons escape from g-C3N4 to Pt. In this process, the electrons transfer from the g-C₃N₄ to Pt contribute to the Pt Fermi level shifts to the more negative potential [62]. Thus, Pt owes a lower activation potential and higher electron density, which provides more opportunities to join the reaction of H⁺ to H₂. With increasing the loading amount of Pt from 0 to 3 wt.%, the face touching surface area between g-C₃N₄ and Pt NPs is also increasing, which can speed up the electron transformation and speed up the separation rate of e-h+ pairs. However, too much loading amount of Pt NPs will contribute to an increased Schottky barrier, which can increase e⁻-h⁺ recombination rate.

4. Conclusions

Pt/g-C₃N₄ composites are successfully prepared in this work by using a simple liquid-phase reduction method. These Pt NPs uniformly adsorb on the surface of g-C₃N₄, with the size of 8–10 nm. After Pt loading, the Pt/g-C₃N₄ composites expand the visible light response and have enhanced photocatalytic H₂ generation under sunlight irradiation, especially for 3 wt Pt % loading, had the highest catalytic rate of H₂ generation (841 µmol g⁻¹ h⁻¹), however, almost no hydrogen generation for pure g-C₃N₄. The photocatalytic activity of g-C₃N₄ is remarkably enhanced after Pt loading, because it enhances the visible-light response and suppresses the recombination of e⁻-h⁺ pairs. This work indicates that the Pt/g-C₃N₄ composite is one of promising photocatalysts for hydrogen production.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51602207), 111 project, Doctoral Scientific Research Foundation of Liaoning Province (20170520011), Program for Liaoning Excellent Talents in University (LR2017074), and Project of Education Office of Liaoning Province (LQN201712).

References

- A.J. Esswein, D.G. Nocera, Hydrogen production by molecular photocatalysis, Chem. Rev., 107 (2007) 4022–4047.
- [2] Z. Wei, Y. Zhang, S. Wang, C. Wang, J. Ma, Fe-doped phosphorene for the nitrogen reduction reaction, J. Mater. Chem. A, 6 (2018) 13790–13796.
- [3] B. Wang, J. Xia, L. Mei, L. Wang, Q. Zhang, Highly efficient and rapid lead(II) scavenging by the natural artemia cyst shell with unique three-dimensional porous structure and strong sorption affinity, ACS Sustain. Chem. Eng., 6 (2017) 1343–1351.
- [4] Z. Yan, S. Gong, L. An, L. Yue, Z. Xu, Enhanced catalytic activity of graphene oxide/CeO₂ supported Pt toward HCHO decomposition at room temperature, React. Kinet. Mech. Catal., 124 (2018) 293–304.
- [5] W. Zhang, W. Wang, H. Shi, Y. Liang, J. Fu, M. Zhu, Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles, Sol. Energy Mater. Sol. Cells, 180 (2018) 25–33.
- [6] Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Graphene-wrapped Pt/TiO₂ photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO₂ to CH₄, Appl. Catal., B, 226 (2018) 360–372.
- [7] G. Wang, X. Long, K. Qi, S. Dang, M. Zhong, S. Xiao, T. Zhou, Two-dimensional CdS/g-C₆N₆ heterostructure used for visible light photocatalysis, Appl. Surf. Sci., 471 (2019) 162–167.
- [8] M. Khanahmadi, M. Hajaghazadeh, F. Nejatzadeh-Barandozi, F. Gholami-Borujeni, Photocatalytic oxidation process (UV-Fe₂O₃) efficiency for degradation of hydroquinone, Desal. Wat. Treat., 106 (2018) 305–311.
- [9] J. Yu, Z. Chen, L. Zeng, Y. Ma, Z. Feng, Y. Wu, H. Lin, L. Zhao, Y. He, Synthesis of carbon-doped KNbO₃ photocatalyst with excellent performance for photocatalytic hydrogen production, Sol. Energy Mater. Sol. Cells, 179 (2018) 45–56.
- [10] K. Qi, S. Karthikeyan, W. Kim, F.A. Marzouqi, I.S. Al-Khusaibi, Y. Kim, R. Selvaraj, Hydrothermal synthesis of SnS₂ nanocrystals for photocatalytic degradation of 2,4,6-trichlorophenol under white LED light irradiation, Desal. Wat. Treat., 92 (2017) 108–115.
- [11] Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visiblelight photocatalytic H₂-production activity of graphene/C₃N₄ composites, J. Phys. Chem. C, 115 (2011) 7355–7363.
- [12] Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Constructing 2D/2D Fe₂O₃/g-C₃N₄ direct Z-scheme photocatalysts with enhanced H₂ generation performance, Solar RRL, 2 (2018) 1800006.
- generation performance, Solar RRL, 2 (2018) 1800006.
 [13] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694.
- [14] F. Alexander, M. AlMheiri, P. Dahal, J. Abed, N.S. Rajput, C. Aubry, J. Viegas, M. Jouiad, Water splitting TiO₂ composite material based on black silicon as an efficient photocatalyst, Sol. Energy Mater. Sol. Cells, 180 (2018) 236–242.
- [15] S. Liu, J. Zhou, Y. Lu, J. Su, Pulsed laser/electrodeposited CuBi₂O₄/BiVO₄ p-n heterojunction for solar water splitting, Sol. Energy Mater. Sol. Cells, 180 (2018) 123–129.
- [16] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
- [17] Q. Xu, B. Cheng, J. Yu, G. Liu, Making co-condensed amorphous carbon/g-C₃N₄ composites with improved visiblelight photocatalytic H₂-production performance using Pt as cocatalyst, Carbon, 118 (2017) 241–249.
- [18] X. Xiang, L. Chou, X. Li, Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H₂ production efficiency in water splitting and increased photostability, Chin. J. Catal., 39 (2018) 407–412.
- [19] S. Cao, Q. Huang, B. Zhu, J. Yu, Trace-level phosphorus and sodium co-doping of g-C₃N₄ for enhanced photocatalytic H₂ production, J. Power Sources, 351 (2017) 151–159.

- [20] J. Fu, B. Zhu, W. You, M. Jaroniec, J. Yu, A flexible bio-inspired H₂-production photocatalyst, Appl. Catal., B, 220 (2018) 148–160.
- [21] K. Qi, S.-y. Liu, M. Qiu, Photocatalytic performance of TiO₂ nanocrystals with/without oxygen defects, Chin. J. Catal., 39 (2018) 867–875.
- [22] X. Li, R. Shen, S. Ma, X. Chen, J. Xie, Graphene-based heterojunction photocatalysts, Appl. Surf. Sci., 430 (2018) 53–107.
- [23] K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO₂-based Z-scheme photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
- [24] R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts, Appl. Surf. Sci., 471 (2019) 43–87.
- [25] Z. Yan, Z. Yang, Z. Xu, L. An, F. Xie, J. Liu, Enhanced roomtemperature catalytic decomposition of formaldehyde on magnesium-aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst, J. Colloid Interface Sci., 524 (2018) 306–312.
- [26] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
- [27] K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO₂ dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 183 (2018) 193–199.
- [28] J. Fu, J. Yu, C. Jiang, B. Cheng, g-C₃N₄-based heterostructured photocatalysts, Adv. Energy Mater., 8 (2018) 1701503.
 [29] B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation
- [29] B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C₃N₄: a review, Appl. Catal., B, 224 (2018) 983–999.
- [30] K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating Ni-P cocatalyst decorated g-C₃N₄ with enhanced photocatalytic water splitting for H₂ generation, Appl. Surf. Sci., 466 (2019) 847–853.
- [31] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C $_{3}N_{4}$ -based photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
- [32] H. Yang, Z. Jin, H. Hu, Y. Bi, G. Lu, Ni-Mo-S nanoparticles modified graphitic C₃N₄ for efficient hydrogen evolution, Appl. Surf. Sci., 427 (2018) 587–597.
 [32] W. Y. J. C. T. Sci., Control of the second s
- [33] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Direct Z-scheme g-C₃N₄/WO₃ photocatalyst with atomically defined junction for H₂ production, Appl. Catal., B, 219 (2017) 693–704.
 [34] M. Wu, J. Zhang, C. Liu, Y. Gong, R. Wang, B. He, H. Wang,
- [34] M. Wu, J. Zhang, C. Liu, Y. Gong, R. Wang, B. He, H. Wang, Rational design and fabrication of noble-metal-free Ni_xP cocatalyst embedded 3D N-TiO₂/g-C₃N₄ heterojunctions with enhanced photocatalytic hydrogen evolution, Chem. Cat. Chem., 10 (2018) 3069–3077.
- [35] T. Song, P. Zhang, J. Zeng, T. Wang, A. Ali, H. Zeng, In situ construction of globe-like carbon nitride as a self-cocatalyst modified tree-like carbon nitride for drastic improvement in visible-light photocatalytic hydrogen evolution, Chem. Cat. Chem., 9 (2017) 4035–4042.
- [36] Z. Zhang, Y. Zhang, L. Lu, Y. Si, S. Zhang, Y. Chen, K. Dai, P. Duan, L. Duan, J. Liu, Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: the impact of morphology and element composition, Appl. Surf. Sci., 391 (2017) 369–375.
- [37] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27 (2015) 2150–2176.
- [38] R. Šhen, J. Xie, X. Lu, X. Chen, X. Li, Bifunctional Cu₃P decorated g-C₃N₄ nanosheets as a highly active and robust visible-light photocatalyst for H₂ production, ACS Sustain. Chem. Eng., 6 (2018) 4026–4036.
- [39] R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen, X. Li, Enhanced solar fuel H₂ generation over g-C₃N₄ nanosheet photocatalysts by the synergetic effect of noble metal-free Co₂P cocatalyst and the environmental phosphorylation strategy, ACS Sustain. Chem. Eng., 6 (2017) 816–826.
- [40] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO₃/g-C₃N₄ step-scheme H₂-production photocatalyst, Appl. Catal., B, 243 (2019) 556–565.
- [41] M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H₂-production of g-C₃N₄/

WS₂ composite heterostructures, Appl. Surf. Sci., 358 (2015) 196–203.

- [42] P. Xia, M. Liu, B. Cheng, J. Yu, L. Zhang, Dopamine modified g-C₃N₄ and its enhanced visible-light photocatalytic H₂-production activity, ACS Sustain. Chem. Eng., 6 (2018) 8945–8953.
- [43] F. Al Marzouqi, R. Selvaraj, Y. Kim, Thermal oxidation etching process of $g-C_3N_4$ nanosheets from their bulk materials and its photocatalytic activity under solar light irradiation, Desal. Wat. Treat., 116 (2018) 267–276.
- [44] N. Li, J. Zhou, Z. Sheng, W. Xiao, Molten salt-mediated formation of g- C_3N_4 -MoS₂ for visible-light-driven photocatalytic hydrogen evolution, Appl. Surf. Sci., 430 (2018) 218–224.
- [45] X. Chen, Y.-S. Jun, K. Takanabe, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light, Chem. Mater., 21 (2009) 4093–4095.
- [46] J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A, 1 (2013) 14766–14772.
- [47] M. Liu, P. Xia, L. Zhang, B. Cheng, J. Yu, Enhanced photocatalytic H₂-production activity of g-C₃N₄ nanosheets via optimal photodeposition of Pt as cocatalyst, ACS Sustain. Chem. Eng., 6 (2018) 10472–10480.
- [48] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal., B, 163 (2015) 135–142.
- [49] Z. Lu, W. Song, C. Ouyang, H. Wang, D. Zeng, C. Xie, Enhanced visible-light photocatalytic performance of highly-dispersed Pt/g-C₃N₄ nanocomposites by one-step solvothermal treatment, RSC Adv., 7 (2017) 33552–33557.
- [50] S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe₂O₄/g-C₃N₄ composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf., A, 478 (2015) 71–80.
- [51] J.-X. Sun, Y.-P. Yuan, L.-G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Fabrication of composite photocatalyst g-C₃N₄–ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans., 41 (2012) 6756–6763.
- [52] S. Cao, Y. Li, B. Zhu, M. Jaroniec, J. Yu, Facet effect of Pd cocatalyst on photocatalytic CO₂ reduction over g-C₃N₄, J. Catal., 349 (2017) 208–217.

- [53] W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C₃N₄) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C₃N₄ nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, Nano Energy, 13 (2015) 757–770.
- [54] W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Heterojunction engineering of graphitic carbon nitride (g-C₃N₄) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane, Dalton Trans., 44 (2015) 1249–1257.
- [55] F. Li, Z. Yu, H. Shi, Q. Yang, Q. Chen, Y. Pan, G. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide/ g-C₃N₄ composites membranes for catalytic decomposition and oil-in-water emulsion separation, Chem. Eng. J., 322 (2017) 33–45.
- [56] W. Kim, T. Tachikawa, H. Kim, N. Lakshminarasimhan, P. Murugan, H. Park, T. Majima, W. Choi, Visible light photocatalytic activities of nitrogen and platinum-doped TiO₂: Synergistic effects of co-dopants, Appl. Catal., B, 147 (2014) 642–650.
- [57] R. Nazir, P. Fageria, M. Basu, S. Gangopadhyay, S. Pande, Decoration of Pd and Pt nanoparticles on a carbon nitride (C_3N_4) surface for nitro-compounds reduction and hydrogen evolution reaction, New J. Chem., 41 (2017) 9658–9667.
- [58] J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO_2 into hydrocarbon solar fuels over $g-C_3N_4$ -Pt nanocomposite photocatalysts, Phys. Chem. Chem. Phys., 16 (2014) 11492–11501.
- [59] T. Hirakawa, Y. Nosaka, Properties of $O^{2 \cdot \bullet}$ and OH^{\bullet} formed in TiO₂ aqueous suspensions by photocatalytic reaction and the influence of H_2O_2 and some ions, Langmuir, 18 (2002) 3247–3254.
- [60] M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, Highly selective CO_2 photoreduction to CO over $g-C_3N_4/Bi_2WO_6$ composites under visible light, J. Mater. Chem. A, 3 (2015) 5189–5196.
- [61] H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H. Yan, Novel TiO₂-Pt@SiO₂ nanocomposites with high photocatalytic activity, Nanoscale, 4 (2012) 3242–3247.
- [62] G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in two-photon semiconducting structures for solar fuels, ChemSusChem, 9 (2016) 2878–2904.