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a b s t r a c t
Although several experiments have been done on inclined dense jets in shallow water where inclined 
dense jet interacts with the water surface, the jet trajectory and minimum dilution at the return point 
(Sr) and water surface (SS) have not been generally formulated and reported. In this paper, new 
evolutionary-based models are developed to predict variables describing jet trajectory and dilution, 
including the non-dimensional horizontal displacement of the return point (xr/D), non-dimensional 
horizontal displacement of the minimum surface dilution point (xs/D), dilution at the return point 
(Sr) and minimum dilution at the water surface (SS). These parameters are essential in brine discharge 
system design. Two sets of experimental data are applied to develop and evaluate the models, and the 
model networks are optimized using gene expression programming (GEP). The mentioned parameters 
serve to compute dilution and displacement at the return point and water surface as a function of 
discharge angle (θ), non-dimensional ambient depth (H/D) and jet densimetric Froude number (F). 
Partial derivative sensitivity analysis is also carried out to examine the effect of each dimensionless 
input variable on the target parameters. The explicit equations and pseudo codes reported facilitate 
easy estimation of the trajectory maximum impact point distance as well as dilutions for dense jets at 
different angles from the horizontal.
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1. Introduction

In recent years, desalinated seawater has become an 
alternative non-conventional source of freshwater. In many 
countries, this is considered a reliable and economically 
sustainable water resource. This treatment process produces 
brine with highly concentrated salt as waste that may be toxic 
to the water in which it is discharged and should therefore be 
diluted before discharge [1]. As the brine produced by desali-
nation plants is disposed by discharge, it comes in direct 
contact with aquatic species via submerged inclined outfalls. 
This configuration is usually adopted for brine discharge in 
coastal waters through inclined dense jets with long curvilin-
ear trajectories. Dense brine effluent with high salt concentra-
tion increases turbidity and has considerable environmental 

impact on surrounding coastal waters [2]. This effect is mainly 
seen in the vicinity of concentrated brine discharge pipes [3]. 
Because the effluent should mix well and efficiently in sea-
water [4], inclined jets acting as high-velocity turbulent jets 
should discharge the effluent upward [5]. Dilution reduces 
concentration, so the effluent can reach levels safe for entering 
marine or estuarine environments. An inclined dense jet fol-
lows a curvilinear trajectory by rising up to a maximum height 
and falling back toward the seabed (see Fig. 1). Following con-
tact with the bottom, the diluted effluent spreads as a density 
current. In outfall design, it is commonly desirable for the out-
fall to be located close to the shore for maintenance reasons 
and cost minimization. In the case of shallow water areas, it is 
conceivable that the inclined dense jet impacts the water sur-
face. Abessi and Roberts [13] considered the non-dimensional 
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parameter dF/H (where d is the nozzle diameter, F is the jet 
densimetric Froude number and H is the water depth) to iden-
tify the flow regime. The authors proposed that the values of 
dF/H less than 0.84, 0.48 and 0.42 lead to the fully submerged 
or the deep flow regime otherwise the jet is in surface contact 
and shallow flow regimes for θ = 30, 45 and 60 respectively. 
In terms of the physical features associated with a dense jet in 
shallow water, it is necessary to have detailed knowledge of 
the jet trajectory and dilution for outfall design and environ-
mental impact assessment.

Many experimental and analytical studies have been 
carried out to investigate the behavior of inclined dense jets. 
Zeitoun et al. [6], Pincince and List [1], Roberts and Toms [7], 
Roberts et al. [5], Jirka [8], Cipollina et al. [9], Kikkert et al. [10], 
Shao and Law [11], Lai and Lee [12], Jiang et al. [4] and Abessi 
and Roberts [13] carried out experimental studies to describe 
the geometric features and dilution characteristics of inclined 
jets and developed a number of guidelines. According to 
Zeitoun et al.’s [6] experimental results, a 60° inclination rela-
tive to the horizontal axis produces maximum dilution before 
the jet impacts the sea bed. As the jet peak height is relatively 
large for a 60° inclination, in shallow coastal water regions 
smaller inclinations are more feasible. Accordingly, several 
studies have extended experimental investigations of 30° and 
45° inclined dense jets. Therefore, depending on costal condi-
tions, all three inclinations mentioned are applicable in practi-
cal cases. Bashitialshaaer et al. [14] performed an experimental 
investigation of negatively inclined buoyant jets to measure 
the geometric features describing the jet trajectory by perform-
ing 72 tests at 3 inclination angles (30°, 45° and 60°). Jiang et al. 
[4] carried out extensive experiments on inclined dense jets in 
a shallow ambient water environment to study the curvilinear 
jet trajectory and dilution at the water surface and near the sea 
bed with 30° and 45° inclined dense jets in shallow water. The 
nozzle diameter was 5.8 mm and the nozzle tip was located 
5 cm above the bottom. The densimetric Froude number (F) of 
the jet was between 5 and 34.8 in all 42 tests. The most effective 
parameters considered in each experiment were the densimet-
ric Froude number and non-dimensional water depth. The 
planar laser-induced fluorescence and particle image veloci-
metry methods were applied to measure the velocity and con-
centration distribution of the inclined dense jets. The study 
also presented an evaluation of the free surface impact on 
dilution. Abessi and Roberts [13] conducted vast experiments 
on 30°, 45° and 60° inclined dense jets in both deep and shal-
low water. The spatial variations of the jet trajectory and con-
centration were measured by three-dimensional laser-induced 
fluorescence. The water tank density was 998.2 kg/m3 and the 
effluent density was either 1,014 or 1,021 kg/m3. The jet’s den-
simetric Froude number (F) varied between 18.8 and 82.5. 
The nozzle diameter was 0.317 cm and the nozzle was placed 
about 1.4–2 cm from the bottom.

Besides experimental studies, analytical solutions have 
also been investigated. For example, Cipollina et al. [15–16], 
Nikiforakis et al. [17] and Kikkert et al. [18] developed 
analytical solutions based on mass and momentum balance 
equations to predict the behavior of inclined dense jets. More 
recently, computational fluid dynamics (CFD) modeling of 
the behavior of inclined dense jets has gained tremendous 
attention. Some researchers have applied commercial CFD 
codes [19–24] and others have developed finite volume 
models to solve the governing equations numerically 
[25–26]. Such three-dimensional modeling tools facilitate 
good prediction of dense jet curvilinear trajectories but are 
too complicated for practical applications. In addition, result 
validation and verification require experimental results that 
restrict application in practical cases [27]. 

In recent years, artificial intelligence (AI) has been 
utilized in different fields as a powerful tool for modeling 
and solving complex nonlinear problems. In a number of 
hydraulic studies, gene expression programming (GEP) has 
been applied to predict various parameters. Azamathulla 
[28] predicted the scour depth downstream of sills using 
GEP. The study indicated that the proposed GEP approach 
produces more adequate results compared with existing 
equations. Ebtehaj et al. [29] employed GEP to estimate the 
side weir discharge coefficient. The authors performed a 
sensitivity analysis of the GEP models and concluded that 
the ratio of weir length to the depth of the upstream flow is 
the most effective parameter on the prediction results. The 
proposed equation also outperformed existing literature 
equations. Gholami et al. [30] developed a model based on 
GEP and used polar coordinates and discharge to propose a 
practical equation for the velocity field in a 90° channel bend. 
Moreover, Azimi et al. [31] extensively studied the discharge 
coefficient of side weirs using GEP. The authors proposed an 
explicit equation for use in practical, real-world engineering 
applications. Khozani et al. [32] were the first to propose an 
equation based on GEP for evaluating the shear stress distri-
bution along the wetted perimeter of a circular open channel. 

To the best of the authors’ knowledge, GEP has never 
been used to determine variables that describe the trajectory 
and dilution of an inclined dense jet. In addition, despite 
advances in both experimental and numerical modeling 
of inclined jets, some challenges remain regarding design 
improvement considerations [33]. The return point distance 
from the nozzle jet and dilution at this point are vital design 
parameters to protect the sea floor against erosion caused by 
effluent. The horizontal displacement of the minimum sur-
face dilution point and dilution at this point are thus crucial 
for environmental protection purposes. In particular, a gen-
eral formulation of a jet trajectory and the minimum dilution 
at the return point and water surface is required, which is 
directly applicable to outfall systems. Consequently, a model 
that correlates the crucial dilution parameters and geometric 
jet features with the flow parameters is necessary. For this 
reason, the aim of the present study is to introduce a model 
that is capable of correlating the input and output values. 

By using GEP four different equations are derived for 
evaluating the jet trajectory and dilution variables, i.e. the 
non-dimensional horizontal displacement of the return 
point (xr/D), non-dimensional horizontal displacement of the 
minimum surface dilution point (xs/D), dilution at the return 

Fig. 1. Schematic side view of brine discharge from a desalination 
plant outfall.
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point (Sr) and minimum water surface dilution at the center-
line maximum height (SS) in terms of the three main param-
eters governing dense jet discharge in shallow water, namely 
the jet’s densimetric Froude number (F), the non-dimensional 
depth (H/D) the discharge angle (θ). To this end, two com-
prehensive datasets for inclined dense jet angles in shallow 
water are utilized, which were obtained from Jiang et al. [4] 
and Abessi and Roberts [13] (only their data for shallow water 
were used in the present study).

2. Gene expression programming

The GEP was developed by Ferreira [34] as a current 
extension of genetic programming (GP). GEP functions with 
a range of computer programs of varying sizes and shapes 
encoded in fixed-length linear chromosomes [29,35]. The 
chromosomes in a GEP algorithm are known as expression 
trees (ET). GEP utilizes genetic algorithm (GA) operators 
and is based on five elements: a terminal condition, 
control parameters, a fitness function, a terminal set and a 
function set.

To acquire the solution, a fixed-length chromosome string 
is employed to develop the GEP algorithm, while a parse tree 
structure is used in the GP structure over different periods 
of time for which the computer program is running. Due 
to the genetic mechanism of GEP at the chromosome level, 
the genetic diversity of such algorithm is extremely simple. 
Additionally, different complex nonlinear relations with var-
ious sub-programs can be built owing to the multi-genetic 
nature of GEP [36].

Each GEP gene utilizes two types of variables: fixed-
length and constant. The constant variables in each gene 
are considered functional sets (FS), which can be arithmetic 
operations (e.g. {+, –, × , ÷ , exp, sin}) or terminal sets (TS) 
(e.g. {x1, x2, x3, 5}). TS and FS must be defined to produce the 
chromosomes and genes [37,38]. One of the main features of 
GEP is chromosome production, where the chromosomes are 
represented by parse trees. Karva language developed by 
Ferreira [34] is used to read the information encoded in each 
chromosome. 

The chromosomes are translated into different 
sub-expression trees (sub-ET). The transmutation of the 
expression translated by Karva into each ET begins from the 
first ET location in the expression (i.e. ET root) and continues 
in a left-to-right direction throughout the string. Owing to the 
predefined fixed length of GEP genes and variability of corre-
sponding ET size, a number of inefficient extra components 
are present in the genome mapping procedure. As a result, 
the K-expression (Eq. 1) length can be equal to or less than the 
gene [39]. A common GEP program is as follows:

� � � � �. . . . . .log. . . . .x x x x x1 2 3 4 17 � (1)

where ‘‘.’’ is a component separator to simplify reading, “7” 
is a constant and x1, x2, x3, x4 are variables. The gene in Eq. (1) 
is expressed in Fig. 2. The sample gene in Eq. (1) is expressed 
in mathematical form in Eq. (2). 

x x x x x2 3 1 4 17�� ��� � � �� � � � �� �log � (2)

A GEP algorithm employs the head-tail technique to 
guarantee the credibility of a randomly selected genome. 
GEP genes consist of heads and tails, where a tail includes 
TS and a head can be organized with both FS and TS [31,34].

A simple schematic of a GEP algorithm is given in 
Fig. 3. The GEP algorithm is initiated by randomly creating 
fixed-length chromosomes for each individual. Subsequently, 
the chromosomes are identified and the fitness of each 
individual is calculated. The chromosomes are selected based 
on their fitness, and the selected chromosomes are utilized 
to modify their reproduction. The same evolution process is 
repeated for new individuals in a series of generations until 
a solution is found or the specified number of generations is 
reached [34,39]. The best individuals are selected based on 
fitness, the roulette wheel selection method and elitism and 
are kept in the next generation [31]. Employing the single or 
multi-genetic operators, such as replication, transposition, 
recombination and mutation on the chosen chromosomes 
results in population variation to attain the best solution.

3. Methodology

Assuming fully turbulent flow where the Reynolds 
number (R = uD/ν) is greater than 2,000, ν is the kinematic 
viscosity, the Boussinesq approximation is credible ((ρ0–ρa) 
<< ρa), and ρ0 and ρa are the effluent and ambient density 
respectively. The variable dependent on flow (φ) is a function 
of momentum (M), ambient depth (H), discharge angle (θ), 
volume kinematic flux (Q) and buoyancy (B):

� �� � �f M H B Q, , , , � (3)

where

Q D u�
�
4

2 � (4)

B g Q� �
0 � (5)

� � �� �g g a a0 0� � �/ � (6)

M uQ= � (7)

Fig. 2. Example ET.
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where u is the jet’s exit velocity. The most important length 
scale of flow that forms from buoyancy fluxes and momentum 
is LM = M3/4/B1/2 [4,5,8,11,12], which is equal to DF(π/4)1/4, 
where F is the jet’s densimetric Froude number:

F u
Dg

�
�
0

� (8)

For high jet densimetric Froude number values (F > 20), 
the effect of the initial volume flux (Q) is not dynamically sig-
nificant [5]. Then any variable dependent on shallow water 
flow depth can be written as:

� �� � �f M H B, , , � (9)

Therefore, the following dimensional analysis is 
presented in this study for non-dimensional horizontal 
displacement of the return point (xr/D), non-dimensional 
horizontal displacement of the minimum surface dilution 
point (xs/D), dilution at the return point (Sr) and minimum 
dilution at the water surface (SS):

x D f F H Dr / , , /� � �� � (10)

x D f F H DS / , , /� � �� � (11)

S f F H DS � � ��, , / � (12)

S f F H Dr � � ��, , / � (13)

GEP is employed to present explicit equation for the 
previous dimensionless variables.

The data used in this study were collected from literature 
[4,13]. The data were measured experimentally by Jiang et al. [4] 

and Abessi and Roberts [13] for the non-dimensional horizon-
tal displacement of the return point (xr/D), non-dimensional 
horizontal displacement of the minimum surface dilution 
point (xs/D), dilution at the return point (Sr) and minimum 
water surface dilution at the centerline maximum height (SS) 
as follows: 5 < F < 82.5, 15 < H/D < 79.44 and θ = 30°, 45° and 60°. 
3D plots of all datasets are presented in Fig. 4.

4. GEP development for inclined dense jet prediction

In this study, GEP was developed using jEdit open-source 
software [40] to predict inclined dense jets. First, the “training 
set” and “testing set” were defined. K-fold cross validation 
was employed, whereby all samples were randomly divided 
into k sub-samples. A part of the sub-samples were considered 
the testing samples and k–1 sub-samples were employed for 
model training. This procedure was repeated k times, so that 
each sub-sample served as testing data at least once. In this 
research, k is equal to 4. The learning environment was defined 
by testing set selection. In GEP development, five major steps 
were considered. The first step was fitness function selection. 
Upon reviewing various fitness functions reported in differ-
ent studies, the root relative squared error (RRSE) was chosen 
for the current study. RRSE is one of the most popular fitness 
functions utilized in recent research [29,32]. The fitness (fi) of 
an individual program i is defined as follows:

fi
i

�
�
1000

1 RRSE � (14)

Because RRSEi is in the range of 0 and infinity, the fitness 
function value is in the [0 1000] range. RRSEi is calculated as 
follows:

RRSE j
ij ii

n

ii

n

p O

O O
�

�� �
�� �

�

�

�
�

2

1
2

1

� (15)

Fig. 3. Schematic presentation of a GEP algorithm.
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where Oi is the observed value, Pij is the value predicted 
using program j for fitness i, n is the sample number, and Ō 
is the mean of all observed samples.

In the second step, the FS and TS were selected to 
generate the chromosomes. In this study, TS includes 
multi-independent variables as follows: TS = {θ, F, H/D}. 
There is no specific way to select a suitable FS, but a good 
conjecture could be synergetic if it consists of all essential 
functions. Four arithmetic operators (+, ×, –, ÷) and some 
mathematical functions were applied in this study. To select 
these functions, basic mathematical functions such as log, 
√, etc. were used. Subsequently, the performance of one 
mathematical function combined with an arithmetic operator 
was evaluated. Then another function was added as an FS. If 
the function was efficient, it was considered in combination 
with new functions. This trial and error continued until the 
optimum FS was attained.

After selecting the TS and FS, the chromosome architec-
ture was designed in the third step, including the number 
of genes, head lengths and number of chromosomes. The 
initial gene number, head length and chromosome number 
considered were 1, 2 and 30, respectively. These values were 
increased one at a time through each run and GEP perfor-
mance was monitored in training and testing. The results 
indicate that more than three genes, a chromosome number 
greater than 200 or 400 for some models and head length over 
20 or 30 for some models did not significantly improve GEP 
performance in training and testing.

In the fourth step, four linking functions were exam-
ined: addition, subtraction, multiplication and division. The 
results indicate the superior performance of addition over 

the other linking functions. The final step entailed selecting 
genetic operators that create diversity. The optimum values 
of each parameter are presented in Table 1. 

5. Results and discussion

This section presents the GEP modeling results. Root 
mean square error (RMSE), root relative squared error 
(RRSE), mean absolute percentage error (MAPE), BIAS and 
correlation coefficient (R) are utilized to demonstrate the 
prediction errors. These error indices are defined as follows: 

RMSE � �� ���1 2

1n
P Oi ii

n � (16)

RRSE �
�� �
�� �

�

�

�
�

P O

O O

i ii

n

ii

n

2

1
2

1

� (17)

MAPE �
� �� �

��
100

1

P O
P
i i

i
i

n

� (18)

R
P

P
�

�� � �� �

�� � �� �

�

�

�
�
�
��

�

�

�
�
�
��

�

� �

�

� �
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P O O
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i

2

i

n

i

2

i

n

1 1

� (19)

 

(a) (b)

(c) (d)

Fig. 4. 3D plots of datasets, (a) Sr, (b) SS, (c) xr/D and (d) xS/D.
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Table 1
Optimum parameter settings for GEP modeling

 Parameters Sr SS Xr/D XS/D

P1 Number of generations 5,00,000 5,00,000 5,00,000 5,00,000
P2 Number of chromosomes 200 200 400 400

P3 Number of genes 3 3 3 3

P4 Head size 10 20 30 30

P5 Linking function Addition Addition Addition Addition

P6 Type of fitness function RRSE RRSE RRSE RRSE

P7 Mutation rate 0.014 0.014 0.04 0.014

P8 Inversion rate 0.15 0.1 0.15 0.1

P9 IS transposition 0.15 0.1 0.15 0.1

P10 RIS transposition 0.15 0.1 0.15 0.1

P11 One-point recombination rate 0.35 0.3 0.35 0.4

P12 Two-point recombination rate 0.35 0.3 0.35 0.4

P13 Gene recombination rate 0.15 0.15 0.15 0.15

P14 Gene transportation rate 0.15 0.15 0.15 0.15

P15 Function set +, ×, –, ÷, Log, 
X2, 3Rt

+, ×, –, ÷, sinh, Asinh, 
cosh, cos, Tan, Atanh, 
sqrt, 3Rt, 4Rt, 5Rt, 
Log, Exp

+, ×, –, ÷, cosh, Tan, 
Cos, 4Rt, Exp, sqrt, 
Log, 3Rt, Asinh, 
sinh, X3, sin

+, ×, –, ÷, Asinh, sin, 
Acosh, cos, cosh, Acos, 
Tan, Tanh, Log, Exp, 
3Rt, 4Rt, 5Rt, X2, X3

  

(a) (b)

(c) (d)

Fig. 5. Scatter plots of GEP predictions of (a) Sr, (b) SS, (c) xr/D and (d) xS/D.
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BAIS �
�

�� ( )P O
n
i ii

n

1 � (20)

where Oi is the observed value, Pi is the predicted value, n 
is the number of samples, and Ō is the mean of all observed 
samples.

Fig. 5 presents scatter plots of the GEP predictions of Sr, SS, 
xr/D and xS/D (see Appendix A for more details). The GEP pre-
diction results of dilution at the return point (Sr) were highly 
accurate, as most samples predicted by GEP are near the best-
fit line. According to Table 2, the correlation coefficient for this 
model was 0.989. The mean absolute percentage error (MAPE) 
presented 6% error in Sr prediction. The RMSE and RRSE 
absolute and relative values were 2.078 and 0.149 respectively, 
indicating the high ability of GEP in Sr prediction. BIAS of 
–0.004 demonstrates model underestimation. However, this 
index value was insignificant relative to the Sr values.

Ss prediction by GEP was weaker than that of Sr. 
According to Fig. 5, the GEP-based equation for SS predic-
tion produced appropriate results for SS < 20, beyond which, 
the model performance deteriorated with MAPE of 34%. The 
general performance of GEP in SS prediction was surveyed 
in terms of the BIAS index. The positive value (BIAS = 0.229) 
demonstrates GEP model overestimation.

The GEP prediction results for the dimensionless 
horizontal displacement of the return point (xr/D) and 
non-dimensional horizontal displacement of the minimum 
surface dilution point (xs/D) indicate high modeling accuracy. 
A qualitative examination of the models signifies that all 
models with these variables (xs/D and xr/D) are near the best-
fit line. Therefore, GEP is a good means of predicting these 
variables. Moreover, a quantitative survey (Table 2) indicates 
that the relative errors for xs/D and xr/D prediction were 
8.217 and 9.328, respectively. The root mean error indices 
(RMSE and RRSE) were 8.033 and 0.055 (xs/D) and 11.256 and 
0.19 (xr/D). The xs/D and xr/D prediction trends were under-
estimation and overestimation, respectively. Based on the 
results in Fig. 5 and Table 2, it can be concluded that GEP is 
an evolutionary tool highly capable of predicting horizontal 
jet displacement and dilution in shallow water.

The variation trend of Sr, SS, xr/D and xS/D in relation to 
the input variables was analyzed by partial derivative sensi-
tivity analysis (PDSA) [31,41]. The sensitivity of each input 
variable xi on the target variable was surveyed using the 
partial derivative of the target value (K) to each input (xi), 
(dK/dxi). A positive (or negative) PDSA value implies that an 
increase in xi as ε (xi + ε) leads to an increase (or decrease) 

in K. Fig. 6 displays the sensitivity analysis results for differ-
ent input variables in Sr prediction. The figure signifies the 
Sr values do not follow a certain trend with the increase or 
decrease in H/D value, as the sensitivity values in each H/D 

Table 2
Statistical indices for GEP predictions of Sr, SS, xr/D and xS/D

Variable R MAPE RMSE RRSE BIAS

Perfect value 1 0 0 0 0
SS 0.909 34.002 4.555 0.419 0.229

Sr 0.989 6.013 2.085 0.149 –0.004

xs/D 0.999 8.217 8.033 0.055 –0.074

xr/D 0.982 9.328 11.256 0.190 0.458

 

 

(a)

(b)

(c)

Fig. 6. Sensitivity analysis results for different input variables in 
Sr prediction, (a) F, (b) H/D and (c) θ.
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range were positive and negative. The increase or decrease 
in H/D at lower H/D values had a lower impact on Sr com-
pared with an increase or decrease in higher H/D values. The 
PDSA values for 30°, 45° and 60° indicate that an increase in θ 
value resulted in an increase in Sr value, whereby sensitivity 
increased with increasing θ. It should be noted that the sensi-
tivity reduced with increasing F.

Fig. 7 shows the sensitivity analysis results for different 
input variables in SS prediction. The increase or decrease in 
the F variable in SS prediction led to a significant increase 
or decrease in Ss, with PDSA values between –103 and 103. 
Therefore, the GEP-based equation presented for SS prediction 
is very sensitive to F and any insignificant change in this vari-
able resulted in a significant change in SS. Most PDSA results 
of the proposed model’s sensitivity to H/D were negative. 
Then an increase in H/D led to a lower SS calculated by the 
GEP-based model. Moreover, the GEP-based model’s sensi-
tivity to θ did not exhibit a certain trend, as various positive 
and negative PDSA values were obtained for different ranges 
of this variable. The sensitivity analysis results indicate the 
lowest sensitivity of the GEP-based model to θ compared 
with F and H/D.

Fig. 8 presents the sensitivity analysis results for different 
input variables in xr/D prediction. The PDSA results indicate 
that a change in the H/D and θ parameters influencing xr/D 
prediction exhibited no deterministic trend in xr/D values, 
as the PDSA values were negative or positive in different 
ranges. It should be noted that the PDSA values were rela-
tively low, signifying the low sensitivity of the proposed 
model to these variables. In contrast to these two parameters, 
the sensitivity of the proposed model to F was second-order, 
as with increasing toward maximum F, the sensitivity values 
changed from positive to negative. 

The sensitivity analysis results for different input vari-
ables in xS/D prediction show there was no certain trend in 
the PDSA analysis to conclude that any changes in these 
parameters (θ, F or H/D) while other parameters (two of 
three input variables) remained constant resulted in an 
increase or decrease in the target value (xS/D). However, the 
PDSA values relative to all input variables indicate that any 
change in these parameters often had significant impact on 
the xs/D values. 

A quantitative appraisal of the uncertainties in Sr, SS, 
xr/D and xS/D prediction is presented in Table 3. Uncertainty 
analysis was applied to the test data utilized in this research 
[42–43]. The prediction error ej = Pj–Oj can be described with 
uncertainty analysis. The prediction errors computed for the 
entire dataset were applied to compute the standard deviation 
and mean prediction errors S e e ne jj

n
� �� � �� ���

2

1
1/  and 

e e njj

n
�

�� 1
/ , respectively. Positive and negative mean values 

demonstrate prediction model overestimation and underes-
timation, respectively. An uncertainty bound was defined 
for mean prediction error and Se by Wilson score technique 
without continuity correction. The use of ± 1.98 Se yielded an 
approximately 95% uncertainty band. The uncertainty analy-
sis results for the Sr, SS, xr/D and xS/D variables are presented 
in Table 3. This table also shows the mean prediction error, 
uncertainty band width and 95% prediction error interval. 
The results indicate that the absolute mean prediction errors 
for the GEP developed to predict Sr, SS, xr/D and xS/D were 

0.004, –0.229, –0.458 and 0.051 respectively. The widths of the 
uncertainty bounds were ± 0.418, ± 1.012, ± 2.209 and ± 1.473 
for Sr, SS, xr/D and xS/D.

 

(a)

(b)

(c)

Fig. 7. Sensitivity analysis results for different input variables in 
SS prediction, (a) F, (b) H/D and (c) θ.
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6. Conclusions

This study presented the application of the GEP tech-
nique to develop a model for predicting the characteristics 
of an inclined dense jet in shallow water (inclined dense jet 
impacts the water surface), i.e. the non-dimensional horizon-
tal displacement of the return point (xr/D), non-dimensional 
horizontal displacement of the minimum surface dilution 
point (xs/D), dilution at the return point (Sr) and minimum 
dilution at the water surface (SS). The GEP technique was 
introduced to attain the global minimum through an evolu-
tionary process. Four pseudocodes were presented to calcu-
late xr/D, xs/D, Sr and SS. The results of the proposed models 
displayed high accuracy in predicting xr/D (R = 0.982; MAPE 
= 9.328; RRSE = 0.190), xs/D ( = 0.999; MAPE = 8.217; RRSE 
= 0.055), Sr (R = 0.989; MAPE = 6.013; RRSE = 0.149) and SS 
(R = 0.909; MAPE = 34.002; RRSE = 0.419). Partial derivative 
sensitivity analysis was also conducted to survey the effect of 
each input variable. According to the results, xr/D is highly 
sensitive to non-dimensional ambient depth (H/D) and dis-
charge angle (θ), Ss is highly sensitive to the jet densimetric 
Froude number (F) and Sr and xs/D are sensitive to all input 
variables (F, θ and H/D). Moreover, uncertainty analysis was 
conducted and the uncertainty band widths identified for Sr, 
Ss, xr/D and xS/D were ± 0.418, ± 1.012, ± 2.209 and ± 1.473 
respectively. Therefore, the GEP models developed in this 
paper can serve as suitable alternatives in practical engineer-
ing problems.
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Appendix A

The GEP output is an enforceable equation. The equations 
extracted for SS, Sr, xS/D, xr/D are given in Table A1. 

Table A1
GEP-based equations related to SS, Sr, xS/D, xr/D

Variable Equation Eq. No.

Sr S S S Sr r r r� � �(1) (2) (3) A1

S F F F H D1(1) = ((( /( -3.09)) + (( /3.09) + ))/((-0.09 ) ( - / )))� � �� � A2

S H D F F H D Fr (2) = ( /((((1.3 ( / )) + )/4.82) (log( ) (( / )/ ))))� � �� A3

S H D H D F H Dr ( ) )3 � � �(((log((((( / )/ ) ( / + 4.73)) + log( ))) ( / )^(1/3)� ))^2) A4

SS S S S SS S S S= (1) (2) (3)+ + A5

SS( )1 � sinh(sinh(((cosh(asinh( / )) tan((( / /(((cos((-4.41H D H D� ++ )) + ( / ^(0.2))) + 1.83)^(0.25)))+ )))/ )))F H D F F A6

SS( )2 � (H/D*(1/(1 + exp(-(((sqrt(((1/(1 + exp(-( / -25.33))))^(H D 00.2))) + log( / ))- )+sinh(tan((6.75* ))))))))H D F� A7

SS( )3 � sinh(sqrt((exp((( / *(asinh( / )/atanh(exp(-((1/(1 + eH D H D xxp(-( -4.45- / + / )))
+ 1/(1+exp(-(-3.57))))^2)))))^(1/3))

� �H D F
))^(1/3))))

A8

xS/D x D x D x D x Ds s s s/ / / /� � �(1) (2) (3) A9

x D F Fs / ( × asinh(((sin(log(acosh((asinh(cos(exp(( + exp((((( )1 � aacos((0.48 × (((exp(-(( -3.14)^2)))^(0.2))
+ cos((-3.14 + )))

F
� )))^(1/3))+0.48)^2))))))+ ))))×( / ))- )))F H D �

A10

x D H D Fs / (((cos( / ) × ((tan((tanh(9.21) + tan( ))) + tan((9.21. ×( )2 � (( / )))) + ( + (((( / )^2)
( / .×9.21))^(0.25))))) + (( / + sin

H D F H D
H D H D� ((((-8.19- ) ( - / )))) + 8.19)) + )F F H D F�

A11

x D F F H D Hs / + ( + (log10((((7.84/ / ) × sinh((atanh((cos(cosh(((( )3 � // )^(1/3)))) × (1/(1 + exp(-(sin(( / + ))
+ ( - / ) + ))))))^2))

D H D F
F H D F ))^3)) × cos(((log10( ) + ) × )))))F F �

A12

xr/D x D x D x D x Dr r r r/ / / /� � �(1) (2) (3) A13

x D F F Fr ( )1 � ((log(( + (( ^(1/3))^2))) × (sqrt(( / ))^(1/3)))^3)� A14

x D H D H D Fr ( )2 � (log(((((( - / )^2) × )/( / ))^(1/4)))× )� � A15

x D F F Fr ( )3 � ( -((((exp( )^(1/4)) × (( /3.78) × ))^(1/3))/ ))� � A16
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The results of the GEP-based equations in predicting SS, 
xS/D, Sr, xr/D are presented in Tables A2 to A5, respectively.

Table A2 
GEP results for SS prediction

Reference θ F H/D Ss–Actual Ss–GEP

Jiang et al. [4] 30 21.4 20 31.3 30.48
Jiang et al. [4] 30 26.5 20 9.52 7.81

Jiang et al. [4] 30 34.6 20 6.58 8.74

Jiang et al. [4] 30 30.8 20 7.84 7.80

Jiang et al. [4] 30 38 20 6.76 7.71

Jiang et al. [4] 30 13.4 13 30.3 16.23

Jiang et al. [4] 30 15.1 13 10.9 10.89

Jiang et al. [4] 30 16.7 13 8.44 5.64

Jiang et al. [4] 30 18.9 13 6.15 5.51

Jiang et al. [4] 30 21.1 13 5.62 5.46

Jiang et al. [4] 30 24.4 13 5.56 5.39

Jiang et al. [4] 45 25.5 40 37.9 23.42

Jiang et al. [4] 45 27.8 40 24.1 18.06

Jiang et al. [4] 45 30.7 40 13.8 17.15

Jiang et al. [4] 45 36.6 40 10.9 14.49

Jiang et al. [4] 45 44.7 40 9.81 13.17

Jiang et al. [4] 45 48 40 9.61 12.74

Jiang et al. [4] 45 65.5 40 8.76 11.27

Jiang et al. [4] 45 80.5 40 9.13 10.57

Jiang et al. [4] 45 15.6 25 41.7 42.88

Jiang et al. [4] 45 16.7 25 17.2 14.30

Jiang et al. [4] 45 18.1 25 10.1 11.94

Jiang et al. [4] 45 20 25 8.4 14.10

Jiang et al. [4] 45 25.2 25 6.67 10.85

Jiang et al. [4] 45 30.4 25 6.06 10.39

Jiang et al. [4] 45 9 13 6.67 8.66

Jiang et al. [4] 45 18.1 13 2.67 5.73

Abessi and 
Roberts [13]

30 42.1 47.30 3.79 4.26

Abessi and 
Roberts [13]

30 43.3 47.58 3.90 4.90

Abessi and 
Roberts [13]

30 45.1 47.47 3.61 4.87

Abessi and 
Roberts [13]

30 48.1 47.16 3.37 4.49

Abessi and 
Roberts [13]

30 54.1 47.46 3.25 4.25

Reference θ F H/D Ss–Actual Ss–GEP

Abessi and 
Roberts [13]

30 32.5 37.36 2.93 4.21

Abessi and 
Roberts [13]

30 35 37.23 3.15 4.43

Abessi and 
Roberts [13]

30 37.5 37.13 2.25 4.07

Abessi and 
Roberts [13]

30 40 37.38 2.40 9.80

Abessi and 
Roberts [13]

30 42.5 37.28 2.13 4.53

Abessi and 
Roberts [13]

30 45 37.19 2.25 3.82

Abessi and 
Roberts [13]

30 50 37.31 3.00 3.68

Abessi and 
Roberts [13]

30 55 37.16 2.75 3.20

Abessi and 
Roberts [13]

30 62.5 37.20 2.50 3.50

Abessi and 
Roberts [13]

30 75 37.13 2.25 3.38

Abessi and 
Roberts [13]

30 82.5 37.16 2.48 3.33

Abessi and 
Roberts [13]

45 30 62.50 17.40 31.77

Abessi and 
Roberts [13]

45 33.1 63.65 12.58 20.71

Abessi and 
Roberts [13]

45 36.1 63.33 12.64 12.18

Abessi and 
Roberts [13]

45 39.1 63.06 7.82 13.43

Abessi and 
Roberts [13]

45 42.1 62.84 7.16 8.16

Abessi and 
Roberts [13]

45 48.1 63.29 7.22 6.64

Abessi and 
Roberts [13]

45 54.1 62.91 7.57 5.91

Abessi and 
Roberts [13]

45 30 62.50 50.10 31.77

Abessi and 
Roberts [13]

45 32.5 62.50 14.30 16.02

Abessi and 
Roberts [13]

45 35 63.64 12.60 14.36

Abessi and 
Roberts [13]

45 37.5 63.56 11.25 10.26

Abessi and 
Roberts [13]

45 40 63.49 10.00 8.05

Abessi and 
Roberts [13]

45 42.5 63.43 8.93 7.84

Abessi and 
Roberts [13]

45 45 63.38 6.30 5.96

(Continued) (Continued)

Table A2 (Continued)
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(Continued)

Table A2 (Continued)

Reference θ F H/D Ss–Actual Ss–GEP

Abessi and 
Roberts [13]

45 50 63.29 5.00 6.20

Abessi and 
Roberts [13]

45 55 63.22 7.70 5.73

Abessi and 
Roberts [13]

45 60 63.16 5.40 5.43

Abessi and 
Roberts [13]

45 75 63.03 10.50 4.85

Abessi and 
Roberts [13]

45 80 62.99 8.80 4.76

Abessi and 
Roberts [13]

60 30 62.50 26.10 31.88

Abessi and 
Roberts [13]

60 32.5 62.50 11.05 16.12

Abessi and 
Roberts [13]

60 30 62.50 39.30 31.88

Abessi and 
Roberts [13]

60 32.5 62.50 12.35 16.12

Abessi and 
Roberts [13]

60 35 63.64 11.90 14.39

Abessi and 
Roberts [13]

60 37.5 63.56 10.13 10.29

Abessi and 
Roberts [13]

60 40 63.49 9.20 8.08

Abessi and 
Roberts [13]

60 42.5 63.43 8.08 7.87

Abessi and 
Roberts [13]

60 47.5 63.33 8.08 6.74

Abessi and 
Roberts [13]

60 52.5 63.25 7.88 5.76

Abessi and 
Roberts [13]

60 57 63.33 7.98 5.60

Abessi and 
Roberts [13]

60 62.5 63.13 6.88 5.28

Abessi and 
Roberts [13]

60 67.5 63.08 7.43 5.09

Abessi and 
Roberts [13]

60 28.8 62.61 62.50 68.71

Abessi and 
Roberts [13]

60 31.3 62.60 15.34 21.81

Abessi and 
Roberts [13]

60 60 63.16 9.60 5.45

Abessi and 
Roberts [13]

60 65 63.11 8.45 5.07

Abessi and 
Roberts [13]

60 70 63.06 7.70 4.95

Abessi and 
Roberts [13]

60 77.5 63.01 7.75 4.74

Table A3
GEP results for xS/D prediction

Reference θ F H/D xs/D–Actual xs/D–GEP

Jiang et al. [4] 30 21.4 20 46.1 41.18
Jiang et al. [4] 30 26.5 20 47.5 40.92

Jiang et al. [4] 30 34.6 20 43.7 47.05

Jiang et al. [4] 30 30.8 20 44.1 39.58

Jiang et al. [4] 30 38 20 42 40.08

Jiang et al. [4] 30 13.4 13 29.2 27.95

Jiang et al. [4] 30 15.1 13 30.1 29.31

Jiang et al. [4] 30 16.7 13 31.4 31.03

Jiang et al. [4] 30 18.9 13 30.1 32.02

Jiang et al. [4] 30 21.1 13 29.8 29.77

Jiang et al. [4] 30 24.4 13 28.8 31.55

Jiang et al. [4] 45 25.5 40 52.6 40.12

Jiang et al. [4] 45 27.8 40 49.9 44.44

Jiang et al. [4] 45 30.7 40 51.3 44.56

Jiang et al. [4] 45 36.6 40 49 44.81

Jiang et al. [4] 45 44.7 40 40 43.86

Jiang et al. [4] 45 48 40 40.9 41.86

Jiang et al. [4] 45 65.5 40 36.4 38.67

Jiang et al. [4] 45 80.5 40 35.8 38.76

Jiang et al. [4] 45 15.6 25 32.2 41.40

Jiang et al. [4] 45 16.7 25 31.5 36.66

Jiang et al. [4] 45 18.1 25 31.4 36.30

Jiang et al. [4] 45 20 25 32.5 35.50

Jiang et al. [4] 45 25.2 25 29.1 36.72

Jiang et al. [4] 45 30.4 25 28.2 41.55

Jiang et al. [4] 45 9 13 16.4 21.64

Jiang et al. [4] 45 18.1 13 14.1 20.29

Abessi and 
Roberts [13]

30 32.5 37.36 321.75 322.26

Abessi and 
Roberts [13]

45 30 62.50 327.00 319.56

Abessi and 
Roberts [13]

45 33.1 63.65 334.31 301.07

Abessi and 
Roberts [13]

45 36.1 63.33 342.59 343.96

Abessi and 
Roberts [13]

45 30 62.50 324.00 319.56

Abessi and 
Roberts [13]

45 32.5 62.50 334.75 328.24

Abessi and 
Roberts [13]

45 37.5 63.56 349.88 351.06
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Reference θ F H/D xs/D–Actual xs/D–GEP

Abessi and 
Roberts [13]

45 40 63.49 378.40 368.31

Abessi and 
Roberts [13]

45 42.5 63.43 393.98 387.18

Abessi and 
Roberts [13]

45 45 63.38 403.65 407.44

Abessi and 
Roberts [13]

60 33 78.57 282.48 288.71

Abessi and 
Roberts [13]

60 36.1 78.48 293.13 304.65

Abessi and 
Roberts [13]

60 39.1 78.20 324.92 306.57

Abessi and 
Roberts [13]

60 27.5 62.50 217.53 231.08

Abessi and 
Roberts [13]

60 30 62.50 247.80 249.77

Abessi and 
Roberts [13]

60 32.5 62.50 261.63 251.41

Abessi and 
Roberts [13]

60 30 62.50 252.30 249.77

Abessi and 
Roberts [13]

60 32.5 62.50 240.50 251.41

Abessi and 
Roberts [13]

60 35 63.64 264.95 266.78

Abessi and 
Roberts [13]

60 37.5 63.56 286.88 288.22

Abessi and 
Roberts [13]

60 40 63.49 313.60 307.01

Abessi and 
Roberts [13]

60 42.5 63.43 331.93 324.82

Abessi and 
Roberts [13]

60 47.5 63.33 355.78 355.73

Abessi and 
Roberts [13]

60 52.5 63.25 378.53 377.54

Abessi and 
Roberts [13]

60 57 63.33 394.44 399.60

Abessi and 
Roberts [13]

60 62.5 63.13 406.88 418.13

Abessi and 
Roberts [13]

60 28.8 62.61 61.92 72.27

Abessi and 
Roberts [13]

60 31.3 62.60 255.10 260.92

Table A3 (Continued) Table A4
GEP results for Sr prediction

Reference θ F H/D Sr–Actual Sr–GEP

Jiang et al. [4] 30 10.1 20 11.5 13.08
Jiang et al. [4] 30 13.5 20 16.1 15.13

Jiang et al. [4] 30 17 20 18 16.36

Jiang et al. [4] 30 20 20 17.9 17.04

Jiang et al. [4] 30 23 20 18.5 17.54

Jiang et al. [4] 30 27 20 17.7 18.02

Jiang et al. [4] 30 30 20 17.1 18.30

Jiang et al. [4] 30 32 20 17.2 18.45

Jiang et al. [4] 30 9 15 10.5 12.36

Jiang et al. [4] 30 13 15 15.3 14.40

Jiang et al. [4] 30 12.2 15 15.2 14.13

Jiang et al. [4] 30 16 15 17.9 15.13

Jiang et al. [4] 30 19 15 17 15.54

Jiang et al. [4] 30 22.4 15 17.2 15.81

Jiang et al. [4] 30 23.6 15 14.5 15.88

Jiang et al. [4] 30 25 15 16.4 15.94

Jiang et al. [4] 45 10.1 40 10 12.52

Jiang et al. [4] 45 13 40 18.2 16.80

Jiang et al. [4] 45 16.8 40 23.7 20.22

Jiang et al. [4] 45 18.7 40 23 21.44

Jiang et al. [4] 45 22.3 40 23.8 23.23

Jiang et al. [4] 45 26.2 40 25.5 24.67

Jiang et al. [4] 45 28 40 24.6 25.22

Jiang et al. [4] 45 29.9 40 25.6 25.73

Jiang et al. [4] 45 31.2 40 22.1 26.05

Jiang et al. [4] 45 34.5 40 21.3 26.77

Jiang et al. [4] 45 34.8 40 23.4 26.83

Jiang et al. [4] 45 5 25 8.47 7.78

Jiang et al. [4] 45 7.2 25 11.5 13.21

Jiang et al. [4] 45 9.1 25 14.6 15.53

Jiang et al. [4] 45 12.2 25 16.9 17.76

Jiang et al. [4] 45 14.3 25 18.2 18.73

Jiang et al. [4] 45 15.3 25 18.5 19.09

Jiang et al. [4] 45 18.1 25 18.2 19.91

Jiang et al. [4] 45 20.2 25 19.4 20.36

Jiang et al. [4] 45 22.9 25 20.9 20.82

Jiang et al. [4] 45 25.2 25 21.1 21.13

Jiang et al. [4] 45 27.2 25 20 21.36

(Continued)
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Table A4 (Continued) Table A4 (Continued)

Reference θ F H/D Sr–Actual Sr–GEP

Jiang et al. [4] 45 5.8 15 9.52 11.12

Jiang et al. [4] 45 7.2 15 13.3 13.37

Jiang et al. [4] 45 9.3 15 16.7 15.31

Jiang et al. [4] 45 11.1 15 18.2 16.27

Jiang et al. [4] 45 13 15 17.5 16.90

Jiang et al. [4] 45 14.1 15 17.1 17.14

Jiang et al. [4] 45 15.7 15 17.2 17.39

Jiang et al. [4] 45 17.1 15 16.4 17.52

Abessi and 
Roberts [13]

30 42.1 47.30 37.89 37.08

Abessi and 
Roberts [13]

30 43.3 47.58 35.94 37.34

Abessi and 
Roberts [13]

30 45.1 47.47 36.98 37.45

Abessi and 
Roberts [13]

30 48.1 47.16 39.92 37.55

Abessi and 
Roberts [13]

30 54.1 47.46 38.95 38.19

Abessi and 
Roberts [13]

30 32.5 37.36 33.48 31.69

Abessi and 
Roberts [13]

30 35 37.23 32.90 31.82

Abessi and 
Roberts [13]

30 37.5 37.13 33.38 31.95

Abessi and 
Roberts [13]

30 40 37.38 34.40 32.19

Abessi and 
Roberts [13]

30 42.5 37.28 32.73 32.30

Abessi and 
Roberts [13]

30 45 37.19 31.05 32.41

Abessi and 
Roberts [13]

30 50 37.31 34.00 32.73

Abessi and 
Roberts [13]

30 55 37.16 32.45 32.91

Abessi and 
Roberts [13]

30 62.5 37.20 33.13 33.26

Abessi and 
Roberts [13]

30 75 37.13 31.50 33.72

Abessi and 
Roberts [13]

30 82.5 37.16 33.83 34.00

Abessi and 
Roberts [13]

45 30 62.50 43.50 42.14

Abessi and 
Roberts [13]

45 33.1 63.65 47.66 43.12

Abessi and 
Roberts [13]

45 36.1 63.33 47.65 43.43

(Continued)

(Continued)

Reference θ F H/D Sr–Actual Sr–GEP

Abessi and 
Roberts [13]

45 39.1 63.06 44.57 43.72

Abessi and 
Roberts [13]

45 42.1 62.84 45.47 43.99

Abessi and 
Roberts [13]

45 48.1 63.29 48.58 44.87

Abessi and 
Roberts [13]

45 54.1 62.91 48.69 45.28

Abessi and 
Roberts [13]

45 30 62.50 40.80 42.14

Abessi and 
Roberts [13]

45 35 63.64 48.65 43.40

Abessi and 
Roberts [13]

45 37.5 63.56 43.50 43.72

Abessi and 
Roberts [13]

45 40 63.49 40.00 44.02

Abessi and 
Roberts [13]

45 42.5 63.43 39.95 44.31

Abessi and 
Roberts [13]

45 45 63.38 41.85 44.57

Abessi and 
Roberts [13]

45 50 63.29 42.50 45.07

Abessi and 
Roberts [13]

45 55 63.22 43.45 45.51

Abessi and 
Roberts [13]

45 60 63.16 47.40 45.92

Abessi and 
Roberts [13]

45 80 62.99 48.00 47.28

Abessi and 
Roberts [13]

60 60.1 79.08 54.09 52.78

Abessi and 
Roberts [13]

60 27.5 62.50 48.68 51.00

Abessi and 
Roberts [13]

60 30 62.50 47.70 50.64

Abessi and 
Roberts [13]

60 32.5 62.50 48.75 50.37

Abessi and 
Roberts [13]

60 30 62.50 52.50 50.64

Abessi and 
Roberts [13]

60 32.5 62.50 53.95 50.37

Abessi and 
Roberts [13]

60 35 63.64 46.55 47.75

Abessi and 
Roberts [13]

60 37.5 63.56 52.50 47.87

Abessi and 
Roberts [13]

60 40 63.49 50.00 47.99

Abessi and 
Roberts [13]

60 42.5 63.43 47.60 48.11

Abessi and 
Roberts [13]

60 47.5 63.33 47.50 48.33
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Reference θ F H/D Sr–Actual Sr–GEP

Abessi and 
Roberts [13]

60 52.5 63.25 48.83 48.54

Abessi and 
Roberts [13]

60 57 63.33 46.74 48.59

Abessi and 
Roberts [13]

60 62.5 63.13 48.75 48.94

Abessi and 
Roberts [13]

60 67.5 63.08 47.93 49.12

Abessi and 
Roberts [13]

60 31.3 62.60 45.39 50.13

Abessi and 
Roberts [13]

60 60 63.16 47.40 48.84

Abessi and 
Roberts [13]

60 65 63.11 51.35 49.03

Abessi and 
Roberts [13]

60 70 63.06 45.50 49.21

Abessi and 
Roberts [13]

60 77.5 63.01 51.15 49.47

Table A4 (Continued)


