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a b s t r a c t

Amongst the present water treatment technologies membrane separation is gaining focus nowadays. 
Emulsion liquid membrane is one of the advanced strategies used for pollution removal from waste 
water in which the use of biosurfactant makes this approach eco-friendly technique. The norfloxa-
cin belongs to the fluoroquinolones class of antibiotic and extensively used for urinary tract infec-
tions, which is the model pollutant in this study. Saponin was solvent extracted from soapnuts and 
used as biosurfactant. The main and interactive effects of parameters such as saponin concentration 
(0.01–0.03 g/100 mL), NaOH concentration (0.25–0.75 M) and Initial Norfloxacin concentration (25–75 
mg/L) were investigated using Response Surface Methodology (RSM) - Box Behnken Design (BBD) 
and Artificial Neural Networks (ANN) design. The results suggested that developed 3-8-1 ANN 
model evaluated in terms of performance measure (R2: 0.9806, Chi square: 0.02) and error functions 
(RMSE: 0.11, MAE: 0.09, SEP: 1.16, MPE: 1.76) demonstrated superiority more precisely than the RSM 
model in terms of both data fitting and prediction capability. The optimal conditions for ELM were 
found to be: initial norfloxacin concentration 67.65 mg/L, saponin concentration 0.021 mg/100 mL, 
and NaOH concentration 0.36 M and the extraction efficiency at these parameter settings would be 
91.27%.
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1. Introduction

Urbanization and rapid Industrialization generate enor-
mous amounts of hazardous wastes and pharmaceutical 
containing waste water is one among them [1]. Pharmaceu-
tical effluents are complex in nature and hazardous to the 
ecosystem. Pharmaceutical micro pollutants are extremely 
harmful as they are present at very smaller quantity in 

waste waters which have the potential to create adverse 
effects in the aquatic system, human, and animal health 
[2]. Even though, norfloxacin is a potent fluoroquinolone 
antibiotic which is used to treat urinary tract infections in 
human beings, administered to poultry, and farm animals 
for prophylaxis, it has the ability to create antimicrobial 
resistance in human populations and may also act as poten-
tial endocrine disruptors in aquatic life forms [3,4,5]. Sim-
ilarly, wastewater from hospital, sewage treatment plant 
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and wastewater treatment plant are reported with micro- 
and nano-levels of this component [6].

The conventional treatment for the removal of fluoro-
quinolone antibiotics using mechanical and biological treat-
ment [7–9] showed very low level removal of norfloxacin 
under methanogenic conditions in sludge digesters [10]. It 
also proved that complete removal of norfloxacin at micro 
level has not been achieved so far with any other technique. 
The methods such as advanced oxidation process and ozoni-
sation may have harmful consequences as they might convert 
the norfloxacin into some other harmful chemical substance 
[11]. Hence a novel green surfactant assisted Emulsion Liq-
uid Membranes (ELM) system is developed in this study for 
norfloxacin removal from aqueous solution. ELMs are use-
ful especially in the efficient recovery of solutes from low 
concentration which is one of the merits of this technique 
[12]. Another major advantage of this technique is that, the 
separation is carried out in a single step. Classical methods 
for the treatment of micro pollutants using ELM utilizes syn-
thetic surfactants such as span 80 [12]. Such synthetic chem-
ical surfactants are hazardous to the environment and are 
costly [13]. The solvents are recoverable and the only chem-
ical used for ELM formation is these chemical surfactants. If 
they are replaced by renewable and cheap biosurfactant, the 
ELM process goes eco-friendly. Hence, a novel green surfac-
tant - saponin was extracted from soapnuts and used in this 
study. Saponin is a saponaceous substance produced natu-
rally by plants such as Sapindus mukorossi [14].

Soap nut or Sapindus indicus belongs to Sapindaceae 
family, is widely available in Asian countries and had been 
used as a traditional surfactant for cleansing hair and body 
for several years [15,16]. An untried and cheap surfactant 
saponin extracted from soap nut is employed in this study 
substituting synthetic surfactant. The present investigation, 
introduces a novel strategy by choosing saponin as the 
green surfactant that further allows for the cost effective 
and possible removal of the pharmaceutical micro-pollut-
ant norfloxacin from aqueous solutions using a single step 
ELM process. 

Even though, operating cost of the ELM is low, the 
dynamics for the removal need to be addressed to under-
stand the optimum utilization of ELM. Predicting the 
removal efficiency of the norfloxacin micro-pollutant 
using ELM involves several experimental procedures 
which are a cumbersome process. While considering the 
classical “one factor at a time” method the number of vari-
ables taken is too many which is unrealistic [17,18]. Fur-
ther such process generates huge volume of data which 
makes the interpretation a very daunting process. Hence, 
Response Surface Methodology (RSM) and Artificial Neu-
ral Network (ANN) design have been developed in this 
study to understand the extraction of norfloxacin using 
ELM. Response surface methodology (RSM) is more 
advantageous than the traditional single parameter opti-
mization because it can save time, space and raw material 
[18]. In experimental design, a BBD is a type of RSM. BBD 
along with the design of experiments remove systematic 
errors with an estimate of the experimental errors, and 
also reduce the number of experiments, in order to obtain 
the optimum operating condition [19].

ANN is a machine learning tool which is a biologically 
inspired model formed from hundreds of single units, 

and artificial neurons that are connected with coefficients 
(weights) which comprises of the neural network [20,21]. 
ANN can deal with the optimization of nonlinear multivar-
iate systems with its interactions greater than the quadratic 
range which can be applicable to both small and large data 
sets [22,23]. Recently, focus on the comparison of RSM data 
with ANN have been used to understand the results of dif-
ferent process parameters. 

To the best of our knowledge, this manuscript is one 
of a kind to demonstrate the removal of micro-pollutant 
norfloxacin using ELM and to investigate on the combined 
effects of the involving variables using RSM-BBD mathe-
matical model and predicts the removal of the pharmaceu-
tical micro-pollutant norfloxacin using ANN model.

2. Materials and methods

2.1. Chemical

The NaOH (internal reagent, SD fine, ≈97%), Isoamyl 
alcohol (membrane phase, Hi Media, ≈99%), poly-butyl 
succinimide (membrane stabilizer, Hi Media, 99%), nor-
floxacin for feed/external phase (Sigma Aldrich, ≈97%) and 
ethyl acetate (for saponin extraction, Hi Media, 99%) used 
during this present investigation were of analytical grade 
and were used without any pre-treatment. Doubly distilled 
water was used for all the experiments unless otherwise 
stated. The saponin was extracted from soap nut powder 
and used as a green surfactant in this experiment. 

2.2. Biosurfactant extraction and characterization

Ten gram of soapnut powder was added with 100 ml 
of ethyl acetate in a 250 ml beaker. The beaker was placed 
in a water bath at 60±1ºC with intermittent stirring at 180 
rpm for 7 h. After heating, it was allowed to cool until it 
attained room temperature. Then the solution was filtered 
using the Whatmann filter paper No.1 and the solvent 
was recovered by the rotary flash evaporator (Heidolph 
Laborota 4000, India). The sample was concentrated and 
placed in a Petri plate under 27±1ºC for drying. Finally, 
the sample was weighed for calculating the yield of sapo-
nin. The critical micellar concentration of saponin was 
determined using a procedure explained by Chakrabarty 
[23]. The extracted saponin was characterized using FTIR 
(IRAFFINITY-1S, Double beam, Shimadzu, US) in the 
range of 750–4500 cm–1.

2.3. Batch ELM experiments 

A glass mixer-settler of 12.5 cm diameter with proper 
covering and a variable speed turbine impeller was used for 
batch ELM extraction. The constituents of the liquid mem-
brane used in this study were: amyl alcohol as the solvent 
and saponin as surfactant to stabilize water-in-oil emul-
sions and poly-butyl succinimide (1.5 wt%) as membrane 
strengthening agent. The internal reagent was sodium 
hydroxide. The primary emulsion (Water in oil) was pre-
pared by gradually dripping NaOH solution into the amyl 
alcohol (oil phase) in a beaker by high speed stirring at 
around 4000 rpm for about 20 min. The resultant milky 
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white emulsion was then dispersed (at 200 rpm) in the 
external aqueous phase containing pharmaceutical com-
pound as feed in the mixer-settler for 20 min. During this 
period, the norfloxacin (solute) transport occurs through 
the membrane phase into the internal stripping phase 
where it is concentrated. The treated sample was then sep-
arated from the emulsion and filtered before analysing for 
norfloxacin concentration by using UV-spectrophotometer 
(SHIMADZU, India) at 270 nm. The initial concentration 
of the aqueous feed phase norfloxacin solution was altered 
between 25 to 75 mg/L and experiments carried out to 
understand the concentration effects. Saponin loading also 
varied between 0.01 to 0.03 g/100 mL mixture to investigate 
the surfactant loading effects. Sodium hydroxide was used 
as stripping agent and its concentration was varied from 
0.25 M to 0.75 M. 

2.4. BBD Optimization of ELM parameters 

The entire optimization was carried out using Box-
Behnken design (BBD) [24] using Design Expert 10 (State 
Ease, USA) software [20]. Experiments were conducted 
in random order to reduce error. The regression analysis 
was executed to evaluate the response function. The fol-
lowing quadratic model (Eq. (1)) can predict the extraction 
efficiency (%E):
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where %E is the extraction efficiency, βi, βj, and βij are the 
coefficients from regression analysis, k is the number of fac-
tors, Xj and Xj represent the uncoded value of the ith (linear 
coefficient), and jth (quadratic coefficient) parameter respec-
tively [24]. 

2.5. Artificial neural networks 

In this study, an Artificial Neural Network (ANN) 
model was constructed for predicting the norfloxacin 
extraction efficiency. ANN was performed for the same 
data according to BBD matrix with 17 data points with 3 
process variables as input variables - NaOH concentration 
(0.25–0.75 M, X1), initial norfloxacin concentration (25–75 
mg/L, X2) and saponin concentration (0.01–0.03 g/100 
mL, X3). The input signals were modified by interconnect-
ing the weights known as weight factors, which repre-
sented the interconnection of ith nodes of the first layer to 
jth nodes of the second layer. The sum of modified signals 
(total activation) was then amended by a sigmoid transfer 
function and output was obtained at the output layer [17]. 
The coefficient of determination for ANN was obtained 
from regression graph. In this study the ANN model 
was performed using Neural Network Toolbox of (MAT-
LAB R2014a) mathematical software [22]. The hidden 
layer then did all the pre-processing and gave the output 
based on the sum of the weighted values from the input 
layer, modified by a sigmoid transfer function (transig) 
at the hidden layer and a linear transfer function (pure-
lin) as output. The performance of the ANN process was 
expressed in terms of the Root Mean Square Error (RMSE) 
and correlation coefficients (R2) [20]. 

3. Results and discussion

3.1. Saponin yield and critical micellar concentration 

The Saponin yield was obtained as 26 g/kg powder of 
dried soapnut powder. The critical micellar concentration 
of the extracted saponin was found to be 0.2 g/L (=4.37 ×  
10–4 mol/L). The FTIR results (Fig. 1) clearly indicated that 
the extract was saponin which is comparable with other 
researchers [15,16,25]. 

3.2. Statistical analysis of ELM

In this study, we demonstrated the statistical optimiza-
tion for norfloxacin removal using saponin assisted ELM 
system. Three factors namely, NaOH concentration (0.25–
0.75 M, X1), initial norfloxacin concentration (25–75 mg/L, 
X2) and saponin concentration (0.01–0.03 g/100 mL, X3) were 
considered to analyse the extraction efficiency of norfloxacin 
from aqueous solution. In order to investigate the combined 
effects of the selected variable on percentage norfloxacin 
removal the experiments were carried out according to the 
BBD [26–29]. The results for BBD are shown in Table 1.

Multivariate regression analysis of the empirical data 
generated the following quadratic equation: 

%E = 95.90 + 1.72×X1 + 3.32×X2 + 0.58×X3 – 0.52×X1×X2 – 
0.28×X1×X3 + 0.93×X2×X3 – 5.06×X1

2 – 8.16×X2
2 – 7.61×X3

2�(2)

Experimentally designed data were analysed using 
multiple regression through the least square method. The 
significance of the regression coefficients was also tested by 
F-test [24]. The results were analysed, the analysis of vari-
ance (ANOVA) is presented in Table 2. The quality of fit of 
the polynomial equation was expressed with the coefficient 
of determination (R2). The effect and regression coefficients 
of linear, quadratic, and interaction terms were determined. 
The quadratic models and response surfaces were gener-
ated for each response [26].

The extraction efficiency values predicted from Eq. (2) 
were almost close to the linearity in the normal probability 
plot (Fig. 2) which indicated the best fit. Hence, this qua-
dratic polynomial equation was deemed to be fit for this set 
of extraction experiments. 

Fig. 1. The FT-IR spectra of saponin.
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Probability less than 0.05 signifies the model coeffi-
cients are important. From Table 2, factors (X1, X2, X3) and 
their interactions (X1X2, X2X3, X1

2, X2
2, X3

2) were notewor-
thy. The value of probability of the model F value (1523.54) 
indicated that the selected quadratic polynomial model 
was significant [27]. The value of regression coefficient 

(0.9424) close to unity showed that predicted model coef-
ficients were reasonable. The predicted R2 (0.9214) and 
adjusted R2 (0.9323) were in practical tuning with each 
other. Greater than 4 of adequate precision value specified 
an adequate signal [28]. Hence, the predicted quadratic 
models could navigate the design space to understand the 
factors interaction. 

3.3. Significant interactions of ELM parameters

Contour and 3D plots were produced to get a clear pic-
ture about the interaction of the independent parameters 
and optimum conditions for the norfloxacin extraction [29]. 
The nonlinear nature of the contours suggested that the 
interaction between the parameters is significant and the 
optimum parameters cannot be found simply. 

The 3D plots explaining the combined effect of the two 
selected parameters were generated for saponin assisted 
removal of norfloxacin from aqueous solution using ELM 
batch system and the shaded surface indicated the maxi-
mum extraction efficiency. Based on F value the process 
variable initial norfloxacin concentration (1474.08) and 
saponin concentration (396.75) had a higher effect on nor-
floxacin removal from aqueous solution, whereas NaOH 
(44.08) had least effect on norfloxacin removal.

3.3.1.Effect of saponin concentration

As the concentration of saponin increased the emul-
sion stability also increased due to the aid to emulsification 
[30,31]. From Figs. 3a and b, when there was an increase in 
the surfactant concentration, the rate of norfloxacin removal 
increased, whereas the rate of extraction decreased beyond 
a certain concentration. The higher dosage of saponin aided 
good dispersion of primary emulsion and intern increased 
the number of membrane globes which consistently 
increased the norfloxacin extraction rate. 

3.3.2. Effect of initial norfloxacin concentration

It is inferred from Figs. 3b and c that, when the initial 
norfloxacin concentration increased it affected the norfloxa-
cin removal efficiency positively. The higher initial concen-
tration favored the driving force (concentration gradient) 

Table 1
BBD matrix for extraction efficiency of norfloxacin

Saponin 
concentration 
(g/100 mL)

Norfloxacin 
concentration 
(mg/L)

NaOH 
concentration 
(M)

%Ract %Rpred

RSM ANN

0.01 25 0.5 77.2 76.8 77.2
0.03 25 0.5 81.9 77.6 81.2
0.01 75 0.5 84.5 84.1 84.5
0.03 75 0.5 87.1 87.6 87.1
0.01 50 0.25 80.8 80.9 80.8
0.03 50 0.25 84.6 83.7 84.6
0.01 50 0.75 82.4 82.1 82.4
0.03 50 0.75 85.1 89.3 85.2
0.02 25 0.25 76.9 77.3 76.4
0.02 75 0.25 82.1 81.9 82.1
0.02 25 0.75 76.3 77.2 76.3
0.02 75 0.75 85.2 84.4 85.2
0.02 50 0.5 95.9 95.9 95.9
0.02 50 0.5 95.9 95.9 95.9
0.02 50 0.5 95.9 95.9 95.9
0.02 50 0.5 95.9 95.9 95.9
0.02 50 0.5 95.9 95.9 95.9

Table 2
ANOVA results

Source Coefficient 
estimate

F 
Value

p-value
Prob > F

Model 95.90 1523.54 < 0.0001
Saponin concentration (X1) 1.72 396.75 < 0.0001
NorfloXacin concentration (X2) 3.32 1474.08 < 0.0001
NaOH concentration (X3) 0.58 44.08 < 0.0001
X1 X2 –0.52 18.37 < 0.0001
X1 X3 –0.28 5.047 0.0002
X2 X3 0.93 57.04 < 0.0001
X1

2 –5.06 1798.52 < 0.0001
X2

2 –8.16 4675.53 < 0.0001
X3

2 –7.61 4066.67 < 0.0001
Residual – – –
Lack of Fit – – –
CV 0.28 – –
PRESS 6.72 – –
R2 0.9424 – –
R2

adj 0.9323 – –
R2

prd 0.9214 – –

Fig. 2. Normal probability plot.
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across the ELM which enhanced the rate of transfer, subse-
quently resulted in increased extraction efficiency. 

3.3.3. Effect of NaOH concentration

From Figs. 3a and c, as the NaOH concentration 
increased there was also an increase in the extraction effi-
ciency. The internal stripping agent (NaOH) concentration 
created stress to the norfloxacin molecules which was pres-
ent in the aqueous phase due to ionic potential. The ionic 
potential rose up when the NaOH concentration augmented 
up which subsequently resulted in the high extraction effi-
ciency [32]. So the concentration of norfloxacin present in 
the membrane phase could be more than the external phase. 

3.3. ANN modelling

In this study we developed ANN based model for 
norfloxacin extraction from an aqueous phase. The ANN 
model used in this study was Feed-forward networks (FFN) 
– Multilayer feed forward network and it was performed 
with 17 data points for norfloxacin extraction with 3 com-
ponents as input data through the input layer – initial nor-
floxacin concentration (X1), saponin concentration (X2), and 
NaOH concentration (X3). The Number of neuron present in 
the hidden layer was selected for ANN initially using trial 
and error method [33] by testing various algorithms, topol-
ogy, and hidden layer. Neuron number were optimized for 
better result in order to select the optimal architecture based 
on the minimization of the error function - the mean square 
error (MSE). 

The first trial informational collection were sorted into 
three subsets including training set (60% of the first explor-
atory informational collections), testing set (20% of the first 
test informational collections) and validation set (20% of the 
first trial informational collections). The reason for a part 
of the test information was to quantify the execution of the 
neural system for the expectation of concealed information, 
that was not utilized for preparing and to evaluate the spec-
ulation capacity of the ANNs. The optimum ANN architec-
ture was taken as 3-8-1 (three neurons in the input layer, 8 
in the hidden layer and 1 in the output layer) for norfloxacin 
extraction, by trial and error, when the mean square error 
(MSE) decreased gradually, and became constant [34]. 

The value of MSE obtained from the ANN was 0.0086 
which was close to the acceptance limit for the MSE set to 
zero. The closeness of the training and testing errors vali-
dated the accuracy of the model. The correlation coefficient 
(0.9806) indicated that the goodness of fit between the 
experimental and predicated responses given by the ANN 

model. Since the R2 for all the model was about equivalent 
to 1, it showed the significance of the model (Fig. 4). Along 
these lines, great, sufficient, higher estimation of R2 of the 
ANN anticipated and trial runs proposed that the devel-
oped ANN could predict the norfloxacin extraction (Table 2 
and Fig. 4). The ANN model for norfloxacin extraction was 
built utilizing the same data used by the RSM and hence it 
indicated that ANN was better than BBD. A parity plot was 
constructed to visualize the precision of the ANN model 
which is depicted in Fig. 5.

3.4. Comparison of ANN and RSM model

The study revealed that ANN model demonstrated 
good fit than BBD, as the predicted values were more close 
to the actual values of norfloxacin extraction. In statistics, 
the parameters root mean square error (RMSE), mean abso-
lute error (MAE), standard error percentage (SEP), mean 
percentage error (MPE) are error functions used to estimate 
the deviation of the developed models. Whereas chi square 
is a statistical test analyzing the goodness of fit between 
experimental values and those expected predicted value. 
Furthermore, coefficient of determination (R2) explains 
how good the experimental data fits the developed mod-
els. From Table 3, it was confirmed from the lower values 
of these error functions of the ANN model that ANN was 
better than BBD model.

Higher precision of ANN can be recognized to its com-
plete ability to predict the experimental values by empirical 
model prediction, though the RSM is limited to a second 
order polynomial condition. It was likewise apparent that 
the ANN did not require a standard test configuration to 
assemble the model. Additionally, from Fig. 6, it was clear 
that every one of the information predicted by the ANN 
was near the straight line, meaning that the ANN predicted 
better, compared with the RSM. In this way, the ANN based 
model was more flexible, and permitted to add new experi-
ment values to assemble another reliable model. The execu-
tion of the model for foreseeing the norfloxacin extraction 
was observed to be very remarkable. In this way ANN 
works best for a non-linear structure, interaction higher 
than quadratic range and applicable both little and exten-
sive experimental values. 

4. Conclusions

The saponin assisted ELM technique was utilised for 
norfloxacin removal from aqueous solution by using amyl 
alcohol as a solvent phase. In this study we developed a 
BBD model to study the combined effect of the influencing 

Fig. 3. Effect of process parameters of norfloxacin extraction.
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process variables such as initial norfloxacin concentration 
(X1), saponin concentration (X2), and NaOH concentration 
(X3) on norfloxacin removal using saponin assisted ELM. 
The individual and combined effect of each process vari-
ables were decoded from RSM 3D surface plots and model 
equation. Additionally, 3-8-1 ANN model was developed 
to predict the same and both the models were compared 
for the ability to predict norfloxacin removal from aque-
ous solution using saponin assisted ELM based on perfor-

Fig. 4. ANN model prediction. 

Fig. 5. Predicted extraction efficiency versus actual values.

Table 3
Comparison of statistical parameters for ANN and RSM models
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mance measures (P value, F value, adjusted R2, predicted R2, 
adequate precision, lack of fit) and error functions (RMSE, 
MAE, SEP, and MPE). The optimal conditions for ELM were 
found to be: initial norfloxacin concentration 67.65 mg/L, 
saponin concentration 0.21 mg/100 mL, and NaOH concen-
tration 0.36 M and the extraction efficiency at these param-
eter settings would be 91.27%.
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