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a b s t r a c t
In recent years, semiconductor photocatalysis technique has received more and more attentions 
for environmental purification due to their unique advantages to solve environmental pollutant 
problems. To acquire high efficiency, low cost and stable photocatalysts, many nonmetal carbon-based 
materials have been developed owing to their unique structure and property characteristics. This 
manuscript presents the recent advance of nonmetal carbon-based photocatalysts for their applica-
tion in degradation of organic contaminants. We hope it will contribute to deep-level investigation 
in this field and developing other metal-free semiconductor materials for treating multiple organic 
pollutants in the future.
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1. Introduction

During the past decades, the continuous increasing 
environmental pollution problems have become more seri-
ous every day owing to a mass of noxious organic pollutants 
discharging into ecological environment system, which have 
attracted worldwide attention [1–20]. Many projects have 
been put forward for removing the pollutants in the environ-
ment [21–25]. Some of them have been large-scale applied in 
wastewater treatment, such as physical/chemical absorption 
[26,27], membrane separation or filtration [28–30], chemical 
oxidation [31,32] and so forth. However, the low cost and 
eco-friendly handling technologies of organic pollutants, 
especially for being able to tackle persistent organic pol-
lutants with low concentrations, are still greatly needed. 
Recently, the semiconductor photocatalysis technique has 
been considered as a potential promising method to deal 

with the environmental issues because it can directly make 
the organic pollutants with low concentration and high tox-
icity decompose completely into non-toxic/low-toxic small 
molecules/ions under the solar light [33–49]. The involved 
basic reaction processes are as follows: when semiconductor 
photocatalyst is exposed to light, it can absorb photons to 
produce photogenerated electron–hole pairs, after that the 
electron–hole pairs separate and diffuse to the surface reac-
tivity sites of semiconductor. Following, the photogenerated 
electrons can be captured by the dissolved oxygen in water 
to produce superoxide radical (•O2

–). Besides, •O2
– may fur-

ther react with H+ ions in the solution by the reduction of 
photogenerated electrons to produce (hydroxyl radical) •OH.  
In the meantime, photogenerated holes also may oxidize 
OH–/H2O to produce •OH. [9,18,39,50]. As a result, •O2

–, •OH 
and photogenerated holes as active species with intense 
oxidization power all can degrade organic pollutants in 
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the solution to non-toxic/low-toxic small molecules/ions 
[40,45,41–56]. The possible carrier transfer behaviors and 
photocatalytic degradation processes of organic pollut-
ants over the semiconductor photocatalysts under the light 
excitation are shown in Fig. 1.

As is well known, the high-efficiency photocatalyst as 
an energy converter plays a most important key role in the 
above proposed degradation reaction process. At present, 
some nonmetal materials are usually regarded as a kind of 
potential promising semiconductor photocatalysts for deg-
radation of various organic pollutants in the environment 
owing to their attractive and unique features such as multi-
farious structures, good electrical and thermal conductivity, 
outstanding stability, low cost, superior stability, rich sources 
for large-scale production and so forth [52,57–60]. Here we 
must mention that carbon-based materials, including gra-
phitic carbon nitride (g-C3N4) [61–63], graphene oxide (GO) 
[64–67] and others [68–70] have been developed as a kind of 
important nonmetal semiconductor photocatalysts, and all 
of them exhibit outstanding degradation activity and stabil-
ity for removing the organic pollutants in the environment.

Therefore, in this paper, we will make an overview for 
the latest advance in relation to the nonmetal carbon-based 
photocatalysts and their application in photocatalytic degra-
dation of organic pollutants in the solutions. We hope it can 
provide some new understanding for nonmetal carbon-based 
photocatalysts in solving the increasingly serious environ-
mental pollution problems caused by organic pollutants.

2. Summarizing overview of carbon-based photocatalysts

Among the reported nonmetal photocatalysts, g-C3N4 
has been identified as one of the most potential candidates 
for photocatalytic degradation of organic pollutants in 
wastewater system due to its unique advantages, such as 
superior electronic and optical properties, suitable band gap 
contributing to visible-light absorption, outstanding ther-
mal and chemical stability, low cost, facile synthetic process, 
etc. [71–74]. However, similar to the reported other kinds of 
photocatalysts, the bulk g-C3N4 usually exhibits relative low 

photocatalytic degradation activity because of high recom-
bination probability of photogenerated charge carriers 
and difficult decomposing organic pollutants completely 
[75,76]. This is mainly due to the following reasons. On 
the one hand, the bulk g-C3N4 usually has a small specific 
surface area and fewer surface active sites, resulting in dif-
ficult to adsorb pollutant molecules for its degradation to 
small molecular. On the other hand, the bulk g-C3N4 has low 
potential of valence band, causing its poor oxidizability and 
g-C3N4. Therefore, many methods have been developed to 
overcome those disadvantages to improve the photocatalytic 
performance of g-C3N4, such as regulating morphologies to 
increase surface area [77,78], doping heteroatoms to adjust 
electronic band structure [79], and constructing hetero-
structures by coupling with other metal-free materials to 
facilitate separation of photogenerated charge carriers [80].

2.1. Morphological control of g-C3N4

The morphological control is one of the earliest means to 
improve the photocatalytic activity of g-C3N4, For instance, 
ultrathin and high-yield two-dimension (2D) g-C3N4 
nanosheets with a thickness of 2 nm were prepared by means 
of calcining bulk g-C3N4 under H2 air flow [81]. It revealed 
that the enhanced photocatalytic activity for dye degra-
dation compared with that bulk g-C3N4 originates from its 
high surface area and the low recombination possibility of 
photogenerated charge carriers. Besides above 2D structure, 
constructing three dimensional (3D) multiaperture architec-
tures is also an attractive option to boost photocatalytic deg-
radation performance of g-C3N4. Using silica nanoparticles as 
templates, Cui et al. [82] synthesized mesoporous g-C3N4 by 
a facile thermal-induced polymerization of NH4SC. The pho-
tocatalytic experimental results displayed that the achieved 
mesoporous g-C3N4 possessed the higher activity than that 
of nonporous g-C3N4 for degradation of chlorophenol and 
phenol in the solution under the visible light. It is because 
that the unique porous structure increases the surface area 
and light harvesting capacity, which contribute to the gener-
ation of active oxy-radicals in water. Moreover, g-C3N4 with 
3D ordered macroporous (3DOM) structure was constructed 
through a facile thermal condensation under the assistance 
of colloidal crystal as template [83]. The as-prepared 3DOM 
g-C3N4 photocatalyst exhibited the superior degradation 
activity for dye and the removal rate nearly reached up to 
100% within 40 min under visible-light irradiation, which 
was attributed to the ordered 3D macroporous structure that 
facilitates light absorption, reactant diffusion and charge 
separation. In addition, Bai et al. [84] group also realized 
the transformation of g-C3N4 from nanoplates to nanorods 
by a facile reflux technique in the mixed solvents of CH3OH 
and H2O without using any templates (Fig. 2a). The mor-
phology evolution mechanism of g-C3N4 from nanoplates to 
nanorods was that nanoplates may go through exfoliation, 
regrowth and then a lamellar structure rolling process. As 
shown in Fig. 2b, the resulting photocatalytic activity of 
g-C3N4 nanorods was higher than that of nanoplates for dye 
degradation under visible light, which may be due to the 
increase of active facets and elimination of surface defects 
during the reflux process. Furthermore, the other various 

 

Fig. 1. Possible carrier transfer behaviors and photocatalytic 
degradation processes of organic pollutants over the semi-
conductor photocatalyst under the light excitation.
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morphological control of g-C3N4 have also been performed 
by virtue of some innovative synthetic strategies, such as 
successfully synthesized nanofibers [85], quantum dots [86], 
micro strings [87], tubular [88], etc. Most of them exhibited 
outstanding photocatalytic performances for degrading 
diversified organic pollutants, including dyes, antibiotics, 
phenol and so forth.

2.2. Doping modification of nonmetal elements into g-C3N4

Doping foreign nonmetal elements into g-C3N4 has also 
been proved to be an efficiency strategy to control the posi-
tion, structure and composition of energy band for improv-
ing photocatalytic activity [89–96]. For instance, boron-
doped g-C3N4 photocatalyst has also been prepared by 
using the melamine and boron oxide as precursors, which 
apparently enhanced the photocatalytic activity for degrad-
ing RhB dye owing to the improvement of light absorption 

and adsorption capability [79]. Additionally, the fluorinated 
g-C3N4 (CNF) heterogeneous photocatalyst was synthesized 
using ammonium fluoride as a cheap fluorine source [94]. 
As revealed by UV–Vis spectrum (Fig. 3a), the optical band 
gap and the semiconductor properties of the CNF have 
indeed slightly been changed owing to fluorination, with 
extension of the visible light response and decrease of band 
gap. Therefore, the photocatalytic activity was improved for 
the oxidization reaction of benzene under the visible light 
(Fig. 3b). Simultaneously, phosphate-doped g-C3N4 nano-
material has been used as a valid photocatalyst for color-
less pollutants degradation [97]. The photocatalytic activity 
of g-C3N4 was obviously improved after modification with 
phosphoric acid for degrading gas-phase acetaldehyde 
and liquid-phase phenol, which resulted from increase in 
adsorbed O2 molecule which not only prolongs the lifetime 
but also enhances the separation of photogenerated charge 
carriers. Up to now, based on engineering of electronic 

 

(a) (b)

Fig. 2. TEM images of g-C3N4 nanoplates and g-C3N4 nanorods (a); apparent rate constants for MB photodegradation over g-C3N4 
nanoplates and g-C3N4 nanorods under visible light and (b). Reprinted with permission from the study of Bai et al. [84]. Copyright 
© 2013, American Chemical Society.

 
Fig. 3. UV–Vis DRS spectra (a) and optical band gap (inset) of g-C3N4 and CNF-x; catalytic oxidation of benzene using CNF-x (b). 
Reprinted with permission from the study of Wang et al. [94]. Copyright© 2010, American Chemical Society.
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structure, an increasing number of g-C3N4 doped with the 
nonmetal such as B, C, N, S, O, P, F, Br, I, etc have been inves-
tigated in succession for enhancing the photocatalytic per-
formance [89–97].

2.3. Constructing heterostructure of g-C3N4 with other 
nonmetal materials

Constructing heterostructure with other functional 
non metal components was an effective way to improve 
the photocatalytic activity of g-C3N4 for degrading organic 
pollutants. For instance, Zhang et al. [98] synthesized a 
carbon dots decorated g-C3N4 photocatalyst by means of 
impregnation- thermal strategy. The results demonstrated 
that this composite heterostructure with low carbon dots 
content showed promising photocatalytic activity for phe-
nol degradation under the visible light. This can be derived 
from the extended visible light absorption range induced 
by the up-converted photoluminescence feature of carbon 
dots and the efficient electron–hole separation resulted from 
the suitable band alignment in the composite structure. 
Meanwhile, Pitre et al. [69] synthesized N-doped carbon 
dots (NCDs) modified g-C3N4 composite heterostructure 
via a facile polymerized method. As-prepared NCDs/g-
C3N4 heterostructure was constructed through loading 
NCDs nanoparticles onto the interlayers and surface of 
g-C3N4 via π–π stacking interactions. The photocatalytic 
activity toward degradation of indomethacin was appar-
ently higher than that of g-C3N4 and CDs/g-C3N4 under 
the visible light irradiation, which ascribed the unique up- 
converted photoluminescence property, narrowing band 
gap and efficient charge separation. 3D porous g-C3N4/GO 
aerogel (CNGA) has also been constructed by the hydrother-
mal co-assembly scheme of g-C3N4 and GO nanosheets [99], 
which exhibited much higher removal methyl orange activ-
ity than that of 2D hybrid counterpart, pure g-C3N4 and the 
most of representative g-C3N4-based photocatalysts because 
the high interconnected porous network rendered numerous 

pathways, strong adsorption and multi-reflection of inci-
dent light (Fig. 4). Other nonmetal g-C3N4-based composite 
materials have also been prepared by several strategies 
for degradation of organic contaminants, such as PANI/g-
C3N4 [100], polyimide/g-C3N4 [80], carbon dots/g-C3N4 [101], 
GO/g-C3N4 [102] and so on.

2.4. Graphene and its derivatives

Graphene is another kind of frequently used inorganic 
material as a functional component of nonmetal photocata-
lysts to promote the degradation activity for removing organic 
pollutants because it can not only increase the adsorption 
capability but also be served as an electron- transfer medium 
to facilitate photogenerated charge separation [103–108]. 
For example, Zhang et al. [109] reported the synthesis of 3D 
carbon nanotubes-pillared graphene oxide (GO) or reduced 
graphene oxide (rGO) composite photocatalysts by chemical 
vapor deposition strategy, which resulted in perfect photo-
catalytic activity in degradation of typical RhB dye (Fig. 5). 
The synergistic effect between 1D carbon nanotubes and 2D 
rGO nanosheets reduced the dynamic resistance transport 
and recombination probability of charge carriers effectively, 
which was a crucial reason for enhancing photocatalytic 
degradation activity. In recent years, high monodispersed 
silica nanocrystals were orderly grown on the single-layer 
graphene sheet in the modified Stöber process by using vin-
yltriethoxysilane and GO as the precursors, in which GO is 
concurrently reduced to rGO by ammonia. The silica nano-
crystals were exclusively and homogenously distributed 
on rGO and had excellent crystallinity, which derived from 
the chemical similarity and synchronized reaction between 
vinyl-silanol and GO. The prepared composite exhibited 
superior photocatalytic degradation activity for RhB and 
2,4-dichlorophenol relative to isolate and physically mixed 
graphene and SiO2 [110]. Furthermore, the benzothiadiazole 
(BTZ)-based conjugated porous polymer (CMP) loaded into 
graphene aerogel has been reported, which is prepared by a 

 
Fig. 4. Schematic diagram for illustrating the photodegradation (I) and photoreduction (Π) processes over CNGA under visible-light 
irradiation. Reprinted with permission from the study of Fang et al. [101]. Copyright© 2015, American Chemical Society.
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one-step green hydrothermal reaction process between 2D 
GO and the CMP under mild conditions. It exhibits photo-
decomposition of MO ability under visible light. This result 
explains that the CMP-loaded GA can act as an efficient 
metal-free material for photocatalytic application [111]. As 
effective electron acceptor, graphene-based composite pho-
tocatalysis have also been reported 2 years ago. For instance, 
Gong et al. [112] prepared GO enwrapped polyimide (PI) 
composite photocatalyst by the simple ultrasonic chemical 
process, which showed the stable metal-free photocatalyst 
for 2,4-dichlorophenol degradation under visible light. 
After loading electron acceptor GO, the GO/PI composites 
displayed enhanced photocatalytic performance obviously 
and it was approximately 4.5 times as high as that of bare 
PI. This results is due to the efficient injection of photogene-
rated electrons from PI to GO, and promotes the separation 
of charge carrier [112].

In addition, Chen et al. [113] introduced porphyrin 
nanoparticles into macroscopic rGO by a facile vacuum 
filtration method of the co-colloids of GO and porphy-
rin nanoparticles followed by gaseous reduction. The 
as-prepared composite photocatalyst showed enhanced 
photocatalytic activity for degrading RhB and MB dyes 
under the visible light, and exhibited excellent stability and 
easy recovery compared with each hybrid monomer. This 
is because that the large contact interface between rGO and 
porphyrin nanoparticles was conducive to the strong inter-
action and boosted electron–hole pair separation during the 
photocatalytic reaction process. As a result, the obtained 
composite may act as a potential photocatalytic material for 
environmental remediation in the future. Other graphene-
based composite photocatalysts, such as polyaniline/rGO 
[114], SiC/graphene [115], etc. also confirmed graphene had 
promotional effect on the photocatalytic degradation reac-
tion of various organic pollutants. Besides, graphene can 
also act as photosensitive materials for enhanced photo-
catalytic degradation activity. However, most of the above 
photocatalysts involves metallic semiconductor, it does not 
merit any additional discussion here.

Moreover, elements doping in graphene was also an 
effective method for improving photocatalytic activity. 
Tang et al. [116] prepared boron-doped rGO photocatalyst 
by means of one-step reflux route, which showed greatly 
improved photocatalytic activity toward the degradation 

of RhB dye in contrast to the non-doped rGO under the 
visible light. It can be due to the more efficient electron 
transfer from the excited state of RhB dye to boron-doped 
rGO with superior electron transfer capacity and electronic 
conductivity. The controlled experiments also proved RhB 
dye degradation mainly originated from the photosensitiza-
tion rather than photoexcitation process in band gap of the 
prepared sample.

2.5. Other nonmetal photocatalysts and its derivatives

Besides the above frequently used nanomaterials, some 
other nonmetal photocatalysts had been applied effectively 
to photocatalytic degradation of organic pollutants. For 
instance, using a simple ball milling method, this group 
also exploited black-red phosphorus heterostructure and 
its photocatalytic activity was comparable with CdS [117]. 
Zhang et al. [55] prepared resorcinol–formaldehyde resin 
polymers, the suitable band gap energy of which resulted 
in its good visible light response. This resin can efficiently 
oxidize organic pollutants and the photocatalytic activity 
was further markedly enhanced after loading rGO [55]. In 
this year, the GR-BP hybrid photocatalysts was synthesized 
by one-pot chemical vapor transport approach, in which 
the P atom was successfully incorporated into GR through 
the formation of P-C bond (Fig. 6) [118]. Remarkably, this 
photocatalyst represented high photocatalytic activity for 
2-chlorophenol degradation, which is due to the higher 
carrier separation efficiency caused by the direct band gap 
of BP and carrier mobility of GR. Besides, the little increas-
ing of P-O bond was observed after GR-BP photocatalysts 
being exposed in air for 15 d, which means the BP stability 
was enhanced significantly. Furthermore, carbon nanotubes 
with highly defective (DF-CNTs) were prepared using a 
heat-treatment technique, which exhibits photocatalytic 
degradation H2O2 ability in the range of visible light. The 
as-prepared DF-CNTs present the relatively high surface 
energy causing local lattice reordering and intertube reori-
entation, which lead to the formation of more topological 
defects. As a result, light absorption capacity takes shape 
and thus induced electron/hole pair’s generation over 
the surface of DF-CNTs [119]. Furthermore, phosphorus 
fibers [120] had also been confirmed as effective photocat-
alysts for degrading organic pollutants. The summary of 

 
Fig. 5. Experimental steps of pillaring GO and RGO platelets with CNTs. Reprinted with permission from the study of Tsang et al. 
[111]. Copyright© 2010, American Chemical Society.
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(a) (b)

(c) (d)

Fig. 6. Images of the synthesized GR-BP hybrid: (a) EDS spectrum of 30% GR-BP hybrid, (b) EDS elemental dot-mapping, (c) P element 
dot-mapping and (d) C element dot mapping. Reprinted with permission from the study of Shen et al. [120]. Copyright©2019, 
Elsevier Publishing Group.

Table 1
Photocatalytic degradation of organic pollutants over some nonmetal photocatalysts

Photocatalysts (mg) Pollutants (mg/L) Light sources (W) λ (nm) Degradation rates (min) References

Porous g-C3N4 (25) MB (10) Xe lamp (500) ≥420 nm 70% (150) [121]
3D Macroporous g-C3N4 (70) RhB (10) Xe lamp (300) ≥420 nm 100% (40) [83]
Mesoporous g-C3N4 (40) RhB, 4-CP (1.2 × 10–4 M) Xe lamp (300) ≥420 nm 100% (60), 96% (90) [82]
Ultrathin g-C3N4 (80) MB (10) Xe lamp (500) Visible light 60% (180) [81]
P-doped g-C3N4 (100) Phenol (10) Xe lamp (150) – 80% (60) [97]
B-doped g-C3N4 (200) RhB, MO (4) Xe lamp (300) ≥420 nm 100% (40), 100% (300) [79]
C-dots/g-C3N4, (50) Phenol (10) Xe lamp (300) ≥400 nm 100% (200) [98]
PANI/g-C3N4 (100) MB (10) Xe lamp (500) ≥420 nm 92.8% (120) [101]
GO/g-C3N4 (---) RhB, 2,4-DCP (10) Xe lamp (100) ≥400 nm 94.2% (155), 87.1% (240) [67]
B-doped rGO (10) RhB (0.01M) Xe lamp (300) ≥420 nm 100% (130) [116]
PAN1/GO (10) MO, MB, RhB (10) Natural sunlight – 100% (40, 140, 100) [114]
Black–red phosphorus (50) RhB (10 ppm) Xe lamp (300) ≥420 nm 95% (120) [117]
Carbon nanotubes (1.5 mL) H2O2 (10 mM) W lamp (500) – 90% (180) [119]
Phosphorus fibers (2) RhB (10 ppm) Xe lamp (300) ≥420 nm 46.4% (360) [120]
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photocatalytic degradation activity, pollutant type and reac-
tion conditions of most metal-free photocatalysts are shown 
in Table 1.

3. Conclusions and perspectives

In summary, this review summarized the recent advance 
involving nonmetal photocatalysts for degradation of organic 
pollutants in environmental remediation. Up to now, a series 
of metal-free photocatalytic materials including g-C3N4, 
graphene, graphene derivatives and other polymer-based 
semiconductor materials have been confirmed to possess 
potential application in removing organic pollutants. g-C3N4 
is the representative nonmetal photocatalyst for degrad-
ing and mineralizing various organic pollutants effectively 
under the visible light. Further optimizing parameters in 
degradation process based on g-C3N4 is still crucial in the 
photocatalytic oxidation processes, which can obviously 
influence the degradation efficiency of pollutants in water. 
Despite the obvious progress has been made, it is still chal-
lenging to investigate other important and significant topics, 
including the relationship between electronic properties 
and defects, the surface active sites and photodegradation 
property of the metal-free photocatalysts. Additionally, it 
is also worth investigated on a few topics related to practi-
cal application based on metal-free photocatalysts, such as  
photocatalytic CO2 reduction [122], photocatalytic water 
splitting for H2 evolution [123], photocatalytic removal 
of NOx [52], photoreduction of Cr(VI) [124] and so on. 
Admittedly, we all knew that the development of non-
metal photocatalysts is continuously evolving for practical 
applications in environment purification. Although some 
important progress has been acquired in this field at pres-
ent, we still need further efforts for exploiting the large-scale 
utilization of nonmetal photocatalysts to achieve the goal of 
environmental purification.
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