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a b s t r a c t
A novel adsorbent (FCDSBP) from de-pectinated sugar beet pulp (DSBP) was successfully prepared 
by loading the surface of citric acid modified DSBP (CDSBP) with amorphous Fe-oxide species and 
FCDSBP was used to investigated the removal of metal ions (Cu2+ and Pb2+) from aqueous solutions. 
The obtained composites were characterized by FTIR, XRD and SEM. According to all character-
ization results, amorphous iron oxides of FeOx type and hydroxylated oxide were located on the 
FCDSBP surface. Due to the presence of amorphous Fe-oxide species and hydroxylated oxide, the 
adsorption capacity of FCDSBP for Cu2+ and Pb2+ was approximately three times that of CDSBP. 
In addition, the obtained experimental data of adsorption of metal ions by the FCDSBP and CDSBP 
fitted the Langmuir isotherm model well, and the pseudo-second-order kinetic model could be used 
to describe adsorption process. According to the calculated thermodynamic parameters, the metal 
ions adsorption process was endothermic and spontaneous in nature.
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1. Introduction

Heavy metals in water are potential threat to human 
health and have already caused undesirable effects on eco-
logical environment. Contamination of water from heavy 
metal pollutants is a worldwide environmental problem due 
to their toxicity and non-biodegradable nature. The excessive 
indigestion of heavy metals contaminated water could cause 
symptoms such as cramps, vomiting or nerve functional 
disease [1,2]. Thus, efforts to efficiently and quickly remove 
heavy metals in water are crucial for human health and 
water purification.

To remove heavy metal ions from wastewater, numerous 
treatment processes, such as ion exchange [3,4], chemi-
cal precipitation [5], adsorption on activated carbon [6,7], 

membrane filtration [8] and coagulation [9], are currently 
used in practical applications. These methods have good 
scavenging effect, but also have high material costs and 
complicated operational processes. Therefore, most of 
them are not applicable in industry applications. In recent 
years, many researchers have focused on the removal of toxic 
heavy metal ions from aqueous solutions by using adsorp-
tion techniques with low-cost and environmentally friendly 
biomass materials. Numerous investigated biosorbent mate-
rials are obtained from waste biomass and available in dif-
ferent parts of the world, such as the wheat residue [10], 
dry tree leaves [11–13], rice hulls [14,15], mangosteen peel 
[16], tea waste [17], and marine alga [18]. However, most of 
the raw materials do not show satisfactory sorption capacity 
toward metal ions. Adsorption of heavy metal ions is due to 
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physico chemical interaction, mainly the coordination effects 
between the metal ions and the functional groups, especially 
carboxylic acid groups (–COOH) [19]. That is to say, rational 
structure modification would enhance the adsorption per-
formance of raw materials toward metal ions. For instance, 
tartaric acid treated rice husk has been reported to remove 
copper from aqueous solution [20]. Adsorption studies to 
determine the maximum adsorption capacity (Qmax) of mod-
ified rice husk toward copper was developed. Modified rice 
husk exhibited a maximum adsorption capacity of 29 mg g−1 
for Cu2+ according to Langmuir model. Compared with 
unmodified rice husk, the adsorption capacity of tartaric 
acid modified rice husk has improved nearly six times. 
Furthermore, multiple studies have shown that chemical 
modification has a positive effect on the adsorption capacity 
of raw materials toward metal ions [21–23].

Sugar beet pulp (SBP), a by-product from beet sugar 
industry, is one of the largest agricultural residues in China. 
In fact, SBP comprises 20% cellulosic substances and more 
than 40% pectic substances [24]. The pectic substances 
are complex heteropolysaccharides, containing arabinose, 
galactose, and galacturonic acid. Pectic substances could 
bind metal cations in aqueous solution owing to the car-
boxyl functions of galacturonic acid [25]. In other words, 
SBP exhibits good potential as a metal adsorbent. Recently, 
several researchers have reported the application of SBP as 
metal scavengers for the removal of nickel [26], copper [27], 
and chromium [28].

Polymer metal complexes consist of a polymer ligand 
and metal ions. In the complexes, the metal ions are attached 
to the polymer ligand by a coordinate bond. The complexes 
show structural diversity, benefiting to better polymer phys-
ical and chemical behavior [29]. Polymer metal complexes 
are widely applied in many fields, especially in the catalyst 
research field [30]. The properties of polymer metal com-
plexes depend on the nature of the metal ion and its content 
in the compounds. On the other hand, selecting appropriate 
ligands is crucial to determine the properties of the resulting 
complexes [31]. Furthermore, previous studies have shown 
that the adsorption capacity of raw materials pretreated 
with various iron compounds toward metal ions could be 
increased significantly [32–35]. For example, iron oxides can 
be used as active sorbents and play an important role in the 
adsorption of many ions.

Approximately 10 million tons of SBP is left after extract-
ing sugar from sugar beet each year in China. Due to its 
rich polysaccharide content, SBP is used as a good source 
of pectin. De-pectinated SBP (DSBP) is an important bioma-
terial consisting of a small percentage of lignin, 20%–30% 
hemicelluloses and 40%–50% cellulose, it is considered as an 
ideal supporting material or carrier for the polymer metal 
complex in practical application. However, the solid residue 
of pectin-extracted SBP is usually burnt, causing potential 
environment pollution and a lot of waste of resources.

Thus, this study aimed to prepare heavy metal ions 
adsorbent using DSBP. DSBP may have high methoxyl pectin 
residues which gel at low pH values in aqueous solutions 
and have no application in the biosorption of metals, thus 
demethylation occurs at low temperatures and in an alkaline 
media [36]. The residue solid was modified with citric acid 
to introduce carboxylic groups through an industrialized 

pad–dry–cure process to obtain an esterified modified sugar 
beet pulp fiber (CDSBP). Subsequently, the obtained citric 
acid-esterification sugar beet pulp fiber (CDSBP) was coordi-
nated with Fe3+ ions to produce carboxylic fiber iron complex 
(CDSBP-Fe). Finally, the complex was hydrolyzed by mixing 
with alkaline media to form the iron modified sugar beet 
pulp fiber (FCDSBP) which is extremely stable and has a red 
brown color.

In our study, the performance and evaluation of two 
modified materials (CDSBP and FCDSBP) from de-pectinated 
pulp to adsorb heavy metal ions (Cu2+ and Pb2+) in aque-
ous solutions were described. In addition, the thermo-
dynamics, equilibrium isotherms, and kinetics of batch 
adsorption were discussed. Finally, the characterizations 
of prepared composites were described to evaluate the 
synthetic effectiveness.

2. Materials and methods

2.1. Materials and chemicals

Sugar beet pulp was obtained from Lvxiang Sugar 
Company (Xinjiang, China). Prior to the experiments, impu-
rities were removed from sugar beet pulp by washing with 
distilled water three times at room temperature. Cleaned 
sugar beet pulp was then dried in an oven at 50°C for 24 h 
to constant weight, grounded with a blender, and sieved 
to obtain particles with the diameter of 150–250 μm. The 
powder was stored for further experiments.

Citric acid (CA), hydrochloric acid (HCl, 37%), sodium 
hydrate (NaOH), ferric chloride (FeCl3·6H2O), cupric sulfate 
(CuSO4·5H2O), lead nitrate (Pb(NO3)2) were of analytical 
grade and used without further purification.

2.2. Preparation of the adsorbent

SBP fiber was prepared as following: the SBP powder 
was first treated with hydrochloric acid (85°C, pH 1.5 
and 4 h) to remove pectin. The solid residue was washed 
with deionized water until no pH variation in wash water. 
The product was dried at 50°C until constant weight. The 
demethylation reaction occurred by mixing de-pectinated 
pulp (DSBP) with 0.5 M NaOH solution at a ratio of 1.0 g 
of material to 20 mL of solution. The mixture was shaken 
at 200 rpm for 1 h at room temperature. Subsequently, the 
material was placed on a gauze and washed with deionized 
water to remove excess base. The SBP fiber was dried in an 
oven at 50°C until constant weight and stored for further 
experiments.

The preparation of the adsorbent was in a consecutive 
two stage process as discussed in the upcoming sections.

2.2.1. Stage (1): Modification of SBP fiber with citric acid

SBP fiber was mixed with various concentration citric 
acid at the ratio of 1:20 (fiber: acid, w/v) and stirred at 70°C 
for 60 min. The acid/fiber was dried at 50°C overnight. And 
the product was subsequently heated at 120°C for 120 min 
to obtain CA modified SBP fiber (denoted as CDSBP), which 
was washed thoroughly, rinsed, and dried.

Carboxyl group content in CDSBP sample (QCOOH, 
mmol g−1) was determined using a titration method [37]. 
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Briefly, about 0.1 g of the dried CDSBP was treated with 
100 mL of 0.01 mol L−1 NaOH aqueous solution and stirred 
for 2 h at room temperature. The amount of the unneutral-
ized NaOH in solution (25 mL) was titrated with an aque-
ous 0.01 mol L−1 HCl solution. QCOOH values were calculated 
using Eq. (1).
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where CHCl and CNaOH are the concentration of HCl and NaOH 
solution (mol L−1), respectively. VNaOH is the volume of NaOH 
solution (100 mL), VHCl is the volume of HCl spent in the 
titration (mL), and Mmat is the mass of CDSBP used (g).

2.2.2. Stage (2): Coordination of CDSBP with Fe3+ ions

1.0 g of CDSBP was mixed with 20 mL of the given con-
centration of FeCl3 solution. The mixture was agitated for 3 h 
at 50ºC. The obtained CDSBP–Fe complex was then taken 
out, rinsed with distilled water to remove excess FeCl3 solu-
tion. In order to calculate the Fe content (QFe) of the complex, 
Varian Vista–MPX inductively coupled plasma optical emis-
sion spectroscopy (Optima 8300; PerkinElmer Co., USA) was 
used to determine the residual concentration of Fe3+ ions in 
the coordinating solution. Subsequently, the complex was 
immersed in 0.1 mol L−1 NaOH solution at a ratio of 1.0 g 
of material to 20 mL of solution. The mixture was shaken 
for 1 h at room temperature. The material was washed with 
deionized water to remove excess base and dried in an 
oven at 50°C until constant weight, which was designated 
as FCDSBP. The final product was stored for the following 
experiments.

2.3. Characterization of the adsorbent

The surface morphologies of original sugar beet pulp 
and modified sugar beet pulp were observed by scanning 
electron microscope (EVO 18; Carl Zeiss Inc., Germany) 
operating at 10 kV. The functional groups and chemical com-
position changes of sugar beet pulp fiber before and after 
modification were analyzed by Fourier transform infrared 
spectroscopy (Vector 33-MIR; Bruker Co., Germany) and 
X-ray diffraction (D/max-2200VPC; Bruker Co., Germany).

2.4. Batch adsorption experiments

The adsorbate solution was prepared by dissolving ana-
lytical grade cupric sulfate and lead nitrate in pure water to 
obtain the required concentration. Batch adsorption exper-
iments involved equilibrating 0.5 g of CDSBP and 0.2 g of 
FCDSBP with 50 mL of aqueous solution at a given concen-
tration in a beaker, respectively. The adsorption capacity of 
metal ions per gram of adsorbent was negligible after 30 min 
preliminary experiments. Therefore, a contact time of 30 min 
was used for batch tests. The effect of initial concentration of 
metal ions (400–1,300 mg L−1), contact time (5–30 min), and 
pH (2–5) on single uptake was also studied. For pH values 
(2–5) adjustments, 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH 
solutions were used.

2.5. Adsorption kinetics and isotherm experiments

To obtain the adsorption kinetic curves, adsorption 
experiments were carried out with a contact time ranging 
from 0 to 30 min. The mixture solution was shaken in a ther-
mostatic shaker at a speed of 200 min–1 and the solution was 
sampled at specific time intervals. For isotherm experiments, 
50 mL of metal ion solution with six different initial concen-
trations ranging from 400 to 1,300 mg L−1 were added into a 
conical flask, then a known weight of adsorbent was added. 
The adsorption was conducted at different temperatures for 
30 min.

3. Results and discussion

3.1. Fabrication of adsorbent

SBP fiber was modified with citric acid to introduce 
the carboxyl groups, which coordinated with Fe3+ ions for 
obtaining CDSBP–Fe complex, and the results are shown in 
Fig. 1.

Fig. 1a shows the effect of citric acid concentration on 
QCOOH values of the modified SBP fiber. Increasing initial 
citric acid concentration caused a gradual increment in QCOOH 
values of CDSBP, and proposing the maximum QCOOH values 
were achieved at citric acid concentration of 2 mol L−1. This 
is because higher concentration of citric acid could enhance 
the esterification between carboxyl groups of citric acid 
and hydroxyl groups in cellulose surface on SBP fiber [38].

Fig. 1b displays a different change in QFe values of the 
obtained complexes prepared by CDSBP with varied QCOOH 
values. QFe values of the complex increased with their QCOOH 
values, and the highest QFe value was achieved at 2.1 mmol g−1 
of QCOOH value. This may be attributed to complex’s compli-
cated crosslink structure between cellulose chains. The cross-
link structure may result in space steric hindrance and limit 
the coordination of Fe3+ ions with their carboxyl groups. As 
shown in Fig. 1c, when CDSBP with QCOOH value (approx-
imately 1.8 mmol g−1) was used, QFe value of the resulting 
complex increased with the increasing initial concentration 
of Fe3+ ions and reached a maximum value at 0.1 mol L−1 of 
Fe3+ ions.

Based on the above analysis, the preparation or modifi-
cation process of CDSBP and FCDSBP is presented in Fig. 2.

3.2. Surface morphology and composition analysis

Fig. 3 presents the SEM micrographs of the dry original 
SBP taken before and after each treatment. It was observed 
that the surface morphological characters of untreated and 
treated SBP samples were quite different. As can be seen 
from Fig. 3a, the surface of the dry original SBP was rough. 
Fig. 3b shows that after the treatment with citric acid, the 
surface of the CDSBP became smooth and many small 
wrinkles were found. In Fig. 3c, after the coordination of 
CDSBP with Fe3+ ions, a mud-like layer was found on some 
of wrinkles. The reason for the layer of rough or uneven 
surface may ascribe to the formation of CDSBP–Fe com-
plex. The variation of morphological characters indicated 
that carboxyl groups of citric acid has been imparted to the 
surface of SBP fiber and resulted in coordination of CDSBP 
with Fe3+ ions [39]. When Figs. 3c and d are compared, it 
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can be observed that the surface of FCDSBP became much 
smoother and had less small wrinkles, suggesting Fe3+ ions 
reacted to bases and formed various Fe species.

Fig. 4a shows the FTIR analysis results, and major char-
acteristic absorption peaks of original sugar beet pulp at 
3,340; 2,900; 1,630 and 1,030 cm–1 are owing to the stretching 
of O–H, C–H, COO–, and C–O–C, respectively. The bend-
ing vibration of C–H gets reflected in two peaks at 1,310 
and 1,440 cm−1 due to asymmetric and symmetric bending 
vibrations. The peak at 1,058 cm−1 appearing in spectra is 
assigned to C–O stretching vibration, reflecting the charac-
teristic of the cellulose structure [40]. Compared with the 
original sugar beet pulp, the peaks centered at 3,340; 2,900; 
1,440; 1,310; and 1,030 cm–1 became much less intensive in 
the spectrum of de-pectinated pulp, indicating that sugar 
beet pectin has been removed from the untreated SBP. A new 
peak around 1,740 cm−1 were found in the spectrum of the of 
CDSBP, which could be attributed to the stretching vibration 
of the carboxyl groups and ester carbonyl bands of citric acid 
with sugar beet pulp, confirming that the carboxyl groups 
have been introduced into surface structure of sugar beet 
pulp by ester linkage with citric acid. More importantly, the 

intensity of bending mode at 1,740 and 1,630 cm–1 became 
more intensive in the spectra of CDSBP–Fe complex. This 
result suggested that Fe3+ ions coordinated with the carboxyl 
groups of CDSBP [39]. In the spectrum of FCDSBP, the band 
at 3,630 cm–1 correspond to the free –OH disappeared, which 
indicated that this specific hydroxyl would not vibrate any-
more due to the changes caused at active sites during the 
formation of the FCDSBP. The peak around 890 cm–1 was 
assigned to Fe–OH stretching vibrations and a broad band 
at 3,730 cm–1 indicated the increase in hydrogen bonding 
for FCDSBP.

The XRD patterns of sugar beet pulp before and after 
modification are shown in Fig. 4b. As can be seen from this 
figure, there was a sharp diffraction peak at 21.8° which is 
characteristic of typical cellulose I structure in all the samples 
XRD patterns [41]. This peak in the case of citric acid modi-
fied SBP fiber was much sharper and narrower than that of 
unmodified SBP fiber, indicating that citric acid treated sam-
ples have higher degree of crystallinity. The reason is that the 
citric acid molecule can penetrate the amorphous regions in 
SBP fiber more easily when SBP fiber was modified with citric 
acid. Then esterification process could produce crosslinks 
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Fig. 1. Fabrication of CDSBP–Fe complex at different experimental conditions.
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between cellulose units in the amorphous regions, resulting 
in the increase of crystallinity [42]. Another obvious shoulder 
peak at 15.9° observed after citric acid modification can be 
attributed to the enriched structure of cellulose. The enrich-
ment in cellulose may be due to the removal of amorphous 
fraction from the de-pectinated pulp. Although Fe3+ ions 
may enhance the linkage between the cellulose units in the 
amorphous regions due to the coordination of Fe3+ ions with 
carboxyl groups of CDSBP [43], the intensity of the sharp dif-
fraction peak at 21.8° was reduced by subsequent coordina-
tion of CDSBP with Fe3+ ions. It was possible that the strong 
acidity of Fe3+ ions aqueous solution could cause a serious 
erosion of the crystal surface, reducing the crystal volume 
and leading to a decrease in crystallinity [44]. FCDSBP was 
characterized by lower crystallinity than the CDSBP–Fe com-
plex. However, FCDSBP maintained the main characteristic 
peaks of cellulose with significantly lower intensity and had 
no other characteristic peaks in the diffraction peaks, indi-
cating no additional Fe oxides or oxo-hydroxidic crystalline 
phases. Therefore, it could be predicted that no crystalline 
Fe-phases have been formed at FCDSBP surface sites.

3.3. Effect of the initial solution pH on adsorption equilibrium

As reported by numerous studies, pH plays an important 
role in the sorption uptake of metals on biomasses [45,46]. 

Fig. 2. Schematic diagram of the production process of CDSBP 
and FCDSBP.

Fig. 3. SEM images of (a) SBP fiber, (b) CDSBP, (c) CDSBP–Fe complex, and (d) FCDSBP.
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Fig. 5 shows the adsorption capacity of Ca2+ or Pb2+ per gram 
of adsorbent within the pH value range of 2–4.5. As shown 
in Fig. 5, the adsorption capacity of Cu2+ or Pb2+ was the min-
imum at pH = 2, and then it increased with increasing pH 
and reached up to a maximum value at pH 4.5. This phe-
nomenon may be explained by the variation in interchange-
able ions binding with the functional groups of the adsorbent 
matrix, such as H+ ions. At low pH values, the concentration 
of H+ ions was high in the solution, the functional groups 

on the surface of the adsorbent were easier to take positive 
charge, which would cause prominent electrostatic force 
of repulsion between adsorbent and the positively charged 
metal ions [47]. In addition, H+ ions competed with Cu2+ or 
Pb2+ in the solution for the active sites. Therefore, the adsor-
bent exhibited a low adsorption capacity. Owing to high 
negative charge on the adsorbent surface at elevated pH val-
ues, the electrostatic attraction force between adsorbent and 
metal ions was prominent. Moreover, as pH increases, the 
competition between positively charged H+ and Cu2+ or Pb2+ 
was weakened, resulting in a favored adsorption process 
[48]. At pH values greater than 5, the formed metal complex 
played a leading role during Cu2+ and Pb2+ removal process 
[49]. Hence adsorption of metal ions (Cu2+ and Pb2+) onto 
CDSBP and FCDSBP was at optimum pH of 4.5.

3.4. Adsorption isotherms

The equilibrium adsorption isotherm played a significant 
role in the adsorption mechanism. The adsorption isotherms 
of metal ions (Cu2+ and Pb2+) on CDSBP and FCDSBP at three 
different temperatures (298, 308 and 318 K) were analyzed. 
Experimental data were fitted to the Langmuir (Eq. (2)) and 
Freundlich (Eq. (3)) models and used to describe adsorption 
equilibrium.

q
q k C
k Ce

m L e

L e

=
+( )1

 (2)

q K Ce F e
n= 1/  (3)

where qm is the maximum sorption capacity, KL is the Langmuir 
constant, and KF and n are the Freundlich constants.

Fig. 6 shows the effect of initial metal ion concentration 
on adsorption capacity at different temperatures. Because the 
adsorption sites of CDSBP and FCDSBP were not fully used, 
the adsorption capacity per gram of CDSBP and FCDSBP 
for metal ions was low with lower initial concentration. The 
adsorption capacities of adsorbent on Ca2+ and Pb2+ reached 
a maximum value at a concentration of 1,000 mg L–1 for Ca2+ 

(a)

(b)

Fig. 4. (a) FTIR spectra and (b) X-ray diffraction patterns of 
original sugar beet pulp and modified sugar beet pulp fiber.
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and 1,200 mg L–1 for Pb2+. However, the variation of adsorp-
tion capacity was negligible with the increasing in metal 
ion concentration. This result indicated a limitation of the 
adsorption process. This might be attributed to an increase 
in the driving force of the concentration gradient with the 
increase of initial metal ion concentration [50]. In addition, 
the adsorption capacity of CDSBP and FCDSBP for Cu2+ and 
Pb2+ increased with temperature.

Adsorption isotherms of Cu2+ and Pb2+ on CDSBP and 
FCDSBP are shown in Fig. 6. The relative adsorption param-
eters calculated from the Langmuir and Freundlich models 
were listed in Table 1. A high correlation coefficient (R2) rep-
resented a good regression. The Langmuir isotherm model, 
with all of the correlation coefficients values were greater 
than 0.98, was a better fit than the Freundlich model for the 
adsorption data in the temperature range from 298 to 318 K, 
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indicating that the adsorption of metal ions (Cu2+ and Pb2+) 
onto CDSBP and FCDSBP was homogeneous monolayer 
coverage. Furthermore, the maximum adsorption capac-
ity of CDSBP and FCDSBP for Cu2+ and Pb2+ was 30.71 and 
97.08 mg g–1, 75.36 and 205.76 mg g–1, respectively. FCDSBP 
exhibited larger adsorption capacity for Cu2+ and Pb2+ ions 
than CDSBP.

Moreover, many researchers have investigated other 
natural biomass as low-cost biosorbents to remove metal ions. 
The adsorption performances of CDSBP and FCDSBP were 
also compared with other adsorbents (Table 2). However, it 
should be noted that the results presented in Table 2 were 
based on experiments conducted under different operating 
conditions. In general, sugar beet pulp was a superior adsor-
bent compared with other natural bio-adsorbent materi-
als, and the maximum adsorption capacity of FCDSBP was 
higher than other reported adsorbents, indicating that this 
chemical modification of de-pectinated pulp was a great 

success. Additionally, the good adsorption performance of 
heavy metal and unsophisticated production process would 
provide great potential and broad prospects for FCDSBP 
wider application in wastewater treatment.

3.5. Adsorption kinetics

Fig. 7 shows that the equilibrium time was achieved 
after 5 and 15 min for Cu2+; 15 and 20 min for Pb2+ for 
CDSBP and FCDSBP, respectively. The uptake of Cu2+ and 
Pb2+ increased rapidly in the beginning and then increased 
slowly until the system reaches equilibrium.

Adsorption kinetics describes the uptake rate of the 
adsorbate and its residence time. The results first showed 
a rapid increase in adsorption capacity for each ion on 
CDSBP and FCDSBP, followed by a slow increase. Initially, 
the driving force was high due to the concentration differ-
ence between the solid–liquid interface and the solution, 

Table 1
Parameters of the Langmuir and Freundlich isotherms

Metals Adsorbent Temp (K) Langmuir Freundlich

qm (mg g–1) KL (L mg–1) R2 KF 1/n R2

Cu2+

CDSBP
298 K 29.62 0.00295 0.9975 1.405 0.4058 0.9843
308 K 30.41 0.00308 0.9972 1.571 0.3948 0.9857
318 K 30.71 0.00374 0.9949 2.031 0.3665 0.9441

FCDSBP
298 K 87.25 0.00344 0.9897 5.214 0.3782 0.9692
308 K 94.42 0.00361 0.9892 5.906 0.3734 0.9806
318 K 97.08 0.00397 0.9954 8.103 0.3331 0.9738

Pb2+

CDSBP
298 K 71.47 0.00527 0.9958 7.546 0.3091 0.9821
308 K 73.52 0.00551 0.9951 9.043 0.2867 0.9826
318 K 75.36 0.00567 0.9938 11.311 0.2549 0.9935

FCDSBP
298 K 195.31 0.0314 0.9973 90.017 0.1141 0.9491
308 K 203.25 0.0357 0.9971 96.377 0.1132 0.9572
318 K 205.76 0.0457 0.9962 109.001 0.0974 0.9381

Table 2
Reported adsorption capacities for several natural materials

Adsorbent qmax (mg g–1) Reference

Cu2+ Pb2+

Saw dust 1.79 3.19 [51]
Wheat bran 14.50 63.90 [52]
Activated carbon cloth 15.30 17.20 [53]
Leaves – 58.85 [11]
Sunflower stalks 29.30 – [54]
Sugar beet pulp pectin gels 31.25 83.33 [36]
Acid modified orange peel 15.27 73.53 [55]
Polymerized pine bark 45.05 41.50 [56]
Tartaric acid modified rice husk 29.00 108.00 [20]
EDTA dianhydride modified mercerized cellulose 47.60 192.00 [23]
CDSBP 30.71 75.36 This paper
FCDSBP 97.08 205.76 This paper



329Z. Gao et al. / Desalination and Water Treatment 166 (2019) 321–333

leading to a high adsorption rate [57]. In this study, the 
first-order model and the second-order model were fitted 
to experimental data and to describe the dynamic adsorp-
tion. The Lagergren pseudo-first-order model is illustrated 
in Eqs. (4) and (5):

d
d

K q qq

t
e t= −( )1  (4)

ln lnq q q K te t e−( ) = − 1  (5)

The pseudo-second-order model can be expressed in 
Eqs. (6) and (7) as follows:

d
d

K q qq

t
e t= −( )2

2
 (6)

t
q K q

t
qt e e

= +
1

2
2  (7)

In Eqs. (4)–(7), qt and qe are the amount of metal ions 
adsorbed per gram of adsorbent (mg g−1) at any time t and 
at the equilibrium time, respectively, and K1 and K2 are the 
adsorption rate constants.

The experimental data were fitted to the linear form of 
the two models, and the calculated kinetic parameters were 
summarized in Table 3. By comparing the squared correla-
tion coefficient R2 of the two kinetic models, it was found 
that the pseudo-second-order model provides better correla-
tion than the pseudo-first-order model. Moreover, the plots 
of t/q against t for the linear second-order model are shown 
in Fig. 7. The qpre values obtained using pseudo-second- 
order equation were quite close to the experimental qexp val-
ues at different initial metal ion concentration. This further 
indicated that the adsorption of metal ions (Cu2+ and Pb2+) 
on CDSBP and FCDSBP follows the second-order kinetics.

3.6. Adsorption thermodynamics

To determine the thermodynamic properties of metal 
ions (Cu2+ and Pb2+), removal by CDSBP and FCDSBP, three 
basic thermodynamic parameters such as Gibbs free energy 
change (ΔG°, kJ mol−1), enthalpy change (ΔH°, kJ mol−1) 
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Fig. 7. Adsorption of (a) Cu2+ and (b) Pb2+ on CDSBP and FCDSBP over time: 0.5 CDSBP or 0.2 g of FCDSBP mixed with 50 mL Ca2+ 
or Pb2+ solution, respectively, at 50°C and pH = 4.5; Pseudo-second-order model for the removal of (c) Cu2+ and (d) Pb2+ by CDSBP 
and FCDSBP.
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and entropy change (ΔS°, J mol−1 K−1) were calculated by 
Eqs. (8)–(10):

K
q
CD
t

t

=  (8)

lnK S
R

H
RTD =

°
−

°∆ ∆  (9)

∆ ∆ ∆G H S° = ° − °  (10)

where KD (L g−1) is the distribution coefficient, R (8.314 J 
mol−1 K−1) is the universal gas constant and T (K) is the 
adsorption temperature.

All the thermodynamic parameters were calculated and 
listed in Table 4. The negative values of ΔG° at all experi-
mental temperatures indicated the sorption of metal ions 

(Cu2+ and Pb2+) on CDSBP and FCDSBP was spontaneous 
and ther modynamically feasible. In addition, the values of 
ΔG° became more negative from 298 to 318 K, indicating 
that spontaneity increased with increasing temperature. 
The enhancement of spontaneity could be favorable to the 
equilibrium adsorption capacity of metal ions, which can 
be observed in Fig. 6. The ΔH° value was positive, verify-
ing that metal ions removal by CDSBP and FCDSBP was an 
endothermic adsorption process. The positive ΔS° value indi-
cated that, when metal ions adsorption occured, the degree 
of freedom at the solid–liquid interface increased owing to 
the lower affinity of metal ions for the active adsorption sites 
of adsorbent than that of the exchange ions [58].

3.7. Adsorption mechanisms

Multiple studies have shown that complexation posi-
tively affects the accumulation removal mechanism of metal 

Table 3
Kinetic parameters for the adsorption of metal ions by CDSBP and FCDSBP at all studied concentration

Metal Adsorbent Initial 
solution 
concentration 
(mg L–1)

Lagergren first-order 
kinetic model

Experimental 
adsorption 
capacity  
qexp (mg g–1)

Pseudo-second-order model

qe 
(mg g–1)

k1 
(min–1)

R2 Predicted adsorption 
capacity qpre (mg g–1)

Rate constant  
k2 (mg g–1 min–1)

R2

Cu2+

CDSBP
767.08 6.33 0.3808 0.9196 20.83 21.45 0.1464 0.995
868.68 7.02 0.6641 0.9808 22.35 23.48 0.1837 0.999
960.00 10.07 0.7003 0.9564 22.86 24.16 0.1226 0.998

FCDSBP
777.24 24.65 0.1675 0.9392 64.77 67.65 0.0153 0.998
873.76 25.33 0.2001 0.9367 68.58 71.27 0.0180 0.999
965.20 24.46 0.1923 0.9505 71.12 73.69 0.0186 0.999

Pb2+

CDSBP
977.04 14.43 0.1830 0.9712 53.82 55.18 0.0331 0.998
1,084.68 16.48 0.2064 0.8749 56.31 57.93 0.0313 0.999
1,184.04 17.33 0.1765 0.9247 58.79 60.45 0.0263 0.998

FCDSBP
885.96 83.76 0.1959 0.974 175.95 184.50 0.0049 0.999
977.04 82.39 0.1803 0.973 184.23 192.68 0.0047 0.999
1,092.96 72.28 0.1707 0.958 192.51 199.21 0.0057 0.999

Table 4
Thermodynamic parameters for metal ions adsorbed on CDSBP and FCDSBP

Metals Adsorbent Temp (K) KD (L g−1) ΔG° (kJ mol−1) ΔH° (kJ mol−1) ΔS° (J mol−1 K−1)

Cu2+

CDSBP
298 K 1.32 –0.61

36.01 122.85308 K 1.91 –1.83
318 K 3.3 –3.06

FCDSBP
298 K 1.27 –0.68

35.27 120.63308 K 2.3 –1.88
318 K 3.1 –3.09

Pb2+

CDSBP
298 K 1.2 –0.39

28.21 96.01308 K 1.62 –1.36
318 K 2.46 –2.32

FCDSBP
298 K 1.85 –1.49

22.16 79.37308 K 2.37 –2.28
318 K 3.25 –3.08
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ion [20,37]. And the metal speciation was a significant con-
tribution to the adsorption in a given water system.

The functional groups on the surface of CDSBP such as 
–C=O, –OH, and –COOH have an important contribution 
to the adsorption of metal ions. However, perhaps the most 
significant contribution originates from citric acid grafted on 
CDSBP. The adsorption of Cu2+ and Pb2+ onto CDSBP com-
posite might be based on the intermolecular forces such as 
electrostatic attraction, ion-exchange interaction and espe-
cially metal–ligand complexation [59]. Citric acid possesses 
three hydroxyl groups and three carboxyl groups that 
are available to chelate metal ions. The grafted CA would 
improve the adsorption capacity of the CDSBP by provid-
ing additional CA–metal chelation interactions between the 
modified sugar beet pulp and metal ions (Fig. 8a).

From the experimental data of adsorption on metal ions 
(Cu2+ and Pb2+) by CDSBP and FCDSBP, it could be observed 
that FCDSBP was capable of adsorbing significantly higher 
heavy metal concentrations than CDSBP. Owing to strongly 
basic conditions during the preparation of the FCDSBP, the 

surface carboxyl groups lost their hydrogen ions and became 
negatively charged, Fe3+ ions could form various Fe species 
and occupied these negatively charged sites [60]. In addition, 
the presence of amorphous Fe species on FCDSBP was also 
confirmed by its XRD spectrogram, since neither a notable 
change in the basic cellulose diffraction peaks nor the pres-
ence of additional Fe oxides or oxo-hydroxidic crystalline 
phases was detected [61]. It was evident that amorphous 
Fe-oxide species on external surfaces of fiber positively 
affected the adsorption capacity of metal ions and had an 
more important contribution to the adsorption of Cu2+ and 
Pb2+ than complexation. Furthermore, the previous studies 
by other researchers have proposed that extra-framework 
metallic cations could be deposited on external surfaces of 
adsorbent and the active species may be the binuclear [HO–
Fe–O–Fe–OH]2+ clusters [62]. The IR analysis has shown the 
increase in hydrogen bonding. If not structurally hydrox-
ylated, as shown in Fig. 8b, Fe atoms in an aqueous com-
plex with water and form coordination shell of nearest 
neighbour [33]. Afterwards, the formed hydroxylated oxide 

Fig. 8. Speculated adsorption mechanism (a) of metal ions and formation reaction (b) of hydroxylated oxide.
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forms hydrogen bonds with other water molecules. In gen-
eral, the metal ions (Cu2+ and Pb2+) adsorption capacity of 
FCDSBP increased significantly by amorphous iron oxides 
of FeOx type and hydroxylated oxide located at the surface 
of adsorbent.

4. Conclusion

The present investigation showed that FCDSBP was a 
potential biosorbent for the removal of heavy metal from an 
aqueous medium by loading of amorphous Fe-oxide spe-
cies on external surfaces of fiber. Due to the presence of the 
amorphous Fe-oxide phase and hydroxylated oxide, FCDSBP 
was capable of adsorbing significantly higher Cu2+ and Pb2+ 
concentrations than CDSBP prepared by introducing citric 
acid to SBP fiber surface through an esterification reaction. In 
relation to CDSBP, FCDSBP presented an increase in adsorp-
tion capacity for Cu2+ (66.37 mg g–1) and Pb2+ (130.4 mg g–1). 
In addition, the Langmuir isotherm model and the pseu-
do-second-order model fitted well to the adsorption equi-
librium data. The thermodynamic parameters suggested 
that the adsorption of metal ions (Cu2+ and Pb2+) by CDSBP 
and FCDSBP was endothermic and spontaneous in nature. 
Considering FCDSBP has not been extensively studied yet, 
further studies, such as the identification of the best pre-
paration conditions, its complete characterization and the 
adsorption and desorption cycles for removing metal ions, 
should be carried out and given more considerable attention.
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