

Antibiotic resistance gene profiles at various treatment stages of a full-scale municipal sewage plant

Ioanna Zerva^a, Ioanna Alexandropoulou^b, Maria Panopoulou^b, Paraschos Melidis^a, Spyridon Ntougias^{a,*}

^aLaboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece, Tel./Fax: +302541079313; emails: sntougia@env.duth.gr (S. Ntougias), izerva@env.duth.gr (I. Zerva), pmelidis@env.duth.gr (P. Melidis) ^bMicrobiology Laboratory, Medical School, Democritus University of Thrace, Campus (Dragana), 68100 Alexandroupolis, Greece, emails: ialexand@med.duth.gr (I. Alexandropoulou), mpanopou@med.duth.gr (M. Panopoulou)

Received 28 February 2019; Accepted 19 June 2019

ABSTRACT

The discharge of wastewater treatment plants (WWTPs) is the main route for the transmission of antibiotic resistance genes (ARGs) in the aquatic environments. In this work, the diversity of *ermF*, *ermB*, *sul1* and *int1* genes were investigated at the various stages of the biological treatment process in a full-scale municipal sewage plant, that is, in the influent, the mixed liquor and the treated effluent of the WWTP examined. Application of culture-independent molecular techniques resulted in the detection of similar genotype patterns throughout the entire treatment process. In addition, evidence that distinct *int1* genotypes are responsible for the expression of *sul1* and *ermF* genes in members of *Gammaproteobacteria* and *Bacteroidetes* respectively indicates possible microbe specificity at phylum level. The identification of similar ARGs patterns throughout the biological treatment process also denotes the necessity for the implementation of effective tertiary treatment methods other than chlorination and ultraviolet disinfection to diminish their dissemination threat.

Keywords: Antibiotic resistance genes; Microbiological effluent quality; Biological process; Environmental surveillance

1. Introduction

Antibiotics have been widely used for the curation of infectious diseases in humans and animals [1]. However, only a small portion of such antimicrobial agents can be metabolized by humans or animals, thus the remaining part is excreted and released into the environment as parent compounds or metabolites via the urine and the faeces [2]. This is the way how the antibiotics can enter wastewater treatment plants (WWTPs) and sequentially discharge to recipient water bodies, like rivers, lakes and groundwater, due to their inefficient reduction during the implementation of conventional wastewater treatment methods [3]. There are several studies examining the effectiveness of WWTPs to reduce antibiotic concentrations at the various stages of the treatment process. Lin et al. [4] evaluated the effectiveness of primary and secondary treatment process, successively followed by a disinfection step, on the reduction of sulfonamides, cephalosporins, quinolones and macrolides. Batt et al. [5] examined the fate of antibiotics belonging to quinolones, sulfonamides and tetracyclines in full-scale WWTPs, reporting antibiotics removal efficiencies of 58%–98% when sand filtration and chlorination in series was applied as the tertiary treatment method. Moreover, Li and Zhang [6] found only 25% antibiotics removal efficiency during treatment of sewage in conventional treatment plants.

^{*} Corresponding author.

Presented at the 3rd International Conference on Insights on the Water-Energy-Food Nexus (EWaS-3), 27–30 June 2018, Lefkada Island, Greece 1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.

By contrast, Watkinson et al. [7] reported antibiotics removal efficiencies even greater than 80% during municipal waste-water processing in conventional WWTPs.

The antibiotics occurrence, even at low concentrations into water bodies, apart from inducing toxicity on aquatic and terrestrial life, can favor the transmission of antibiotic resistance genes (ARGs) in such habitats [3]. Therefore, the dispersion of antibiotics in the natural environment can contribute to the development of antibiotic resistance, which was denoted by the World Health Organization as an increasingly serious threat to global public health [8].

In particular, the dissemination of ARGs is favored in WWTPs since the latter consist the main reservoir of antibiotic resistant bacteria and ARGs to aquatic environment [9]. Activated sludge and anaerobic digestion processes provide the ideal environment for the proliferation of ARGs, since their transmission can occur within diverse microbial species [10], even from non-pathogenic into pathogenic microbiota or among phylogenetically distant organisms through the horizontal gene transfer (HGT) mechanism occurred inside the flocs [3,11,12]. Indeed, ARGs can even increase in various processing steps carried out in WWTPs, resulting in elevated threat for the aquatic life [3].

HGT is the main molecular mechanism for ARGs dispersal across species, mediated by mobile genetic elements, like plasmids, transposons and integron associated gene cassettes, which play a major role in the short-term acclimatization of bacteria to increased antibiotic concentration and in their evolution over prolonged time period. Conjugation, transformation and transduction are the main ways of achieving HGT [10,13]. Regarding integrons, these are genetic elements capable of embedding ARGs within gene cassettes [14]. The dense and diverse microbial population in activated sludge proliferate ARGs transfer through plasmid conjugation among the microbial constituents of mixed liquor flocs [13].

A comprehensive study on the fate of ARGs and their transmission mechanisms in activated sludge systems can permit the understanding of their main dispersal routes into the environment. In the recent years, attempts have been performed to investigate the occurrence and predominance of various ARGs at the different stages of biological processing in full-scale sewage treatment systems. However, contradictory results have been extracted, since some researchers have reported that activated sludge treatment can result in reducing ARGs dissemination, whereas others have reported the opposite [15]. Besides, other scientific reports have recommended the inclusion of additional wastewater treatment steps, such as adsorption, membrane filtration and advanced oxidation processes, in order to effectively remove antibiotics and ARGs from the treated effluent [16]. Application of ultraviolet (UV), ozonation and chlorination has been used as disinfection strategies to diminish antibiotic-resistant bacteria and their ARGs into the recipient water bodies [17–19].

Several ARGs types conferring resistance to beta-lactams, macrolides, quinolones, sulfonamides and tetracyclines have been detected in the treated effluent of full-scale sewage treatment plants [9]. In particular, macrolide, quinolone, sulfonamide and tetracycline resistance genes (*erm*, *qnr*, *sul* and *tet* respectively) have been detected in the effluent of such biological treatment systems [20]. For example, Chen

and Zhang [21] reported the occurrence of the sulfonamide ARGs *sul1* and *sul2*, as well as the integrase 1 gene (*int1*) in the effluent of several sewage plants. A strong correlation between the copy numbers of *sul1* and *int1* genes has been also found, denoting the involvement of integrase in *sul1* gene transmission mechanism [21].

Thus, this study aims at investigating the distribution of ARGs at the various treatment stages of a sewage treatment plant, based on the molecular identification of three ARGs, that is, *ermB*, *ermF* and *sul1*, representing resistance to commonly used antibiotics, as well as of one genetic indicator of the HGT, the class 1 integron gene (*int1*).

2. Materials and methods

2.1. Sampling procedure and deoxyribonucleic acid extraction

Samples were collected from the influent, the mixed liquor and the effluent of a full-scale sewage treatment plant by using autoclaved glass bottles [22]. The physicochemical characteristics of the influent and the effluent of the WWTP examined were determined according to Clesceri et al. [23] (Table 1).

A commercially available kit (Vivantis, Malaysia) was employed for extracting deoxyribonucleic acid (DNA) from samples obtained from the various stages of the biological process. Per each sampling point, duplicate samples were filtered through 0.45 μ m membrane filters and the retained (on the membrane) biomass were subjected to DNA extraction.

2.2. Amplification of ARGs

The ARGs-examined were amplified from duplicate DNA samples and the polymerase chain reaction (PCR) products were pooled for clone library construction. Blanks were included in all PCR reactions. The macrolide resistance genes *ermB* and *ermF* were amplified by using the erm(B)-454rc (5'-GAA TCG AGA CTT GAG TGT GC-3') and erm(B)-91fc (5'-GAT ACC GTT TAC GAA ATT GG-3') as well as the erm(F)-189f (5'-CGA CAC AGC TTT GGT TGA AC-3') and erm(F)-497r (5'-GGA CCT ACC TCA TAG ACA AG-3') primer sets [24], respectively. Amplification of the sulfon-amide resistance gene (*sul1*) was carried out by the primer set sul1-F (5'-CGG CGT GGG CTA CCT GAA CG-3') and sul1-B

Table 1

Physicochemical characteristics in the influent and effluent of the Wastewater Treatment Plant examined

Parameter	Influent	Effluent
рН	7.79 ± 0.21	7.73 ± 0.07
EC (µS/cm)	1,212 ± 110	907 ± 26
SS (mg L ⁻¹)	237 ± 54	6.55 ± 2.77
VSS (mg L ⁻¹)	197 ± 67	5.31 ± 2.29
Total COD (mg L ⁻¹)	522 ± 116	24.53 ± 3.85
Soluble COD (mg L ⁻¹)	225 ± 78	14.93 ± 2.13
$BOD_5 (mg L^{-1})$	324 ± 76	18.33 ± 0.87
TKN (mg L ⁻¹)	99 ± 21	1.31 ± 0.49
NH ₄ ⁺ -N (mg L ⁻¹)	67 ± 9.9	0.75 ± 0.34

(5'-GCC GAT CGC GTG AAG TTC CG-3'), whereas the class 1 integron gene (*int1*) was amplified by using the primers int1-F (5'-CCT CCC GCA CGA TGA TC-3') and int1-R (5'-TCC ACG CAC TGT CAG GC-3') [25]. The amplification reactions of the ARGs examined were performed in a Dice TP600 PCR thermocycler (TaKaRa, Japan) by preparing a PCR mixture of 20 ng genomic DNA, 10x PCR buffer, 2.5 mM MgCl₂, 0.2 mM dNTP, the appropriate primers at concentration 0.5 mM each and 2.5 U DNA Taq polymerase (Kapa Biosystems, Wilmington, Massachusetts, USA). For the *ermB* and *ermF* genes, the amplification reaction included a denaturation stage of 2 min at 94°C, and 35 cycles comprising of a denaturation procedure of 30 s at 94°C, 30 s primer annealing at 52°C or 54°C, respectively and DNA fragment elongation at 72°C for 45 s. For the sul1 and int1 genes, the amplification reaction consisted of 2 min denaturation process at 94°C, and 35 thermocycles of 30 s denaturation at 94°C, 30 s primers' annealing at 60°C and 1 min DNA fragment elongation at 72°C. All the above-mentioned PCR reactions were terminated by an additional thermal step at 72°C for 7 min.

2.3. Construction of ARG clone libraries

The amplified ARGs from the various stages of the biological processes were ligated into the plasmid vector pGEM-T Easy (Promega, USA), using T4 DNA ligase (TaKaRa, Japan). The obtained recombinant plasmids were transformed into Escherichia coli DH5a competent cells. The plasmid DNA from the recombinant E. coli cultures was extracted by the "Vivantis plasmid kit" (Malaysia) and their PCR inserts were sequenced at Macrogen by using the vector primers SP6 and T7 (Promega, USA). After assembling the ARG amplicons in "CAP3 Sequence Assembly Program" [26], the similarity of the sequenced clones to their closest ARGs was identified by using the blastn option at National Center for Biotechnology Information (NCBI) database. Alignments of ARG amplicons sequenced in the current study were performed by using the "Clustal Omega" platform [27]. The construction of the phylogenetic trees was conducted by using the MEGA7 software [28] based on the application of the Jukes and Cantor algorithm [29]. The tree topology was inferred by the "neighbor-joining" method of Saitou and Nei [30] through 1,000trees bootstrap support. The amplified ARGs were translated into amino-acids by the use of the web Emboss Transeq program (https://www.ebi.ac.uk/Tools/st/emboss transeq/) and then aligned by the Clustal Omega tool [27]. MEGA7 for windows was employed for tree construction of the predicted peptides [28]. The numbers on tree nodes denote % bootstrap support based on 1,000 replicates. ARGs clone library coverages were calculated according to Magurran [31].

3. Results and discussion

A total of twelve clone libraries regarding the ARGs *ermB*, *ermF*, *sul1* and *int1* were constructed, corresponding to the various sampling points examined, that is, the influent, the mixed liquor and the effluent of a full-scale sewage treatment plant. In particular, a number of 102 clones were sequenced, that is, 23, 29, 24 and 26 *ermB-*, *ermF-*, *sul1-* and *int1-*gene containing clones, respectively. Their clone library coverages are presented in Table 2.

Table 2		
Coverage of ARGs-clone	libraries	constructed

ARG		Coverage (%)	
	Influent	Mixed liquor	Effluent
ermB	100	100	87.5
ermF	90	87.5	90
sul1	100	100	90
int1	100	88.9	100

Regarding the macrolide resistance genes, the sequence of *ermB* gene-containing clone libraries resulted in the identification of three distinct genotypes (Fig. 1a).

The major genotype comprised of 19 clones, where 9 were identical to known ARG sequences reported in the NCBI, whereas the other clones of this group differed only by one or two nucleotide bases. The *ermB* genes of the predominant clone cluster showed a high genetic relationship (99.4%–100%) with respective genes carried out by strains of the genera *Streptococcus, Nocardia, Staphylococcus, Clostridium, Lactococcus* and *Listeria* (Table 3).

Even though Gram-negative bacteria, mainly Proteobacteria, are the main constituents of activated sludge [32], Di Cesare et al. [20] found that ermB genes were mainly hosted by Gram-positive bacteria, which is also the case in the current study. This might be a possible reason for the reduced occurrence of ermB genes during the biological treatment processes since Gram-negative have been found to be favoured over Gram-positive bacteria during biological treatment in WWTPs [33,34]. Considering the predominant genotype, this ARG group was detected throughout the biological treatment, denoting its dispersion to the recipient water body. This is in accordance to the findings of Yang et al. [35], who stated that the majority of ARGs are transferred from the influent to the activated sludge flocs during wastewater treatment. Moreover, the second genotype consisted of 3 clones, which were detected only in the influent and the effluent of the sewage plant. The fact that was not detected in the mixed liquor indicates low proliferation within the activated sludge constituents (Fig. 1a). The last genotype comprised of a single clone (OUT1ERMB), which was only identified in the treated effluent of the sewage plant (Fig. 1a), denoting possible ARGs transmission among settlement tank microbiota. Based on protein prediction analysis, the ermB genes detected were responsible for the encoding of a protein consisting of 107 amino acids, where similar gene translation patterns were identified. However, a distinct amino acid sequence in the case of clone ML2ERMB was predicted, which was clearly differed from those of the predicted ermB peptides belonging to the predominant cluster (Fig. 1b).

Similar to the findings of Wang et al. [36], the detection of the same *ermB* gene pattern throughout the biological process is indicative of the ineffectiveness of sewage treatment plant to eliminate the threat of transmitting *ermB* genes to the aquatic environment, even if application of disinfection methods, such as chlorination and UV light, occurred [20,37]. Recent findings have shown that chlorination appears to cause enrichment of *ermB* genes [38].

Fig. 1. Distribution of *ermB* genes (a) and their predicted peptides and (b) across the various treatment stages of the full-scale municipal sewage plant examined.

Three clone clusters were identified during the investigation of the fate of ermF genes, which is considered as the most prevalent macrolide resistance gene in the bacteria of the activated sludge systems [39]. The main ermF gene cluster comprised of 17 clones, whereas the remaining two clusters consisted of 9 and 3 clones. All the ermF genes that were placed in three genotypes were differed by up to three nucleotide pairs. Genetic analysis also revealed that the clones containing the ermF gene of the second cluster were closely related to the respective clones of the major ermF gene clone cluster (Fig. 2a).

Thus, the second cluster can be considered as a subgroup of the predominant genotype, indicating that the major *ermF* genotype was detected at all stages of the biological treatment process. Despite that the third genotype consisted only of 3 clones, its occurrence was observed throughout the biological treatment process (Fig. 2a). Similar to our study, Szczepanowski et al. [40], by employing metagenomic approaches, showed the occurrence of the same *ermF* genotype in the mixed liquor and the effluent of a full-scale WWTP. Moreover, Fahrenfeld et al. [41] reported the detection of *ermF* genes even in the reclaimed water of a sewage treatment plant.

At protein level, only two distinct *ermF* peptides were predicted as a consequence of the close relatedness of the first and the second genotype, providing further evidence that the second clone cluster is a subgroup of the major *ermF* genotype (Fig. 2b). All *ermF* genes detected in the current study showed high genetic similarity with *ermF* genes that were found mainly in members of the phylum *Bacteroidetes*, with the exception of *Bibersteinia trehalosi* (*Pasteurellaceae*, *Pasteurellales*, *Gammaproteobacteria*) (Table 4). Indeed, *Bacteroidetes* species commonly include *ermF* genes [42,43]. Interestingly, *Bacteroidetes*, which is included among the subdominant phyla of the activated sludge appears to resist chlorination [34,44].

Regarding sulfonamides resistance genes, the predominant genotype was comprised of 23 out of the 24 *sul1* gene-containing clones analyzed, which were detected at all stages of the biological treatment process (influent, mixed liquor and effluent) (Fig. 3a). The only clone of the second genotype (OUT6SUL1) was placed in a distinct genetic position in comparison to the predominant genotype since *sul1* gene divergence was greater than 4 nucleotide pairs (Fig. 3a). However, at protein level, the predicted *sul1*encoded peptide was structurally similar to that of the major *sul1* cluster (Fig. 3b).

Exceptionally, the predicted *sul1*-encoded peptide of clone ML10SUL1, which was placed in the major genotype at gene level, was differed in amino-acid sequence from the other respective peptides (Fig. 3b). Almost all *sul1* genes sequenced in the current study showed high genetic similarity with *sul1* genes detected in bacteria that belong to the class *Gammaproteobacteria*, such as *Acinetobacter, Aeromonas, Enterobacter, Escherichia, Klebsiella, Pantoea, Proteus, Pseudomonas, Salmonella, Serratia, Stenotrophomonas* and *Vibrio*, with the only exception of those identified in *Nocardia* spp. (Table 5).

Sulfonamide resistance genes (*sul1*) have been detected in the effluents of several WWTPs in Italy and in the United States [20,45]. Ben et al. [11] and Du et al. [46] found that *sul1*

Table 3

C* *1 **	ć D		1 1 .	.1 .	. 1		1 .	D	6	1	• 1		•
Similarity	ot orm R	oppos c	lotoctod in	the current	CH11017 147	ith thoir	CLOCOCT	orm K a	ronoc t	ound	in know	n microo	roanieme
Juniarity	$01 \ c m D$	genese	iciccicu m	une current	study w	iui uicii	CIUSCSU	c_{IIIID} g	CIICS I	ound	III KIIOW	II IIIICI OO	gainsins
		0			2				,				0

Cluster	Similarity	Microorganism carrying the closest <i>ermB</i> gene	GenBank
(representative clone)	(in ermB gene)		
		Streptococcus pneumoniae ICESpnIC1	HG799494
		Nocardia farcinica CNM20080087	KM194594
		Streptococcus agalactiae GBS6	CP007572
		Staphylococcus aureus SA268	CP006630
		<i>Clostridium difficile</i> transposon Tn6218	HG002387
		Listeria monocytogenes LM78	JX535233
Cluster 1 (IN3ERMB)	100%	Enterococcus faecium e82	JN899594
		Enterococcus faecalis plasmid pLG2	NG_041215
		Lactococcus garvieae plasmid pKL0018	AB290882
		Streptococcus uberis	EF540938
		Bacillus cereus 363	AF480455
		Streptococcus agalactiae KMP104	DQ355148
		Staphylococcus lentus	SLU35228
		Streptococcus pneumoniae NT 110 5	CP007593
		Streptococcus puogenes HKU360	CP009612
		Enterococcus faecium Aus0085 plasmid p3	CP006623
		Streptococcus oligofermentans AS 1.3089	CP004409
		Streptococcus suis D12	CP002644
		, Staphylococcus pseudintermedius C2597	JF909978
		Streptococcus uberis FSL Z3-097	EF539836
		Pediococcus acidilactici plasmid pEOC01	DQ220741
		Lactobacillus johnsonii G41 PEP-PTS	DQ518904
Cluster 2 (OUT1ERMB)	99%	Streptococcus cristatus transposon Tn6002	AY898750
		Streptococcus hyointestinalis	AY278215
		Lactobacillus fermentum	NG_034736
		Peptoclostridium difficile 630	CP010905
		Campylobacter jejuni C179b	KF864551
		Escherichia coli ECONIH1 plasmid pECO-824	CP009860
		Campylobacter coli SH-CCD11C365	KC876752
		Enterococcus thailandicus W3 plasmid pW3	NG_041564
		Lactobacillus plantarum plasmid pLFE1	FJ374272
		Bacteroides uniformis transposon WH207	AY345595
		Enterococcus faecium plasmid pXD5	KJ645709
		Staphylococcus hyicus plasmid pSTE1	HE662694
		Staphylococcus aureus SA7037 plasmid pV7037	NG_041616
		Enterococcus faecalis plasmid pTW9	AB563188
		Lactococcus garvieae plasmid pKL0018	AB290882
Cluster 3 (IN7ERMB)	99%	Streptococcus suis 2-22	EU047808
		Streptococcus uberis FSL Z3-102	EF539835
		Arcanobacterium pyogenes	AY334073
		Staphylococcus intermedius MLS-17	AF239773
		Enterococcus hirae	AF406971
		Campylobacter jejuni C179b	KF864551

genes were the most abundant ARGs in several WWTPs. Lee et al. [37] examined the dissemination of sulfonamide resistance genes in two WWTPs. A reduction of *sul* gene copies was observed in a WWTP after the biological treatment and the application of UV disinfection, whereas an increase in the

number of *sul* gene copies was determined in another sewage plant. Interestingly, Lupan et al. [47] reported the dispersal of *sul1* genes even 10 km downstream the recipient water body.

Considering the diversity of class 1 integron gene, a prevalent genotype was identified, which was comprised of

416

Fig. 2. Distribution of *ermF* genes (a) and their predicted peptides and (b) across the various treatment stages of the full-scale municipal sewage plant examined.

Table 4

C' 'I ''	(F	1.	. 1 .		. 11	.1 .	1		c 1.	1		
Similarity	v of ermE	oenes det	ected in t	the current a	study with	i their c	Closest prmE	oenes.	tound in	known	microoi	oanisms
ommanne	y 01 01 min	Series act	cetea m	the current	study mild	i uncin c	100000000000000000000000000000000000000	Series	iouna m	10110111	microol	Samonio

Cluster (representative clone)	Similarity (in <i>ermF</i> gene)	Microorganism carrying the closest <i>ermF</i> gene	GenBank
Cluster 1 (IN8ERMF)	100%	Bacteroides ovatus MN11	HE999703
		Riemerella anatipestifer RA-CH-1	CP003787
		Bacteroides salanitronis DSM 18170	CP002530
Chapter 2 (MI OEDME)	1009/	Bibersteinia trehalosi USDA-ARS-USMARC-189	CP006955
Cluster 2 (ML9ERMF)	100%	Barnesiella viscericola DSM 18177	CP007034
		Capnocytophaga sputigena Be58	JQ707297
		Bacteroides thetaiotaomicron transposon CTnDOT	AJ311171
		Bacteroides salanitronis DSM 18170	CP002530
		Bibersteinia trehalosi USDA-ARS-USMARC-189	CP006955
	070/	Barnesiella viscericola DSM 18177	CP007034
Cluster 3 (OUT9ERMF)	97%	Bacteroides ovatus MN11	HE999703
		Capnocytophaga sputigena Be58	JQ707297
		Bacteroides thetaiotaomicron transposon CTnDOT	AJ311171

25 out of the 26 clones sequenced (Fig. 4a). The only exception was the clone ML9INT1, which was placed in a distinct genetic position (Fig. 4a). However, at protein level, apart from the diverse amino acid sequence predicted for the clone

ML9INT1, the predicted structure of integrase in the case of clone IN3INT1 also differed (by a single amino acid) from that of the other *int1*-containing clones of the major genotype (Fig. 4b).

Fig. 3. Distribution of *sul1* genes (a) and their predicted peptides and (b) across the various treatment stages of the full-scale municipal sewage plant examined.

Fig. 4. Distribution of *int1* genes (a) and their predicted peptides and (b) across the various treatment stages of the full-scale municipal sewage plant examined.

Table 5

C* *1 **	C 14		1 1 .	.1		. 1		.1 .	1	. 14		<i>c</i> .	1 •	1	•	•	
Similarity	7 01 01111	anne	dotoctod 11	a tha a	uirront c	t110177	TA71th	thoir	CLOCOC	+ 01111	anne	tounc	1 110	known	microc	rann	ome
Juluant	V OI SUIL	2CIICS	ueletleu n	i uie (unem s	luuv	VV I LI I	uicii	CIUSES	LSULL	RELIES	iounc	ιшι	NIUWII	mucroc	ngana	SILLS
		a				/					a					- a -	

(representative clone)(in sul1 gene)Aeromonas hydrophila LOO-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli 6409 plasmid p6409CP010373Pseudomonas aeruginosn NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Sernatia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid p8J54CKP076293Cluster 1 (OUT3SUL1)100%Vibrio cholerae plasmid p8J534CKP076293Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p34983CP010378Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PmC162KJ186154Klebsiella oxytoca M55279 plasmid pK0-34AB715422Aeromonas andiophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KF68597Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli 0157:H16 strain SantalCP00792Vibrio cholerae plasmid p6BLTLC030435Escherichia coli 0157:H16 strain SantalCP00792Vibrio cholerae plasmid p754bKJ909290Nocardia nova CNM20121076KP076293Proteus mirabilis PmCHEKJ3039Stenotrophomonas andiophilia GZP-Sm1KM646822Klebsiella enterce plasmid p8L7LC030435Escherichia coli 0157:H16 strain SantalCP00792Proteus mirabilis PmCHEKJ30393Stenotrophomonas autophilia GZP-Sm1KM646822Kleb	Cluster	Similarity	Microorganism carrying the closest <i>sul1</i> gene	GenBank
	(representative clone)	(in <i>sul1</i> gene)		
			Aeromonas hydrophila AL06-06	CP010947
Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli 6409 plasmid p6409CP010373Pseudomona aeruginosa NCGM257AP014651Klebsiella pneumoniea ATCC BAA-2146 plasmid pNDM-US-2KJS88779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pRJ354CKP076293Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p34983CP010378Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p54983CP010378Proteus mirabilis PCL162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM64982Klebsiella avvicoa MS5279 plasmid p5N254bKJ909290Nocardia nova CNM20121076KM194585Acinetobacter baumannii AB_NCGM357AP014651Klebsiella avvicoa MS5279 plasmid pVPH1KP688379Acinetobacter baumannii AB_NCGM356CP007982Proteus mirabilis PCCGM346CD00393Serontia nova CNM20121076KJ989290Nocardia nova CNM20121076KJ988779Serontia merescens 11663 plasmid p1663AP014651Klebsiella preumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ888779Serontia marcescens 11663 plasmid p1663AP014651Klebsiella enterica plasmid pRJ354CKP076233Proteus mirabilis PUCT baumannii AB_NCGM356AP014651Klebsiella enterica plasmid pRJ354CKP076233Proteus mirabilis PUCT baumannii AB_NCGM356AP014651Klebsiella enterica plasmid pRJ354CKP076233Proteus mirabilis PUCTEKJ39039Stenotrophomon			Vibrio parahaemolyticus V36 plasmid pVPH1	KP688397
Cluster 1 (OUT3SUL1) 10% Escherichia coli 6409 plasmid p6409 CP010373 Pseudomonas aeruginosa NCGM257 AP014651 Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 KJ588779 Salmonella enterica plasmid pSBLT LN794247 Cluster 1 (OUT3SUL1) 100% Vibrio cholerae plasmid pSI54C KP076293 Proteus mirabilis PEL KR856624 CP0109883 CP010988 Pantoea sp. PSNIH1 plasmid pFSP-a5e CP009883 Pantoea sp. PSNIH1 plasmid pSN254D KJ186154 Stenotrophomonas maltophilia GZP-Sm1 KM64682 Kebsiella oxytoca MS5279 plasmid pSN254b KJ909290 Nocardia nova CNM20121076 KM194585 Aceromonas salmonicida 2004-05MF26 plasmid pSN254b KJ909290 Cluster 2 (ML10SUL1) 99% Serratia marcescens 11663 plasmid p11663 CP007983 Serratia marcescens 11663 plasmid p11663 CP007924 Klebsiella enterica plasmid p11663 CP007924 Cluster 2 (ML10SUL1) 99% Seratia marcescens 11663 plasmid p11663 Klebsiella enterica plasmid p1663 Klebsiella enteri			Acinetobacter baumannii AB_NCGM 346	LC030435
Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Cluster 1 (OUT3SUL1)100%Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p34983CP010378Panteea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PMC162KJ186154Stenotrophomonas saltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pK01-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Acrinetobacter baunamiti AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007922Pseudomonas antigphilis CBA-2146 plasmid pNDM-US-2KJ58879Acrinetobacter baunamiti AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007922Pseudomonas matrighilis PBCLKP076293Proteus mirabilis PMCHEKa98097Acinetobacter baunamiti AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas matrighilis PMCHEKJ39039Serratia marcescens 11663 plasmid p11663AP014611Klebsiella oxytoca MS5279 plasmid pK01-34AB715422Aeromonas maltophilia CZP-Sm1KM649862Klebsiella oxytoca MS5279 plasmid pK01-34AP11451Klebsiella oxytoca MS5279 plasmid pK01-34AP11451Klebsiella oxytoca MS5279 plasmid pK01-34AP11451K			Escherichia coli 6409 plasmid p6409	CP010373
Cluster 1 (OUT3SUL1)100%Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTKN796293Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p34983CP010378Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PMC162K186154Stenotrophomonas maltophilia GZP-Sm1KM640682Klebsiella oxytoca MS5279 plasmid pK01-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bK1990290Nocardia nova CNM20121076KM194585Acrinotabacter baumanii AB_NCGM 346LC030435Escherichia coli 0157:H16 strain SantaiCP007522Pseudomonas aeruginosa NCGM257AP0146511Kibesiella preumoniae ATCC BAA-2146 plasmid pNDM-US-2K1588779Cluster 2 (ML10SUL1)99%Serratia marcescens 11663 plasmid pS154CKP076293Proteus mirabilis PmCHESalmonella enterica plasmid pS154CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophononas maltophilia GZP-Sm1KM649882Klebsiella oxytoca MS5279 plasmid pK01-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pNDM-US-2KJ88779Proteus mirabilis PmCHEKJ439039Serratia marcescens 11663 plasmid pS0254bKJ99290Nocardia nova CNM20121076KM49882Klebsiella oxytoca MS5279 plasmid pS0254bKJ99290Nocardia nova CNM20121076KM49882Klebsiella oxytoca MS5279 plasmid pS0254bKJ99290			Pseudomonas aeruginosa NCGM257	AP014651
Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Cluster 1 (OUT3SUL1)100%Vibrio cholerae plasmid pSBLTKP056293Proteus mirabilis PELKF856624Enterobacter cloace 34983 plasmid p34983CP010378Panteoea p. PSNIH1 plasmid p3PP-a3eCP009883Proteus mirabilis PmC162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS279 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Acromonas shydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pNDM-US-2KJ58879Seratia marcescens 11663 plasmid pSBLTL030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas areginosa NCGM257AP014651Klebsiella neumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ58879Serratia marcescens 11663 plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTKJ43039Proteus mirabilis PmCHEKJ43039Proteus mirabilis PmCHEKJ43039Proteus mirabilis PmCHEKJ43039Proteus mirabilis PmCHEKJ43039Proteus mirabilis PmCHEKJ43039Proteus mirabilis PmCHEKJ43039Klebsiella oxytoca MS5279 plasmid pK0-34KJ5422Acromonas salmophilia G2004:05MF26 plasmid pSN254bKJ90920Nocardia nova CNM20121076KM14585Klebsiella oxytoca MS5279 plasmid pK0-34KJ5429Klebsiella oxytoca MS5279 plasmid pK0-34 <td></td> <td>Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2</td> <td>KJ588779</td>			Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2	KJ588779
Salmonella enterica plasmid pSBLTLN794247Cluster 1 (OUT3SUL1)100%Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PELKF856624Enterobacter cloaca 34983 plasmid p34983CP010378Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PmC162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Aeromonas hydrophila ALO6-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumamii AB_NCGM 346C030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP0146511Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM2982Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas maltophilia GZP-Sm1KM29629Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas anlatophilia GZP-Sm1KM29834Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas anlatophilia GZP-Sm1KM29929Klebsiella oxytoca M55279 plasmid pKOI-			Serratia marcescens 11663 plasmid p11663	AP014611
Cluster 1 (OUT3SUL1) 100% Vibrio cholerae plasmid pRJ354C KP076293 Proteus mirabilis PEL Enterobacter cloaca 34983 plasmid p34983 CP010378 Pantoea sp. PSNIH1 plasmid pPSP-a3e CP009803 Proteus mirabilis PmC162 KI865624 Klebsiella oxytoca M55279 plasmid pK0I-34 AB715422 Aeromonas naltophilia GZP-5m1 KM649682 Klebsiella oxytoca M55279 plasmid pK0I-34 AB715422 Aeromonas salmonicida 2004-05MF26 plasmid pSN254b KJ909290 Nocardia nova CNM20121076 KM194585 Aeromonas hydrophila AL06-06 CP010947 Vibrio parahaemolyticus V36 plasmid pVPH1 KP688397 Acinetobacter baumannii AB_NCGM 346 LC030435 Escherichia coli O157:H16 strain Santai CP007520 Pseudomonas aeruginosa NCGM257 AP014651 Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 KJ588779 Serratia marcescens 11663 plasmid p11663 AP014611 Salmonella enterica plasmid p8BLT LN794247 Vibrio cholerae plasmid p8J354C KP05293 Proteus mirabilis PmCHE KJ439039 Stenotrophononas aaltophilia GZP-Sm1 KM649682 Klebsiella oxytoca M55279 plasmid pKOI-			Salmonella enterica plasmid pSBLT	LN794247
Proteus mirabilis PELKF856624Enterobacter cloacae 34983 plasmid p34983CP010378Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PmC162K1186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas naltophilia AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella enterica plasmid pSBLTKJ98879Proteus mirabilis PmCHEKJ93039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella enterica plasmid pSBLTKD76293Proteus mirabilis PmCHEKJ43039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Acromonas naltophilia GZP-Sm1KM649682Klebsiella oxytoca M55279 plasmid pSN254bKJ9039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ90399Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ90399Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ90399Klebsiella oxytoca M55279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN	Cluster 1 (OUT3SUL1)	100%	Vibrio cholerae plasmid pRJ354C	KP076293
Enterobacter cloacae 34983 plasmid p34983CP010378Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PmC162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS2079 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Aeromonas hydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KF688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ58877Serratia marcescens 11663 plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTKJ430309Proteus mirabilis PmCHEKJ649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Actorophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Actorophomonas maltophilia GZP-Sm1 <td></td> <td></td> <td>Proteus mirabilis PEL</td> <td>KF856624</td>			Proteus mirabilis PEL	KF856624
Pantoea sp. PSNIH1 plasmid pPSP-a3eCP009883Proteus mirabilis PmC162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Proteus mirabilis CGD ScienceCP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella muemoniae ATCC BAA-2146 plasmid pNDM-US-20KJ588779Stenotrophomonas maltophilia GZP-Sm1KM194393Vibrio cholerae plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTKJ39039Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Enterobacter cloacae 34983 plasmid p34983	CP010378
Proteus mirabilis PmC162KJ186154Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Aeromonas hydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli 0157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Abriotophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Pantoea sp. PSNIH1 plasmid pPSP-a3e	CP009883
Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Aeromonas hydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Proteus mirabilis PmC162	KJ186154
Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585Aeromonas hydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Stenotrophomonas maltophilia GZP-Sm1	KM649682
Aeromonas salmonicida 2004-05MF26 plasmid pSN254b KJ909290 Nocardia nova CNM20121076 KM194585 Aeromonas hydrophila AL06-06 CP010947 Vibrio parahaemolyticus V36 plasmid pVPH1 KP688397 Acinetobacter baumannii AB_NCGM 346 LC030435 Escherichia coli O157:H16 strain Santai CP007592 Pseudomonas aeruginosa NCGM257 AP014651 Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 KJ588779 Serratia marcescens 11663 plasmid p11663 AP014611 Salmonella enterica plasmid pSBLT LN794247 Vibrio cholerae plasmid pSBLT KI49039 Proteus mirabilis PmCHE KJ439039 Stenotrophomonas maltophilia GZP-Sm1 KM649682 Klebsiella oxytoca MS5279 plasmid pKOI-34 AB715422 Aeromonas salmonicida 2004-05MF26 plasmid pSN254b KJ90290 Nocardia nova CNM20121076 KM194585			Klebsiella oxytoca MS5279 plasmid pKOI-34	AB715422
Nocardia nova CNM20121076 KM194585 Aeromonas hydrophila AL06-06 CP010947 Vibrio parahaemolyticus V36 plasmid pVPH1 KP688397 Acinetobacter baumannii AB_NCGM 346 LC030435 Escherichia coli O157:H16 strain Santai CP007592 Pseudomonas aeruginosa NCGM257 AP014651 Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 KJ588779 Serratia marcescens 11663 plasmid p11663 AP014611 Salmonella enterica plasmid pSBLT LN794247 Vibrio cholerae plasmid pRJ354C KP076293 Proteus mirabilis PmCHE KJ439039 Stenotrophomonas maltophilia GZP-Sm1 KM649682 Klebsiella oxytoca MS5279 plasmid pKOI-34 AB715422 Aeromonas salmonicida 2004-05MF26 plasmid pSN254b KJ90290			Aeromonas salmonicida 2004-05MF26 plasmid pSN254b	KJ909290
Aeromonas hydrophila AL06-06CP010947Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Nocardia nova CNM20121076	KM194585
Vibrio parahaemolyticus V36 plasmid pVPH1KP688397Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pSJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Aeromonas hydrophila AL06-06	CP010947
Acinetobacter baumannii AB_NCGM 346LC030435Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Vibrio parahaemolyticus V36 plasmid pVPH1	KP688397
Escherichia coli O157:H16 strain SantaiCP007592Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Acinetobacter baumannii AB_NCGM 346	LC030435
Pseudomonas aeruginosa NCGM257AP014651Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Escherichia coli O157:H16 strain Santai	CP007592
Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2KJ588779Cluster 2 (ML10SUL1)99%Serratia marcescens 11663 plasmid p11663AP014611Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Pseudomonas aeruginosa NCGM257	AP014651
Seratia marcescens 11663 plasmid p11663AP014611Cluster 2 (ML10SUL1)99%Seratia marcescens 11663 plasmid pSBLTLN794247Salmonella enterica plasmid pSJ54CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2	KJ588779
Cluster 2 (ML10SUL1)99%Salmonella enterica plasmid pSBLTLN794247Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585		000/	Serratia marcescens 11663 plasmid p11663	AP014611
Vibrio cholerae plasmid pRJ354CKP076293Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585	Cluster 2 (ML10SUL1)	99%	Salmonella enterica plasmid pSBLT	LN794247
Proteus mirabilis PmCHEKJ439039Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Vibrio cholerae plasmid pRJ354C	KP076293
Stenotrophomonas maltophilia GZP-Sm1KM649682Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Proteus mirabilis PmCHE	KJ439039
Klebsiella oxytoca MS5279 plasmid pKOI-34AB715422Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Stenotrophomonas maltophilia GZP-Sm1	KM649682
Aeromonas salmonicida 2004-05MF26 plasmid pSN254bKJ909290Nocardia nova CNM20121076KM194585			Klebsiella oxytoca MS5279 plasmid pKOI-34	AB715422
Nocardia nova CNM20121076 KM194585			Aeromonas salmonicida 2004-05MF26 plasmid pSN254b	KJ909290
			Nocardia nova CNM20121076	KM194585

Interestingly, the microorganisms, which their *int1* genes were closely related to the *int1*-containing clones of the major genotype identified in the current study, included *sul1* genes, which were also related to those detected in the present work (Table 6).

On the other hand, the bacterial strains possessing *int1* genes related to the single clone of the minor *int1* genotype included *ermF* genes similar to those identified in the current study (Table 6). A strong relationship between the abundance of *sul1* and *int1* genes have been found [11,36,46], a fact that denotes the involvement of integrons in the dispersal of sulfonamide resistance genes in the environment. In particular, *sul1* gene has been reported to be part of class 1 integron [39], where, herewith, such relationship was preferably found among members of the *Gammaproteobacteria* (Tables 5 and 6). On the other hand, a connection within *ermF* and *int1* genes appeared to be occurred, indicating possible inclusion of *ermF* gene on class 1 integron of the *Bacteroidetes* representatives that were present in the activated sludge of the WWTP

examined (Tables 4 and 6). Thus, this indicates microbe specificity in the transmission of *sul1* and *ermF* genes in the environment.

4. Conclusions

Investigation of *sul1*, *ermB*, *ermF* and *int1* gene diversity in the full-scale WWTP examined resulted in the detection of ARGs throughout the biological treatment process. The similar genotype patterns detected in the influent and the effluent of the WWTP denotes the necessity of applying effective tertiary treatment methods, focusing on the reduction of both antibiotics and ARGs prior to effluent discharge in the recipient water bodies. Further research on the application of advanced oxidation processes and membrane technologies as well as on their economic feasibility will elucidate the efficiency of such treatment systems to diminish ARGs in the aquatic habitats. In addition, different class 1 integron gene appeared to be responsible for the Table 6

C* *1 **	C . 14	1 1	1 • • • • •	11	.1 . 1 .	·	c 1 · 1	
Similarity	7 of 111 fl	oenes detected	i in the current	t study wuth	their closest	infl genes	tound in know	m microorganisms
Similarity	01 11111	genes acted	i ni ule cuitein	colucy with	then closest	mil genes.	iouna ni know	in microorganisms

Cluster (representative clone)	Similarity (in <i>int1</i> gene)	Microorganism carrying the closest <i>int1</i> gene	GenBank
		Aeromonas hydrophila sAL06-06	CP010947
		Klebsiella pneumoniae Kpn-3002cz plasmid pS-300cz	KJ958927
		Vibrio parahaemolyticus V36 plasmid pVPH1	KP688397
		Acinetobacter baumannii	LC030435
		Escherichia coli 6409 plasmid p6409	CP010373
		Pseudomonas aeruginosa NCGM257	AP014651
		Achromobacter xylosoxidans A22732 plasmid pA22732-IMP	KJ588780
		Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2	KJ588779
		Serratia marcescens 11663 plasmid p11663	AP014611
		Salmonella enterica plasmid incHI2	LN794248
Cluster 1 (OUT111N11)	100%	Acinetobacter baumannii A1	CP010781
		Vibrio cholerae plasmid pRJ354C	KP076293
		Proteus mirabilis PEL	KF856624
		Enterobacter cloacae 34983 plasmid p34983	CP010378
		Serratia marcescens A4Y201 plasmid pG5A4Y201	KJ541069
		Klebsiella oxytoca MS5279 plasmid pKOI-34	AB715422
		Nocardia veterana CNM20120791	KM194583
		Shigella flexneri Shi06HN006	CP004057
		Proteus mirabilis PmCHE	KJ439039
		Klebsiella pneumoniae blaNDM-1 plasmid 1	CP009116
		Bacteroides salanitronis DSM 18170	CP002530
		Bibersteinia trehalosi USDA-ARS-USMARC-189	CP006955
		Barnesiella viscericola DSM 18177	CP007034
Cluster 2 (ML9INT1)	99%	Bacteroides ovatus MN11	HE999703
(, , , ,		Bibersteinia trehalosi USDA-ARS-USMARC-192	CP003745
		Cannocutophaga sputigena Be58	IO707297
		Bacteroides thetaiotaomicron transposon CTnDOT	AJ311171
		1	2

dissemination of *sul1* and *ermF* genes among strains of distinct bacterial phyla, a fact that indicates microbe specificity in ARGs transmission.

Author Contributions

I.Z. and I.A. performed the experiments; I.Z., S.N., P.M., I.A. and M.P. analyzed the data; I.Z. and S.N. wrote the paper; S.N. conceived and designed the experiments.

Acknowledgements

The current paper was presented in the 3rd EWaS International Conference "Insights on the Water-Energy-Food Nexus", Lefkada Island, Greece, 27–30 June 2018 (https://doi. org/10.3390/proceedings2110650).

References

 H. Huang, S. Zeng, X. Dong, D. Li, Y. Zhang, M. He, P. Du, Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system, J. Environ. Manage., 231 (2019) 494–503.

- [2] D. QuocTuc, M.-G. Elodie, L. Pierre, A. Fabrice, T. Marie-Jeanne, B. Martine, E. Joelle, C. Marc, Fate of antibiotics from hospital and domestic sources in a sewage network, Sci. Total Environ., 575 (2017) 758–766.
- [3] X. Liu, G. Zhang, Y. Liu, S. Lu, P. Qin, X. Guo, B. Bi, L. Wang, B. Xi, F. Wu, W. Wang, T. Zhang, Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China, Environ. Pollut., 246 (2019) 163–173.
 [4] A.Y.C. Lin, T.H. Yu, S.K. Lateef, Removal of pharmaceuticals in
- [4] A.Y.C. Lin, T.H. Yu, S.K. Lateef, Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan, J. Hazard. Mater., 167 (2009) 1163–1169.
- [5] A.L. Batt, S. Kim, D.S. Aga, Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations, Chemosphere, 68 (2007) 428–435.
- [6] B. Li, T. Zhang, Mass flows and removal of antibiotics in two municipal wastewater treatment plants, Chemosphere, 83 (2011) 1284–1289.
- [7] A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Res., 41 (2007) 4164–4176.
- [8] World Health Organization, Antimicrobial Resistance: Global Report on Surveillance, WHO, Geneva, 2014.
- [9] L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes

420

spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.

- [10] I.D. Rafraf, I. Lekunberri, A. Sànchez-Melsió, M. Aouni, C.M. Borrego, J.L. Balcázar, Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia, Environ. Pollut., 219 (2016) 353–358.
- [11] W. Ben, J. Wang, R. Cao, M. Yang, Y. Zhang, Z. Qiang, Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes, Chemosphere, 172 (2017) 392–398.
- [12] K.D. Neudorf, Y.N. Huang, C.M. Ragush, C.K. Yost, R.C. Jamieson, L.T. Hansen, Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada, Sci. Total Environ., 598 (2017) 1085–1094.
- [13] B. Li, Y. Qiu, J. Zhang, P. Liang, X. Huang, Conjugative potential of antibiotic resistance plasmids to activated sludge bacteria from wastewater treatment plants, Int. Biodeterior. Biodegrad., 138 (2019) 33–40.
- [14] X.-L. An, Q.-L. Chen, D. Zhu, Y.-G. Zhu, M.R. Gillings, J.-Q. Su, Impact of wastewater treatment on the prevalence of integrons and the genetic diversity of integron gene cassettes, Appl. Environ. Microbiol., 84 (2018) e02766–17.
- [15] J. Tong, A. Tang, H. Wang, X. Liu, Z. Huang, Z. Wang, J. Zhang, Y. Wei, Y. Su, Y. Zhang, Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes, Bioresour. Technol., 272 (2019) 489–500.
- [16] A. Kumar, D. Pal, Antibiotic resistance and wastewater: correlation, impact and critical human health challenges, J. Environ. Chem. Eng., 6 (2018) 52–58.
- [17] D. Mao, S. Yu, M. Rysz, Y. Luo, F. Yang, F. Li, J. Hou, Q. Mu, P.J.J. Alvarez, Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants, Water Res., 85 (2015) 458–466.
- [18] Y. Zhang, Y. Zhuang, J. Geng, H. Ren, Y. Zhang, L. Ding, K. Xu, Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection, Sci. Total Environ., 512–513 (2015) 125–132.
- [19] J.M. Sousa, G. Macedo, M. Pedrosa, C. Becerra-Castro, S. Castro-Silva, M.F.R. Pereira, A.M.T. Silva, O.C. Nunes, C.M. Manaia, Ozonation and UV254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater, J. Hazard. Mater., 323 (2017) 434–441.
- [20] A. Di Cesare, E.M. Eckert, S. D'Urso, R. Bertoni, D.C. Gillan, R. Wattiez, G. Corno, Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants, Water Res., 94 (2016) 208–214.
- [21] H. Chen, M. Zhang, Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China, Environ. Int., 55 (2013) 9–14.
- [22] I. Zerva, I. Alexandropoulou, M. Panopoulou, P. Melidis, S. Ntougias, Antibiotic resistance genes dynamics at the different stages of the biological process in a full-scale wastewater treatment plant, Proceedings, 2 (2018) 650.
- [23] L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington D.C., 1998.
- [24] J. Chen, Z. Yu, F.C. Michel Jr., T. Wittum, M. Morrison, Development and application of real-time PCR assays for quantification of *erm* genes conferring resistance to macrolides-lincosamidesstreptogramin B in livestock manure and manure management systems, Appl. Environ. Microbiol., 73 (2007) 4407–4416.
- [25] M.B. Kerrn, T. Klemmensen, N. Frimodt-Möller, F. Espersen, Susceptibility of Danish *Escherichia coli* strains isolated from urinary tract infections and bacteraemia, and distribution of *sul* genes conferring sulphonamide resistance, J. Antimicrob. Chemother., 50 (2002) 513–516.
- [26] X. Huang, A. Madan, CAP3: a DNA sequence assembly program, Genome Res., 9 (1999) 868–877.
- [27] F. Sievers, A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J.D. Thompson,

D.G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7 (2011) 539.

- [28] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33 (2016) 1870–1874.
- [29] T.H. Jukes, C.R. Cantor, Evolution of Protein Molecules, H.N. Munro, Ed., Mammalian Protein Metabolism, Academic Press, New York, 1969, pp. 21–132.
- [30] N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4 (1987) 406–425.
- [31] A.E. Magurran, Ecological Diversity and its Measurement, Springer, Dordrecht, 1988.
- [32] S. Forster, J.R. Snape, H.M. Lappin-Scott, J. Porter, Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria, Appl. Environ. Microbiol., 68 (2002) 4772–4779.
- [33] R. Seviour, P.H. Nielsen, Microbial Ecology of Activated Sludge, IWA Publishing, London, 2010.
- [34] A. Cydzik-Kwiatkowska, M. Zielińska, Bacterial communities in full-scale wastewater treatment systems, World J. Microbiol. Biotechnol., 32 (2016) 66.
- [35] Y. Yang, B. Li, S. Zou, H.H.P. Fang, T. Zhang, Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach, Water Res., 62 (2014) 97–106.
- [36] M. Wang, W. Shen, L. Yan, X.H. Wang, H. Xu, Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance, Environ. Pollut., 231 (2017) 1578–1585.
- [37] J. Lee, J.H. Jeon, J. Shin, H.M. Jang, S. Kim, M.S. Song, Y.M. Kim, Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plant, Sci. Total Environ., 605–606 (2017) 906–914.
- [38] P. Shi, S. Jia, X.-X. Zhang, T. Zhang, S. Cheng, A. Li, Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water, Water Res., 47 (2013) 111–120.
- [39] Y. Yang, W. Shi, S.Y. Lu, J. Liu, H. Liang, Y. Yang, G. Duan, Y. Li, H. Wang, A. Zhang, Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China, Sci. Total Environ., 626 (2018) 835–841.
- [40] R. Szczepanowski, B. Linke, I. Krahn, K.H. Gartemann, T. Gützkow, W. Eichler, A. Pühler, A. Schlüter, Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics, Microbiology, 155 (2009) 2306–2319.
- [41] N. Fahrenfeld, Y. Ma, M. O'Brien, A. Pruden, Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications, Front. Microbiol., 4 (2013) 130.
- [42] G. Whittle, B.D. Hund, N.B. Shoemaker, A.A. Salyers, Characterization of the 13-kilobase *ermF* region of the *Bacteroides* conjugative transposon CTnDOT, Appl. Environ. Microbiol., 67 (2001) 3488–3495.
- [43] C.J. Smith, E.R. Rocha, B.J. Paster, The Medically Important Bacteroides spp. in Health and Disease, M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt, Eds., The Prokaryotes, Springer, New York, 2006, pp. 381–427.
 [44] J.B. Poitelon, M. Joyeux, B. Welté, J.P. Duguet, E. Prestel,
- [44] J.B. Poitelon, M. Joyeux, B. Welté, J.P. Duguet, E. Prestel, M.S. DuBow, Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants, J. Ind. Microbiol. Biotechnol., 37 (2010) 117–128.
- [45] M. Munir, K. Wong, I. Xagoraraki, Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan, Water Res., 45 (2011) 681–693.
- [46] J. Du, H. Ren, J. Geng, Y. Zhang, K. Xu, L. Ding, Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants, Environ. Sci. Pollut. Res., 21 (2014) 7276–7284.
- [47] I. Lupan, R. Carpa, A. Oltean, B.S. Kelemen, O. Popescu, Release of antibiotic resistant bacteria by a waste treatment plant from Romania, Microbes Environ., 32 (2017) 219–225.