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a b s t r a c t
Accurate modeling of runoff in watersheds requires calibration and uncertainty analysis of effective 
flow parameters and identifying of their statistical characteristics based on inter-parameter relation-
ships and model inputs. In this research, the transport and diffusion of pollution (nutrients) in the 
river were simulated through the two-dimensional finite-volume method using the shallow water 
equations. To numerically solve these equations, the governing equations were converted into lin-
ear equations. Uncertainty and sensitivity of the prepared pollution model were analyzed to achieve 
better results in estimating pollution concentrations in rivers within a reliable range. In this study, 
the likelihood weight (LW) method was used for each parameter in which the ratio of sensitivity and 
probability density function for the sets of good and bad parameters are computed. To this end, 6,000 
iterations of the uncertainty domain for 3 calibration parameters of the pollution transport and dis-
persion model were carried out using a modification of the general likelihood uncertainty estimation 
(GLUE) method prepared by the authors. The three considered parameters were n (manning coeffi-
cient), Sx, and Sy (riverbed slope parameters in x and y directions) since they were more prone to mea-
surement errors compared to the other hydraulic parameters. In the next step, the eutrophication issue 
and transport and diffusion of the nutrients (TDN model) in the estuaries of the Peer-Bazar River and 
Anzali Wetland were analyzed. A total of 1,500 simulations were considered as efficient simulations by 
applying the acceptable threshold values to the sum of squared errors indicator for all the simulations. 
The corresponded set of parameters was considered as good set parameters and the others as bad set 
parameters. By extracting the diagrams of the posterior probability distribution for the parameters 
included in the efficient simulations, parameter n with an optimal value of 0.2502 was recognized 
as the sensitive and influential parameter of the model. Sx and Sy with the optimal values of 0.0169 
and 0.0776 were recognized as the less sensitive parameters due to their larger level of uncertainty. 
Assuming a confidence interval of 95% for the upper and lower bounds of uncertainty, p- and d-factors 
were, respectively, obtained as 0.78 and 0.73, indicating the high level of observational concentrations 
for the considered confidence interval. It can be concluded that the GLUE approach has been success-
fully applied to the TDN model. Also, the comparison of sensitivity analysis of parameters based on 
the LW methods and variation coefficient of parameters indicated that LW is an efficient method for 
sensitivity analysis of model parameters.
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1. Introduction

Uncertainty is an inherent, unavoidable characteristic of 
the modeling process which is caused by the lack of certainty 
and presence of errors in the model input data, parameters, 
and model structure [1]. Therefore, the quantification of 
uncertainty in the output of models is necessary to achieve 
reliable modeling predictions. Herewith, there are some 
parameters in hydraulic and hydrologic models that cannot 
be measured directly [2]. Estimation of hydraulic and hydro-
logic models parameters by various approaches and different 
optimization algorithms are generally error-prone, and there-
fore, a successful application of a hydraulic model in applied 
water research strongly depends on calibration and uncer-
tainty analysis of model output. Calibration-modification 
and frequent changing of the number of parameters is a 
known issue in hydraulic and hydrologic models. Therefore, 
it is necessary to utilize methods for sensitivity analysis and 
reduction of the number of the parameter to calibrate models.

Examination and quantification of the uncertainty param-
eter/s, as the main objective of this study, have been mainly 
brought into attention in recent decades ([3–14]). Mirbagheri 
et al. studied water quality parameters in shallow-water 
problems such as rivers, reservoirs, and wetlands using 
Water Quality Analysis Simulation Program and MIKE fam-
ilies and similar models [15–24]. Herewith, several methods 
have been presented for the expression and analysis of uncer-
tainty in modeling. The generalized likelihood uncertainty 
estimation (GLUE) method presented by Beven and Binley 
[25] is an important and highly applicable method competing 
with SUFI [26] and MCMC [27] methods as far as accuracy 
and ease of simulation of model uncertainty are concerned.

The reason for the broad international interest in this 
study, and its innovations and new findings, as well as its dif-
ferences with other similar studies regarding the sensitivity 
analysis and uncertainties of the hydraulic models, are sum-
marized below:

•	 As the innovation in this study, the emphasis has been 
placed on the mutual recognition of data and parameters 
in an uncertain state. Therefore, the study results are con-
cerned with shallow waters, specifically rivers and wet-
lands, polluted with nutrients (nitrogen and phosphor in 
particular). Moreover, the distribution of temporal and 
spatial concentration for each of the mentioned parame-
ters can be determined with high reliability at the model 
outputs. The reliability was validated and compared with 
the observational data of Homami et al. [24] and the stan-
dard models such as those proposed by Li and Duffy [6] 
and Baetle [28].

•	 In contrast to the GLUE method, which assumes the 
model parameters are uniformly distributed, this study 
employed the real (observed) distribution of parameters 
[24] in the hydraulic (and not hydrologic) model.

•	 As a reliable innovation in this study with no similar 
cases in the literature, the likelihood weight (LW) 
method was used based on the probability distribution 
function to evaluate and determine the sensitivity of 
output parameters from the GLUE uncertainty analysis 
for a two-dimensional (2D) pollution transport model in 
shallow waters. A review of the models presented in the 

literature reveals that no similar approach has been taken 
before and that studies have mostly focused on methods 
such as coefficient of variation, regional sensitivity 
analysis, sensitivity indicators, sensitivity level sampling, 
shuffled complex evolution and using a diagram of the 
posterior probability distribution of parameters. Given 
its relatively appropriate and accurate results, the LW 
method was used for this model. In the “results and 
discussion” section, the results from this method were 
compared with those of the sensitivity analysis method 
based on the coefficient of variations.

In general, as stated earlier, this research mainly aims at 
discussing the sensitivity of flow parameters as well as cal-
ibrating and analyzing the uncertainty of the simulated 2D 
numerical model for the transport and diffusion of nutrients 
(TDN model) in shallow waters (Case study: The Peer-Bazar 
River and Anzali Wetland) through the modified GLUE 
method proposed by the author.

2. Materials and methods

As mentioned in three flowcharts, clarified these steps 
of dispersion and transport, uncertainty identification algo-
rithm and sensitivity analysis respectively of the model, so 
that these steps can be summarized from A to B and B to C 
and C to D (Figs. 1–3).

2.1. Governing equations

The 2D flow governing equations, which were used for 
predicting the concentration of the qualitative parameters 
of  shallow water, include convection-diffusion equation  
(Eq. (1)) and continuity equation (Eq. (2)) as follows [29].
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In these equations, c is a concentration of qualitative com
ponents (mg/L), u is the velocity factor along the x-axis. v is 
velocity component along the y-axis, t is time (day), Dx and Dy 
are the impact factors in longitudinal and lateral axes (in m/d).

2.2. Numerical solution of equations

The finite-volume and fractional step methods were used 
in this research for discontinuing and solving the governing 
equations. If the 2D equations of shallow waters (Eq. (1)) are 
integrated with control volume and the Gauss divergence 
theorem is used for converting surface integral to the line in 
the transport and dispersion (diffusion) terms, Eq. (3) will be 
obtained as follows:
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where n  is the perpendicular vector on the side of finite 
volume, Ω is the area of 2D control volume (m2) and S is in 
its environment (m), H is the transient flux of parameter C 
from each aspect of finite volume, including the two terms 
of transport and dispersion and is written in form of Eq. (4).

H F F i G G jC D C D= + + +( ) ( )
 

	 (4)

The displacement equations in the 2D space are shown in 
Eq. (2). The control volume used in the present research is a 
quadrant created by the perpendicular bisectors of corners. 
Considering Fig. 4, if a perpendicular plane passes on the jj1 
line, a 2D space similar to one dimensional will be created.

Ultimately, using Eq. (5), the amount of Cj
n+1 was 

determined.
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where Aj is the area of the control volume, ∆t is the time step, 
FluxC and FluxD are the parts related to the flux transient 
transport and dispersion terms. To use Eq. (5), the transport 
and dispersion terms on each edge (e) walls must be calcu-
lated as follows:
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2.3. Uncertainty analysis of the nutrient transport model

A problem with available results is needed to analyze 
the uncertainty of the nutrient transport model in the river. 
Therefore, a standard problem the results for which were 
available in the article of Homami et al. [24] was used. This 
problem discussed the transport and diffusion of pollution in 
an area with a length of 80 m and a width of 20 m in the river 
estuary. Fig. 5 shows the geometry used in the model and the 
coordinate systems.

Fig. 6 shows the model grid.
A total of 10,800 grid cells were used for the waterway, 

where the diffusion factor was considered to be Dx = Dy = 0.01. 
In the initial conditions, the depths of water at the bottom and 
the top of the river estuary were 2.5 m and 1 m, respectively. 
The average flow rate was 0.01 m/s and the initial pollution 
concentration is as follows:
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If water depth, flow rate, and diffusion factors are 
assumed constant, the distribution of the pollution concen-
tration for the contaminant (nutrients) at time t and point 
with the coordinates of x, y, and 0 can be obtained instantly 
through the following modified empirical relation [29]:
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Fig. 1. Flowchart of nutrient dispersion and transport model.
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Fig. 2. Uncertainty identification algorithm for the nutrient transport model using the GLUE method (using the MATLAB software).



M. Homami et al. / Desalination and Water Treatment 174 (2020) 204–214208

C x y t M

t D D

x ut
D t

y
D t

x y x y

, , , exp
. .0

8 4 41 5 0 5

2 2

( ) =
( ) ( )

−
−( )

−












π 

	 (9)

where M is the mass of concentration of input nutrients with 
a density of 820 mg/L, which is dispersed in the environment. 
Other parameters are the boundary conditions of the problem 
geometry. The model is executed for 3 s. To the empirical rela-
tion obtained from Baetle experiments [28] and to make a more 
accurate comparison, the same amounts of materials with the 
same specifications mentioned for the numerical model were 
inserted in Eq. (9). The results of the empirical relation and 
the numerical model obtained in FLOW-3D are shown in the 
following figures (Figs. 7–12). The figures show pollution dis-
tribution before the uncertainty analysis of model parameters 
considering a constant amount for them at 0.31, 0.65, 0.97, 1.61, 
1.94, and 2.59 s. As the figures show, the model simulates the 
dispersion and transport of materials with high accuracy.

2.4. Parameters of pollution transport model

Parameters of the pollution transport model discussed 
in this research were the manning coefficient (n) and the 

riverbed slope in x (Sx) and y (Sy) directions. Given that errors 
are highly likely to occur in the measurement of the riverbed 
slope in both directions, these parameters were considered in 
the uncertainty analysis. The standard problem, which was 
stated in the article by Homami et al. [24], was used to deter-
mine the uncertainty of the pollution transport model. For 
this article and similar studies such as the study of Li and 
Duffy [6], some intervals were considered for the calibration 
of parameters as shown in Table 1.

Each estimated parameter can be included in the calibra-
tion and, conversely, in case of a low sensitivity, the calibra-
tion parameter can be considered as an estimated parameter 
by assigning it a constant value.

2.5. Model sensitivity analysis using the LW method

In this method, the sensitivity of parameters output from the 
GLUE uncertainty analysis is calculated by the LWs. The uncer-
tainty calculations for the model outputs are carried out based 
on the LWs of the acceptable parameters from Eq. (10) as follows:
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Fig. 4. Control volume around point j consisting of the cross section of perpendicular bisectors of the sides and definition method of 
velocity along each edge wall in calculative networks.

Fig. 5. Geometry used in the model.

Fig. 6. Grid applied to the problem domain.
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where LWi is the probability or LW of the ith parameter set, 
and N is the number of acceptable parameters. Moreover, Li 
is the probability function calculated from Eq. (11):
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where €i is the ith parameter set, Oj is the measured values 
(jth) parameter, Y(€i) is the model output for each parameter 
set, and n is the number of measured data. Larger likelihood 
values indicate further consistency between the simulated 
and real (observed) values. The sum of the LWs, which form 
a probability distribution function, equals 1. The obtained 
probability distribution is used to derive a model for the sim-
ulated output with a confidence interval of 95%.

The sensitivity analysis algorithm based on the LWs was 
written in MATLAB and coupled with the GLUE model 
which was similarly prepared in the same programming 
environment. The model was then executed and the outputs 
were analyzed as follows:

The parameters with LW  >  =  0.1, 0.05  <  LW  <  0.1, and 
0.01  =  <  LW  <  0.05 were classified as high-, average-, and 
low-sensitivity, respectively. Also, the parameters the LW 
statistic of which was not at a significance level of 95% were 
considered as non-sensitive parameters. Similar to the coeffi-
cient of variations method coupled with the LWs, the results 
indicated the suitability of the LW method.

€

Fig. 7. Variations of pollution concentration distribution at 
t = 0.31 s.

Fig. 11. Variations of pollution concentration distribution at 
t = 1.94 s.

Fig. 12. Variations of pollution concentration distribution at 
t = 2.59 s.

Fig. 8. Variations of pollution concentration distribution at 
t = 0.65 s.

Fig. 9. Variations of pollution concentration distribution at 
t = 0.97 s.

Fig. 10. Variations of pollution concentration distribution at 
t = 1.61 s.

Table 1
Sata related to the parameters of pollution transport model

Estimated  
method

MaximumMinimumDefault  
value

Parameter

Calibration0.300.0030.02n
Calibration0.1500Sx

Calibration0.1500Sy
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3. Results and discussion

3.1. Model sensitivity based on the posterior probability diffusion 
for parameters

The three parameters of the pollution transport model 
were included in the GLUE algorithm to evaluate its uncer-
tainty. Figs. 13–15 demonstrate the diagrams for the posterior 
functions of these parameters in the calibration step using the 
series of parameters generated in Minitab.

Figs. 13–15 demonstrate that the parameters with a high 
dispersion around the mean have a lower level of sensitivity. 
The higher the sensitivity of a parameter, the greater its effects 
on output results (simulated concentration). Therefore, the 
estimation of confidence bounds for pollution concentration 
should be performed using a higher accuracy. The dispersion 
of parameters in the model proves that Parameter n, with a 
biexponential posterior distribution, has a higher sensitivity 
and lower uncertainty. Meanwhile, Sx and Sy demonstrate a 

similar characteristic and are considered as parameters with 
a lower degree of sensitivity and higher uncertainty due to 
their higher dispersion of values.

3.2. Model sensitivity degree based on parameter variation 
coefficient

Conclusions can be made about the sensitivity degree 
of parameters by comparing some of the obtained posterior 
distribution statistics including the coefficient of variation 
of parameters. To this end, the values related to this statis-
tic along with the mean, standard deviation (SD), LWs and 
the optimal values for the three considered sensitive param-
eters are given in Table 2 for the best simulation (the sum of 
squared errors). A noteworthy point to be noted is that the 
lower the coefficient of variations in a parameter, the higher 
its uncertainty and sensitivity. The uncertainty may be due 
to the uncertainty in input data and uncertainty in the model 
structure because of the simplifying assumptions considered 
for the real and complicated processes. Therefore, the final 
value of the parameter should be considered with special 
precision. Regarding the values of Table 2, Parameter n has 
a higher sensitivity and it cannot be replaced by a constant 
amount. Similar to the coefficient of variations method cou-
pled with the LWs, the results indicated the suitability of the 
LW method.

3.3. Uncertainty rate criteria

The criteria used in this research for the quantification 
and evaluation of uncertainty rate were the p-factor (the per-
centage of the measured data within 95% confidence interval 
of 95 PPU) and d-factor (95 PPU band thickness divided by 
the SD of the measured data).

This way, p-factor and d-factor values closer to 100% 
and 0%, respectively, indicate a more appropriate simula-
tion model. The values of the p-factor and d-factor for the 
calibration period were 78% and 73%, respectively. This 

Fig. 13. Posterior probability distribution for parameter n.

Fig. 15. Posterior probability distribution for parameter Sy.Fig. 14. Posterior probability distribution for parameter Sx.
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value for the d-factor indicates an appropriate calibration 
for model output. On the other hand, the p-factor, with a 
value of 78%, indicates an appropriate simulation given that 
this factor represents the percentage of observational data 
in a 95% interval of prediction uncertainty. Fig. 16 shows the 
95% confidence interval for prediction uncertainty and the 
number of observations included in the interval. As shown, 
most of the observational data are placed within the 95% 
interval of prediction uncertainty, which indicates an appro-
priate simulation.

3.4. Employing the results and applying the model  
to the Peer-Bazar River and Anzali Wetland

Since the study area was Peer-Bazer River estuaries 
between Ghalam Goodeh and Sooser downstream, one and 
2D flows were simulated using HEC-RAS and Flow-3D soft-
ware, respectively and one-dimensional and 2D models were 
simultaneously solved.

In this regard, a one-dimensional model was prepared 
using HEC-RAC software and the results were applied in 
the text format as input information for preparation of 2D 
model (the one-dimensional information can be considered 
as the measured data of river water quality parameters). The 
results of the 2D model were revised, if necessary. For exam-
ple, “manning roughness coefficient”, “riverbed slope” and 
“water level” were revised as follows:

Modification of manning roughness coefficient (n), riv-
erbed slope (Sx, Sy) and water level (H): Regarding the geo-
metric inputs to the model, the optimal values of sensitive 
parameters influential on the numerical model simulating 
the Peer-bazar River and Anzali Wetland were input to the 

nutrient transport model based on the results obtained in this 
study (Fig. 17). The modified model was then re-executed.

According to the results of the 2D simulation, the mean 
water level of the calculated section was compared and mod-
ified with the obtained similar parameters from the one-
dimensional model.
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where Hi1D is water level in section i in the one-dimensional 
model. Hi1D is water level from element j in section i in the 2D 
model and jymax is the number of elements in section i in 2D 
model. If the differences in the amount of the above equation 
are higher than the required accuracy, the modified value of 
the water level will be solved by the equation to reach the 
required accuracy.

4. Conclusion

Errors are inevitable parts of simulations and can usu-
ally cause problems in employing models for prediction, 
decision-making, and managerial assessments. Hence, the 
identification of uncertainties and parameter sensitivities, 
as an indispensable stage in deriving mathematical models, 
provides the designer with a broader view, allowing the deci-
sion-makers to employ the model with a deeper understand-
ing of a phenomenon and maximize the system efficiency.

To improve the results on estimation of nutrient con-
centration in shallow waters and obtaining the confidence 
interval, the nutrient transport model was calibrated and 
underwent an uncertainty analysis using the modified GLUE 
method (presented by the authors). To this end, a total of 6,000 
iterations of the uncertainty domain was performed using 
the GLUE uncertainty algorithm for three calibration param-
eters of the nutrient transport model. The standard nutrient 
transport and penetration problem in shallow waters were 
considered in this process.

The sensitive flow parameters along with uncertainty 
analysis of the nutrient transport model were the main 
results of this study, which were obtained from analyzing 
the outputs of the TDN model. As the important aspect of 
determining sensitive parameters, the extent of sensitivity of 
model outputs to the variations in the parameters or model 
structure was identified.

Results of the LW method (using the sensitivity index and 
probability distribution function) and through extracting the 
posterior distribution probability diagrams for the parame-
ters corresponding to the efficient simulations, parameter n 

Fig. 16. The 95% interval for prediction uncertainty and 
maximum realistic (observational) concentration.

Table 2
Optimal values for the mean, SD, LW and the percentage of variation coefficient of model parameters

Parameter 
sensitivity

Likelihood 
weight (LW)

Variation  
coefficient (%)

Standard  
deviation (SD)

Optimal  
value

MeanParameter

High0.736324.670.05120.25020.1994n
Low0.024157.330.03010.01690.0499Sx

Low0.018956.640.02910.07760.0501Sy
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(manning coefficient) with the optimal value of 0.2502 was 
recognized as a sensitive and effective parameter. Riverbed 
slope parameters in x and y directions with the respective 
optimal values of 0.0169 and 0.0776 were recognized as the 
parameters with lower degrees of sensitivity due to their 
larger uncertainty. These results show the necessity for the 
calibration and uncertainty analysis of the parameters in the 
river pollution transport model using the 2D finite-volume 
method. The shape of the distribution of parameters con-
firmed that the model parameters might be related to the 
environment characteristics and geometry of the problem 
and its conditions.

Sensitivity analysis of the model parameters based on the 
LWs method and coefficient of variations method revealed 
the appropriate efficiency of the LW method for sensitivity 
analysis of the parameters in the numerical model. Hence, 
the LW method can be used with high reliability to analyze 
the sensitivity of parameters and increase the efficiency of 
computational fluid dynamics models.

The p-factor and d-factor were respectively 0.78 and 0.73 
to the confidence interval of 95% as the top and low bounds 
of uncertainty, which indicated that most observational con-
centrations lied within the 95% confidence interval. For the 
framework for uncertainty analysis in the TDN model, the 
research results provide conditions to express model pre-
dictions in the form of a confidence interval. This is highly 
important in the following steps such as scenario building, 
managing water resources, and performing risk analysis.

To achieve better results, meshless methods, such as the 
meshless local Petrov-Galerkin as an efficient method for 
simulation of underground waters, are recommended to be 
used for simulation of nutrient transport in shallow waters. 
The model parameters are then analyzed and the results 
are compared with those of the LW method. Moreover, it is 

recommended to simultaneously simulate nutrient transport 
and dispersion and sediment deposition in the river.
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