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a b s t r a c t
This study aims to determine the shoreline changes along the Black Sea Coast of Istanbul, which has 
been occurred in 7 years from 2009 to 2016. For this purpose, remote sensing technology used to detect 
the shorelines in the study period and geographic information system was established for determin-
ing the general and specific changes along the shoreline. In this context, geometric and atmospheric 
corrections were applied to the data as the preprocessing of Landsat-7 Enhanced Thematic Mapper 
Plus and Landsat-8 Operational Land Imager images. Then after, the Black Sea Shoreline data of 
Istanbul was extracted by applying supervised classification using maximum likelihood classification 
algorithm and normalized difference water index to Landsat images. As the following stage of the 
study, the changes along Black Sea Shoreline were determined using the digital shoreline analysis 
system software based on the extracted shoreline data. As a result of the study maximum negative 
and positive distances were determined similarly for the outputs of both applied methodologies 
as approximately –438 and 466 m. The study concluded that the most significant change along the 
shoreline was observed at the European side of the city, at a location close to the construction area 
of Istanbul Airport.
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1. Introduction

Coastal erosion is defined as the loss of coastal lands in 
to a sea or lake due to the natural processes such as waves, 
winds, and tides, however, even human activities such as 
the construction of coastal structures as wave breaker or 
seawalls can cause the transport of the coastal material 
away from the shoreline [1]. The location and geometry of 
the coastlines are the main indicators for understanding 
coastal dynamism, managing coastal areas and assessing 
changes in these sensitive areas [2–4]. Therefore, a system-
atic approach is required for the assessment and monitoring 

of the coastal environment. Seasonal, short-term or long-
term mapping and monitoring of the coastline is necessary 
to understand the several coastal processes. However, mon-
itoring the entire coastal system in a large area using tra-
ditional ground survey techniques is time-consuming and 
sometimes impossible [5,6].

Recent advances in remote sensing (RS) and geographic 
information system (GIS) technologies provide an effective 
platform for producing synaptic coverage and assessing 
shoreline change with several techniques [7,8]. Remotely 
sensed data is broadly used to analyze changes in shoreline 
since it can provide information over a large area in a short 
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time. In addition, RS and GIS integration provides many 
advantages for coastal zone management [7,9] and also they 
are inevitable technologies in developing effective action 
plans for any coastal area. Several studies demonstrating the 
effectiveness of the use of GIS and RS integration for envi-
ronmental change detection, specifically shoreline change, 
purposes have been conducted. Dewidar and Frihy [10] used 
ten scenes of Landsat sensors for quantifying erosion and 
accretion pattern along the coastline of the Nile Delta [10]. 
They calculated rates of shoreline changes using the digital 
shoreline analysis system (DSAS). Similarly, Mujabar and 
Chandrasekar [7] investigated the shoreline changes using 
multi-date Indian RS satellite images along the coast between 
Kanyakumari and Tuticorin of South India by using DSAS. 
DSAS has been used widely in analyzing the dynamics of 
shoreline movements at both shorter and longer time scales 
[4]. Recently, studies on the determination of shorelines have 
been conducted by using DSAS software which is an exten-
sion of ArcGIS software on different satellite images. Several 
image processing methods such as maximum likelihood clas-
sification (MLC), tasseled cap, spectral indices or MLC have 
been used for shoreline extraction [11–13]. Nassar et al. [14] 
also used DSAS for determining the shoreline change detec-
tion along the North Sinai coast in Egypt based on the shore-
line data that was extracted shorelines using single-band 
thresholding method and tasseled cap transformation.

The main objective of this study is to determine the 
changes occurred at the Black Sea Shoreline in 7 years from 
2009 to 2016. The usability of the different image processing 
methodologies in shoreline change detection was also exam-
ined for understanding their mapping potentials. For this 
purpose, the Black Sea Shoreline data was extracted from 
remotely sensed images by applying the MLC algorithm 

and normalized difference water index (NDWI) for the years 
2009 and 2016. Changes in the geometric structure of the 
shorelines were determined using DSAS software in a GIS 
environment.

2. Materials and methods

2.1. Study area

With its strategic location, Istanbul as the only city in the 
world bridging Europe and Asia continents has been one 
of the most attractive cities at the center of life, art and cul-
ture for thousands of years. Istanbul located at the Marmara 
Region on the northwestern part in Turkey and is sur-
rounded by the Black Sea in the north and the Marmara Sea 
in the south. The city has 524.5 km shoreline including the 
Bosphorus. Many changes have been observed at the shore-
line of Istanbul for years due to human activities or natural 
processes. Black Sea Coast, which included long coastal 
dunes such as Kilyos and Agacli, constitutes the sea border 
of the 6 districts in Istanbul as presented in Fig. 1.

2.2. Data

In this study, Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) and Landsat-8 Operational Land Imager (OLI) satel-
lite images, which are dated 29 June 2009 and 10 July 2016 
respectively, were used as the main input to determine the 
change of the shoreline along the Black Sea Coast in Istanbul.

The Landsat-8 includes eleven bands and equipped 
with a thermal infrared sensor (TIRS). TIRS acquires data 
for the two thermal wavelength regions with a 100 m reso-
lution while OLI obtains data for the visible, near-infrared 

Fig. 1. Location of the study area.
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(NIR) and shortwave infrared bands with 30  m resolution 
and panchromatic band with 15  m resolution. The spa-
tial resolution of Landsat-7 is 30  m. RS images were both 
obtained from United States Geological Survey (USGS) Earth 
Resources Observation Systems data center.

In addition to remotely sensed images, ancillary data 
including 25  K standard topographic maps and 5  K ortho-
photo maps were used as reference data for the training site 
selection, classification process, and accuracy assessment 
of the classified images. Google Earth was also used as an 
additional source at these stages of the study.

2.3. Methodology

The methodology of the study composed of three main 
stages as image preprocessing, shoreline extraction and 
change detection (Fig. 2). As the preprocessing works per-
formed in the first stage of the study, RS images were first 
geometrically corrected since accurate spatial registration 
of multi-temporal images is essential for change detection 
[15–17]. Geometric correction of both images was completed 
with less than ±0.5 pixel root mean squared error (RMSE) 
in accordance with existing literature on change detection 
techniques in RS [18,19]. Landsat images were then regis-
tered to Universal Transversal Mercator projection based 
on 25  K topographic maps of the region using the first-
order polynomial method. During image rectification, the 
nearest neighbor resampling algorithm was used, and the 
process followed with approximately ±15 m RMSE for both 
images.

After completing preprocessing, shoreline data were 
extracted from RS images through supervised classification 
and NDWI techniques at the second stage of the study. MLC 
algorithm, which assumes that the statistics for each class in 
each band are normally distributed and calculates the prob-
ability of the specific class that pixel belongs to, was used 
in supervised classification. Unless a probability threshold 
is selected, all pixels are classified. Each pixel is assigned to 
the class that has the highest probability (i.e. the maximum 
likelihood). With the supervised approach, calibration pixels 

are selected and associated statistics are generated for the 
classes of interest [20]. This study used per-pixel supervised 
classifications which group satellite image pixels with the 
same or similar spectral reflectance features into the same 
information categories [21]. The main aim of NDWI is to 
determine open water features using the green (Band 2) and 
near-infrared NIR (Band 4) bands of Landsat imagery. This 
index minimizes the reflectance of non-water features by 
using the NIR band while maximizes the reflectance of water 
by using the green band [22]. The formulation of the NDWI 
is given in Eq. (1).

NDWI
GREEN NIR
GREEN NIR

=
−( )
+( ) 	 (1)

Accuracies of the applied RS techniques were also exam-
ined at this stage. In this context, conformity of the results 
obtained by MLC and NDWI with the real land cover type 
on the ground was assessed by generating an error matrix 
and determining overall accuracy (OA) and Cohen’s Kappa 
statistics. Although there are several quality measures, OA 
and Cohen’s Kappa statistics are considered as the common 
ones for the justification of the accurate processing results in 
RS [23,24]. Accuracy assessment of both RS images was per-
formed by randomly selecting 200 control points for each 
method to determine the quality of thematic maps derived 
by processing the input data. When the required accuracy 
values were met for both methodology, shoreline data were 
extracted from processed images by applying raster to 
vector transformation through GIS established within the 
study.

As the final stage of the study, changes along the shore-
line were detected using DSAS software, which congruously 
runs with the ArcGIS software. DSAS produced by USGS 
and it computes rate-of-change statistics for a time series 
of shoreline vector data. For this purpose, DSAS gener-
ates transects that are cast perpendicular to the baseline at 
a user-specified spacing alongshore. The transect shoreline 
intersections along this baseline are then used to calculate 

Fig. 2. Flowchart of the study.
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the rate-of-change statistics [25]. Based on the DSAS meth-
odology, the shoreline rate of change is calculated using two 
different statistical techniques:

•	 The net shoreline movement (NSM) is the distance 
between the oldest and the most recent shorelines for 
each transect. (unit: meter)

•	 The endpoint rate (EPR) is determined by dividing the 
distance between the oldest and most recent shoreline 
movement by the time elapsed between the oldest and 
the most recent shoreline. (unit: meter/year)

Negative values obtained using this methodology repre-
sent the erosion while positive values show accretion along 
the shoreline. In this study, a hypothetical baseline was 
created similar to the coastline geometry with a position of 
150 m distance behind. 1,779 transects were generated per-
pendicular to the baseline with 100  m spacing along the 
Black Sea Coast of Istanbul.

3. Results

3.1. Shoreline data extraction

Black Sea Shoreline data was extracted from RS images 
through supervised classification and NDWI for the years 
of 2009 and 2016 within this study. Validation of the out-
puts was provided by the accuracy assessment process 
and the results are presented in Table 1 in terms of OA and 
Kappa values. As presented in the table, approximate values 

confirming the accuracy of the applied methodologies were 
obtained for both of the Landsat images. MLC methodology 
was applied to the Landsat-7 dataset with the highest kappa 
value (0.90), while NDWI resulted in the lowest value as 0.84 
for the same data set. Additionally, OA values were all higher 
than Kappa values for all data and method combinations.

Shoreline geometries extracted from Landsat images are 
presented in Fig. 3. Potential of MLC and NDWI methodol-
ogies for mapping the shoreline along the Black Sea Coast in 
Istanbul was also confirmed based on the similarity of the 
extracted data in terms of their geometries and accuracies.

3.2. Results of the change analysis

In this study, changes that occurred along the Black Sea 
Shoreline in 7 years were determined for both of the extracted 
data set through DSAS. Statistical results were presented as 
NSM and EPR in Tables 2 and 3, respectively. According to 

Fig. 3. Shorelines extracted in the study.

Table 1
Statistical results of the mapping algorithms

Kappa OA (%)

Landsat-7 
ETM+

Landsat-8 
OLI

Landsat-7 
ETM+

Landsat-8 
OLI

NDWI 0.84 0.88 92.00 94.00
MLC 0.90 0.89 92.36 91.25
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the NSM statistics, both of the data extraction methodology 
applied in the study concluded with similar results. In this 
context, maximum negative distance change appeared from 
2009 to 2016 along the Black Sea Coast of Istanbul was 
observed as –438 m while the maximum positive distances 
were 466 and 470 m for data sets extracted using MLC and 
NDWI methodologies respectively. The average of all NSMs 
determined for 1,779 transects along the Black Sea Coast was 

approximately 54 m and 33 m in negative and positive direc-
tions respectively.

According to the EPR statistics presented in Table 3, the 
maximum value of the erosion was observed as 62 m/y, while 
the maximum accretion value was 66 m/y. The average of all 
erosional and accretional rates determined for all transects 
was around –7.7 m and 4.7 m respectively. When the results 
obtained from both datasets were examined in more detail, 
it is revealed that the locations of transects, where the high-
est values were assigned (in both directions), were identical 
as expected. Locations of the highest values were also close 
to each other and they appeared along a specific section of 
the Black Sea Coast where the Istanbul Airport was built as 
presented in Fig. 4.

4. Discussion and conclusion

This study examined the change along the Black Sea 
Shoreline in Istanbul based on two different Landsat images 
dated 2009 and 2016. Significant changes caused by erosion 
and accretion in 7 years were detected and the most potent 
factor of this change was addressed as a result of the study. 
As statistically confirmed, data extraction methodology 
applied in the study presented similarly high performances 
in shoreline data extraction.

Additionally, the results indicated that the changes in 
shoreline mainly occurred along the coastal part of the new 
airport construction area that is located between Karaburun 
and Kumköy towns with an average erosion rate of 7.81 m/y 
with MLC and 7.58 m/y with NDWI. The accretional changes 

Table 2
Statistical NSM results of the DSAS analysis

NSM (m) MLC NDWI

Maximum negative distance –438.51 –438.51
Average of all negative distances –54.95 –53.3
Maximum positive distance 466.51 470.12
Average of all positive distances 32.32 34.18

Table 3
Statistical EPR results of the DSAS analysis

EPR (m/year) MLC NDWI

Maximum value erosion –62.35 –62.35
Average of all erosional rates –7.81 –7.58
Maximum value accretion 66.33 66.85
Average of all accretional rates 4.60 4.86

Fig. 4. Shoreline section with maximum NSM and EPR values along the Black Sea Coast.
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also occurred in the same area with an average accretion rate 
of 4.60 m/y with MLC and 4.86 m/y with NDWI. Therefore 
this study can also be considered as the assessment of the 
artificial impacts on coastal systems. The misuse of coastal 
environmental resources due to poor management and lack 
of monitoring has been widely recognized in the study area. 
Therefore the result of this study is also valuable as a guide to 
the decision-makers who aim to preserve natural characteris-
tics of the coastal ecosystem in Istanbul.

It is obvious that coastal erosion or accretion does not 
only change the coastal morphology together with its habi-
tat but also causes financial losses. Moreover, they can turn 
into disasters if their impacts are not adopted by the society. 
Therefore, shoreline changes should be monitored regularly 
for mitigating the economic and environmental impacts. The 
efficient use of geo-information technologies as RS and GIS 
contributes to environmental monitoring operations by pro-
viding precise and accurate results as presented in this study.
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