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a b s t r a c t
This present work studies the prediction of water resource quantity in Cyprus by using the 
mathematical technique called the Markov chains of the fuzzy states (MCFS) prediction method. 
This region is considered as a poor water country in Europe with a semi-arid climate that also has 
a frequent occurrence of drought and limited water resources that are mainly dependent on rainfall. 
Cyprus is suffering from unevenly distributed rainfall and small catchments, where extreme drought 
events are suspected due to climate change. The water policy in Cyprus is based on two pillars: sus-
tainable development of water resources and water demand management. Around 1970 changes in 
the rainfall pattern in addition to population growth led to critical situations in many aquifers, which 
deteriorated due to the intrusion of seawater intrusion into the aquifer. Hence, the estimation of water 
resource values and water consumption for the following decades is important to implement effective 
management plants. By collecting and analyzing 100 years of standardized precipitation index data 
the future expected precipitation probabilities of the island of Cyprus were estimated using Markov 
chains (MC) and MCFS analysis. For this purpose, the inter-state transition probability matrix of the 
system has been determined and long-term equilibrium vectors have been calculated to determine 
the stability of the system. This study shows that the use of the MCFS gives more sensitive results 
for the prediction of future precipitation than the classical MC model.

Keywords: �Annual precipitation; Rainfall; Markov chain of the fuzzy states; Stochastic processes; 
Water resource management

1. Introduction

Rainfall is one of nature’s ways of reviving both biological 
and non-biological activities. It has fundamental importance 
for supporting and protecting human, plant and animal life. 
The amount of large-scale variation of precipitation that is 
either too low or too high in a given area may contribute to 
the tendency of drought or floods respectively. These are very 
two important hydrological environmental disasters affect-
ing various regions of the world. Therefore, it is important 

to develop a measurement system for estimation. One such 
important system that provides vital and substantial infor-
mation that is required for a wide range of applications is 
the quantitative precipitation estimation/forecasting [1]. 
This approach can be applied to fields such as reservoir 
operation, water resources management, agriculture, and 
flood protection among others [2].

Precipitation can be perceived as an important variable 
that determines the land surface hydrological process at all 
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space‐timescales. Since it holds a particularly important posi-
tion in this determination, it is very crucial to improve our 
comprehension of how precipitation can be spatially and 
temporally distributed to basins ranging in size from 100 km2 
to 100,000 km2. Also, it is important for temporal integration 
of rainfall inputs that range from hours to days [3]. These 
are important considerations for water resources manage-
ment. One of the drawbacks is the observation limitations 
of ground-based radar or gauge management with regard to 
remote areas and mountainous regions.

The terms global warming and climatic variations are 
used to describe the increase in average temperature around 
the globe, which is causing changes in the quantity and 
modality of rainfall and has consequently increased the prob-
ability of droughts [4]. The increase in greenhouse gasses is 
one of the factors that is causing global warming. Certainly, 
the increase in heat-absorbing gases directly leads to higher 
temperatures being detained in the atmospheric layer of 
the planet, which causes warming of the Earth’s surface. 
In Cyprus, the combination of the annual lowest precipita-
tion with the highest evaporation caused by hot weather in 
the summer and also the increasing population has led to 
a scarcity of water (Fig. 1).

This study will analyze the future status of precipitation 
for this region, where water resources are rare and the eco-
logical situation needs water abundance. However, around 
1970, the precipitation values decreased unusually and there 
is a concern that it will become worse in the future (Fig. 2).

Thus, there is a need to develop prediction tools such 
as probabilistic tools that can support preparation proce-
dures that can be applied at a suitable time. The study of 
Huffman [7] established a statistical relationship of the 
root‐mean‐square random errors associated with the esti-
mation of precipitation. In another study, a framework was 
designed to identify possible relationships between sam-
pling error in radar rainfall estimates as well as several 
other factors [8]. A sensitivity analysis was carried out by 
Hossain and Anagnostou [9] aimed at comprehending the 
impact of satellite passive microwave (PM) rainfall retrieval 
and sampling errors on flood prediction uncertainty for 
medium‐sized (100 km2) watersheds. Their analysis further 

evaluated PM in conjunction with infrared (IR)‐based satel-
lite rainfall retrieval for flood prediction using a probabilistic 
error model. This was also followed by the exploration of the 
uncertainty bound of simulated flood events based on vari-
ous microwave rainfall samples and hourly IR‐based rainfall 
estimates. The findings of these analyses by Hossain et al. 
[10] indicated the necessity to have improvement measures 
for communication between precipitation data producers 
and user communities by quantifying the estimation error 
and assessing the influence of error propagation on hydro-
logic processes. After the successful study that employed 
weather radar, several researchers including Baltas and 
Mimikou [11], Grecu and Krajewski [12], and Morin et al. 
[13] embarked on several investigations aimed at enhanc-
ing the existing research and providing new insights. They 
raised issues regarding the level of accuracy when employ-
ing radar-based rainfall forecasting. Luís et al. [4] analyzed 
the spatial and temporal rainfall feature of a specific area and 
they found a spatial pattern of the rainfall trend for a differ-
ent region of this selected area. Another researcher Chiang 
et al. [1], successfully applied the dynamic artificial neural 
network method for precipitation estimation by utilizing 
the meteorological radar data. However, another study 
employed the product-driven uncertainty technique for esti-
mating the probabilistic quantitative precipitation [14].

Among the varying probabilistic methods, it is observed 
that the chain models provided by Markov also have been 
used in 1963 for obtaining the probability of precipitation 
occurrence of different intervals lengths [15] and frequently 
have been studied in the literature ([16,17]). Since then, 
modeling has been developed for non-stationary situa-
tions, with discrete chains for a certain period of time, for 
a period of 1 year, as well as for different times of the year 
for optimizing transition probabilities [18] Different orders 
of Markov’s chains have been studied with the conclusion 
that for a variety of sites, a variety of chain orders are also 
required [19]. The tendency throughout the years has been to 
increase the number of conditions to obtain a Markov model 
with better results [20]. As an example, in 2008, a model of 
Swedish precipitation was developed using an n-step tran-
sition probability of the Markov chain [21]. It was found 

Fig. 1. Precipitation distribution of Cyprus [5]. Fig. 2. Precipitation values in mm from 1901 till 2011 [6].
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that for Markov’s method, a chain with a higher order than 
1 is needed. Generated models are utilized for calculating 
various weather indicators. The modeled indicators were 
comparable to the empirical results, which is evidence of the 
higher stability of the model. The Markov chain process is a 
memoryless model that can predict the future states of sys-
tems by utilizing the existing states of those systems and the 
probability transition matrix [22]. Thus, Markov’s theory is 
used for the analysis and simulation of dynamic variables. 
In previous studies, the Markov chains (MC) method has 
been successfully used to estimate the stochastic behavior 
of variables in many fields such as the estimation of hydro-
logical parameters [19,23–27]; education [28,29]; information 
systems [30]; social problem analysis [31]; the estimation of 
economic parameters [32–35] as well as other studies.

Precipitation is considered a random event, so its undeter
minable properties are useful for managing water resources. 
Early forecasts about the future rainfall can be helpful to 
avoid undesired results. In this study, MC and Markov 
chains of the fuzzy states (MCFS) models are used to deter-
mine the future precipitation in Cyprus.

The MC model is based on classical sets is not very sensi-
tive to the extreme values of the defined states. For real-world 
problems, in most cases, defining and classifying the systems 
with fuzzy states, which depend on the fuzzy logic, will give 
more realistic and sensitive results than classical sets.

The general objective of the present study is to ana-
lyze precipitation in Cyprus, based on the variability of 
the quantity of data recorded over 100 years using the MCFS 
technique.

The structure of this paper is as follows: the theoretical 
framework of the MCFS is presented in Part 2. Part 3 gives 
the fundamental datasets and methodology behind the use 
of the model as well as the results. Section 4 of the paper 
will end with some conclusions.

2. Markov chain process with fuzzy states

The definition of the fuzzy set theory is given as the 
following:

Definition 1: A fuzzy set Ã in IR is a set of ordered pairs:





A x x xA= ( )( ) ∈{ },µ IR 	 (1)

where μÃ: IR  →  [0,1] and μÃ(x) is called the membership 
function of the fuzzy set.

Definition 2: A fuzzy number is a set on the real line that 
satisfies the conditions of normality and convexity.

Definition 3: A Triangular fuzzy number can be denoted 
with three points as follows: Ã = (a1, a2, a3) (a1 < a2 < a3), with 
the membership function given by:
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2.1. Probabilities of MC

Let Xt be the state of the system at time t. The transition 
probability matrix of a finite state Markov chain P is;

P p i j Nij=   ∀ = { }, , ,...,0 1 	 (3)

where pij denotes the one-step transition probability values 
from state i to state j where pij ≥ 0 and for ∀i,j,

p P X j X i P X j X iij t t= = ={ } = = ={ }+1 1 0 	 (4)

where pij
j

N

=
=
∑ 1

0
. And the transition probability from state 

i to state j in r steps pij
r is:

P p p i j Nr
ij
r

ij
r=   ≥ ∀ ∈{ }, , , , ,..., ,0 0 1 	 (5)

Therefore,

P Pr r
= ( ) 	 (6)

2.2. Markov chain process with fuzzy states

There are some cases in which systems need modeling 
with fuzzy states such as when there is insufficient informa-
tion about the system and when the system has too many 
states to deal with when attempting to make a decision [36].

MCFS is a technique of probabilistic modeling, which 
is more flexible and sensitive to the extreme values of the 
defined states of systems than the classical probabilistic 
approach.

2.3. Probabilities of MCFS

Let X  =  {x1, x2,…, xn} be a given set. A fuzzy parti-
tion of X is a family of the fuzzy subset of X, denoted by 
A A A A i N A A XN i i= { } ∀ = { } ≠ ≠( )    , ,..., , , ,...., ,2 1 2 Φ and  with  

the corresponding membership functions µ µ µÃ Ã ÃN1 2
, , ,…  

which satisfy the following condition;

µÃ r r
i

N
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=
∑ 1 1

1
, ,...,For 	 (7)

The notion of fuzzy partition is used to define the fuzzy 
states for the Markovian decision process.

Let {Ã1, Ã2, …, ÃN} be a set of fuzzy states, as each fuzzy 
subset Ãi, i ∈ {1, …, n} denotes a fuzzy state in the initial 
Markov chain.

The probability of fuzzy initial state that P(Ãi) = P(X0 = Ãi) 
and it is defined by using the probability of fuzzy event:

P A P X A P X s si i A
s

N

i

  


( ) = ={ } = ={ } ( )

=
∑0 0

0
µ 	 (8)

The conditional probability of the fuzzy state Ãj, given 
the initial state m, with j ∈ {1, …, n} and m ∈ {0, …, N}, is:
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P A m P X A X m P X A X m sj j j A
s

N

j

    

( ) = = ={ } = = ={ } ( )
=
∑1 0 1 0

0
µ 	(9)

and it represents the one-step transition probability of the 
fuzzy state [18]. The conditional probability of the fuzzy event 
Ãj given the fuzzy event Ãi, i,j ∈ {1, …, n}, is a function of the 
linear combination of probabilities P Ã m m Nj| , , ,( ) ∈ …{ }0  
as shown in the equation below:
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This represents the one-step transition probability from 
the fuzzy initial state to the fuzzy final state [36].

3. Methodology

3.1. Study area

Cyprus is a medium-sized island in the Eastern Medi
terranean. With an area of 9,251 km2, it is marked by notice-
able variations in the northern and southern areas. It has 
diverse precipitation among the different regions. The rain-
fall largely varies based on the location from the sea line. 
The yearly precipitation rises from 450 up to 1,100 mm at 
the highest points. On the other hand, levels of between 300 
and 350 mm are recorded in the central plain. The Kyrenia 
region, located along the northern coast of the island, has a 
rainfall of 550 at 1,000 m, which is relatively low compared 

with other regions. Rainfall recorded in the warmer months 
is not sufficient to cover the water needs. These minimal 
amounts of rainfall are deleted by absorption into the dry 
soil of the island. The seasons that are rich in rainfall are a 
reliable source for different water needs. The total annual 
precipitation is around 480 mm, although it decreased to a 
level of 182  mm in the early 70’s and increased to a level 
of 759 mm in the late 60’s. Statistics recorded on Cyprus’s 
precipitation show a decline in the last three decades. 
Snow falls rarely on the island except for altitudes exceed-
ing 1,000 m and generally only from December until April. 
Although snow cover is minimal during winter and spring, 
there may be considerable snow levels during certain 
weeks, particularly on the high “Troodos Mountains”. The 
average precipitation rate in Cyprus throughout the 20th 
century and in the first decade of the 21st century decreased 
by approximately 1  mm on an annual basis. The decline 
in precipitation primarily occurred in the second half of 
the 20th century, thus reducing the annual precipitation 
levels below the normal amounts.

Comparative conclusions can be drawn by checking 
the average precipitation levels for different 30-year time 
spans: 1901–1930 was 559 mm, and 1931–1960 was 524 mm, 
1961–1990 was 503  mm, and 1971–2000 was 462  mm. The 
normal precipitation level over the most recent 30-year time 
span was 17% lower than the period 1901–1930. The aver-
age precipitation in the 1990s represented the lowest levels 
recorded in the entire period.

This study includes the annual precipitation data for the 
island of Cyprus from 1901 to 2010. To obtain the transition 
probability matrix of the precipitation states of Cyprus, the 
standardized precipitation index (SPI) was calculated for 
the given period. The yearly classification of SPI data with 
regard to the range is shown in Table 2.

The average precipitation value of this island is 
513.37 mm, which is corresponds to the nearly normal state 
(NN), where the standard deviation is 113.36  mm for the 
given period.

3.2. Markov chain application and results

The frequencies of passing between the states for the 
selected period are shown in Table 3.

The obtained one-step probability transition matrix of 
the precipitation states of Cyprus is seen below in matrix P.

P = 

ED SD MD NN MW VW EW
ED 0.00 0.25 0.25 0.25 0.25 0.00 0.00
SD 0.00 0.00 0.33 0.67 0.00 0.00 0.00
MD 0.08 0.00 0.15 0.69 0.00 0.08 0.00
NN 0.03 0.00 0.12 0.65 0.13 0.06 0.01
MW 0.08 0.08 0.00 0.67 0.08 0.00 0.08
VW 0.00 0.00 0.00 1.00 0.00 0.00 0.00
EW 0.00 0.00 0.50 0.00 0.50 0.00 0.00

This one-step probability matrix shows that the prob-
ability of passing from the state of moderately dry (MD) 
(–1.49  ≤  SPI  ≤  –1) to the NN state (–0.99  ≤  SPI  ≤  0.99) is 

Table 1
Annual precipitation in the last 20 years (1991–2011) [37]

Hydro meteorological year Annual precipitation (mm))
1991–1992 637
1992–1993 509
1993–1994 417
1994–1995 493
1995–1996 383
1996–1997 399
1997–1998 388
1998–1999 473
1999–2000 363
2000–2001 468
2001–2002 604
2002–2003 561
2003–2004 545
2004–2005 412
2005–2006 360
2006–2007 479
2007–2008 272
2008–2009 527
2009–2010 546
2010–2011 465
Average for the last 20 years 465
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P(NN|MD)  =  69%. While the present year SPI value is in 
the very wet (VW) condition range (SPI ≥ 2), the next year 
is expected to be in the NN state with P(NN|VW)  =  100% 
probability.

The steady condition of this MC has been obtained in 6 
steps, as seen with vector π:

π = 

ED SD MD NN MW VW EW

0.04 0.02 0.12 0.64 0.11 0.05 0.02

3.3. Markov chain with fuzzy states application and results

Yearly SPI values of Cyprus are classified to seven fuzzy 
states from an extremely dry state to an extremely wet state 
(ED-EW) using the triangular fuzzy set with the formula below:
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Then, SPI values of each data are converted to their 
fuzzy states as shown in Table 4.

Table 5 shows the fuzzy transition frequencies of data 
from 1901–2010.

Lastly, the fuzzy transition probability was utilized 
by using the conditional probability of the fuzzy state S�j, 
given the fuzzy state S�i to obtain the one-step transitions 
probabilities of the precipitation of Cyprus (P� ).

P�  =

ED SD MD NN MW VW EW

ED 0.00 0.10 0.35 0.37 0.18 0.00 0.00
SD 0.03 0.08 0.26 0.49 0.14 0.00 0.00
MD 0.06 0.03 0.29 0.40 0.17 0.03 0.01
NN 0.02 0.01 0.23 0.40 0.24 0.06 0.03
MW 0.03 0.05 0.08 0.52 0.24 0.05 0.02
VW 0.00 0.00 0.03 0.75 0.22 0.00 0.00
EW 0.00 0.00 0.39 0.36 0.25 0.00 0.00

In Table 4, the SPI values are considered as a stochastic 
process with 7 fuzzy states space {ED, …, EW} with Markov 

Table 2
SPI values [38]

2.0+ Extremely wet (EW)
1.5 to 1.99 Very wet (VW)
1.0 to 1.49 Moderately wet (MW)

–99 to 99 Nearly normal (NN)
–1.0 to –1.49 Moderately dry (MD)
–1.5 to –1.99 Severely dry (SD)
–2 and less Extremely dry (ED)

Table 3
Transition frequencies of precipitations states of Cyprus

ED SD MD NN MW VW EW

ED 0 1 1 1 1 0 0
SD 0 0 1 2 0 0 0
MD 1 0 2 9 0 1 0
NN 2 0 8 46 9 4 1
MW 1 1 0 8 1 0 1
VW 0 0 0 5 0 0 0
EW 0 0 1 0 1 0 0

Table 4
Transformed fuzzy states of the SPI values of Cyprus between 
1901–1905

Year SPI ED SD MD NN MW VW EW

1901 –1.97 0.46 0.54 0 0 0 0 0
1902 –0.40 0 0 0.33 0.67 0 0 0
1903 0.21 0 0 0 0.83 0.17 0 0
1904 1.86 0 0 0 0 0 0.76 0.24
1905 0.14 0 0 0 0.89 0.11 0 0
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chain structure. The conditional transition degree of passing 
from state EW to MD is P� (MD|EW) = 39%, while passing 
from EW to moderately wet (MW) is P� (MD|EW) = 25%.

The steady condition of the MCFS (π�) is obtained and 
it has been compared with the steady conditions of the 
MC model, as seen in Fig. 3. 

π� =

ED SD MD NN MW VW EW

0.03 0.03 0.21 0.44 0.22 0.05 0.02

This result shows us the long-term probability distribu-
tion of the expected precipitation level for Cyprus. Regardless 
of the precipitation that occurs in a year, the NN state has 
the highest probability in the long term for the island, with 
a value of 64% according to the MC model and 44% accord-
ing to the MCFS model. However, the EW and severely dry 
(SD) states have the lowest probabilities with 2% according 
to the MC model and 3% according to the MCFS model.

Classification of the precipitation data to the states with 
regard to the SPI values of Cyprus and its transition prob-
ability matrixes have been modeled and calculated via the 
Excel IF function.

The estimated probability distribution of randomly 
selected years’ SPI values is shown in Tables 6–9 with the 
mean squared error (MSE) values of the MC and MCFS 
models.

The MSE results show that the MCFS technique estimates 
the yearly precipitation status of Cyprus with a lower error.

4. Conclusions

In this study, the annual rainfall of Cyprus for the past 
century was analyzed using the MC and MCFS model. These 
models were used to predict rainfall values related to past 
observations for the previous century. Within this frame-
work, the MCFS technique, which depends on the fuzzy set 
theory, provides more realistic and sensitive results for pre-
dicting precipitation than the MC technique. However, the 
MSE values also show that the MCFS model gives more valu-
able predictions than the MC model for the precipitation.

Table 5
Fuzzy transition frequencies of the precipitation of Cyprus

ED SD MD NN MW VW EW

ED 0.00 0.35 1.29 1.36 0.67 0.00 0.00
SD 0.13 0.30 0.94 1.78 0.49 0.00 0.00
MD 1.47 0.63 6.67 9.09 3.85 0.74 0.26
NN 0.88 0.66 11.13 19.29 11.60 2.85 1.36
MW 0.73 1.15 2.02 12.48 5.85 1.31 0.56
VW 0.00 0.00 0.15 3.66 1.08 0.00 0.00
EW 0.00 0.00 0.85 0.78 0.56 0.00 0.00

Table 6
Estimated precipitation of Cyprus for 1961

(SPI1960 = –0.39, NN state) ED SD MD NN MW VW EW MSE

P(MCFS)1961 0.03 0.02 0.25 0.40 0.22 0.05 0.02 0.106
P(actual SPI V.(1.26))1961 0.00 0.00 0.00 0.00 0.94 0.06 0.00
P(MC)1961 0.03 0.00 0.12 0.65 0.13 0.06 0.01 0.171
P(actual SPI V.(1.26))1961 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Fig. 3. Steady conditions of the MC and MCFS techniques.

Table 7
Estimated precipitation of Cyprus for 1999

(SPI1998 = –0.36, NN state) ED SD MD NN MW VW EW MSE

P(MCFS)1999 0.03 0.02 0.25 0.40 0.22 0.05 0.02 0.078
P(actual SPI V.(–1.34))1999 0.00 0.20 0.80 0.00 0.00 0.00 0.00
P(MC)1999 0.03 0.00 0.11 0.66 0.13 0.06 0.01 0.178
P(actual SPI V.(–1.34))1999 0.00 0.00 1.00 0.00 0.00 0.00 0.00
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It has been observed that when a very dry year occurs, 
the following year tends to have increased rainfall. It is also 
seen that the trend of transition from the states of MD, NN, 
MW, and VW to the state of NN is high.

Thus, as the results show, the NN state has the highest 
probability in the long term for Cyprus, while the EW and SD 
states have the lowest probability.

Recommendation

By using the MCFS model more valuable information 
about the future annual rainfall of Cyprus can be deter-
mined. This method can provide more information about 
future rainfall using a different classification. In particular, 
the prediction of the future level of rainfall for each region 
will be significantly beneficial to the decision-makers to 
enable them to plan and manage water resources accord-
ingly. Furthermore, using weekly rainfall data could give 
more efficient and sensitive results about the nature of 
the precipitation status. Thus, due to the stochastic prop-
erty of the MCFS phenomenon and also the nature of the 
stochastic of precipitation, a model for the prediction of 
precipitation in the short and long term is well calibrated. 
Hence, by designing a stochastic model that can predict 
the precipitation at any given time, it will be possible to 
manage water resources, including sustainable water in the 
future.
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