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a b s t r a c t
The variables describing the merging and mixing properties of multiple vertical buoyant jets in sta-
tionary ambient water have not been generally formulated and reported. This work develops new 
evolutionary-based models to predict such variables, including for the non-dimensional vertical 
displacement of the merging point (ym/D), the non-dimensional centerline concentration (Cm/C0) 
where the jets start merging, the non-dimensional vertical displacement of the well-mixed location 
(yw/D), and the non-dimensional concentration where the jets are well mixed (Cw/C0). These param-
eters are crucial in the design of outfall systems and for environmental impact assessments. A fully 
three-dimensional (3D) computational fluid dynamics model that solves the Navier–Stokes equa-
tions and uses the re-normalisation group (RNG) k-ε turbulence closure is validated against the avail-
able experimental data. The validated numerical model is further utilized to carry out additional 
computations for 100 different cases to enrich the data sets. The data are employed to develop and 
evaluate the evolutionary-based models, and the model networks are optimized using multigene 
genetic programming. The proposed models can serve to compute the mentioned jet characteristic 
variables as a function of non-dimensional port spacing (Sp) and jet densimetric Froude number (Fr). 
Partial derivative sensitivity analysis is also conducted to assess how the varying input variables 
affect the jet characteristic parameters. An uncertainty analysis is also performed for the proposed 
models. The  proposed explicit equations and codes facilitate easy estimation of the merging and 
mixing properties of vertical buoyant jets discharged from multiport diffusers.

Keywords: �Artificial intelligence; Computational fluid dynamics; Mixing properties; Multigene genetic 
programming; Multiple jets; Partial derivative sensitivity analysis

1. Introduction

Wastewater effluents that have a lower density than 
the ambient water are often discharged through multiport 
diffusers [1–4]. Such jets are known as multiple vertical 
buoyant jets when they are discharged vertically into water 
bodies. When a buoyant jet is discharged into ambient water 
with sufficient clearance from any boundary or other jets, a 
shear layer is formed, and the ambient fluid is entrained into 
the jet due to the shear stresses and thus the jet is diluted 
[5]. For multiple jets, individual jets may come into contact 

with neighboring jets, and thus the dilution is restricted, 
reducing the dilution efficiency (Fig. 1). In outfall or dif-
fuser designs, it is better to avoid jet interactions in order to 
improve the degree of dilution and to ensure that high dilu-
tion takes place in a limited mixing zone [6]. However, this 
is usually impossible in practice due to the huge volumes 
of wastewater being discharged and the limitation of project 
budgets [3,7]. Therefore, it is necessary to better understand 
the flow and mixing processes of multiple vertical buoyant 
jets in order to ensure the proper disposal of the wastewater 
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and avoid potential adverse effects on the environment and 
ecology [8–13].

Wastewater effluents can be investigated using various 
methods, with physical or laboratory studies currently being 
the most popular research methods. Recent experimental 
works have mainly involved investigations on single jets; 
examples include an isothermal jet issuing horizontally from 
a round nozzle into a shallow layer of water [14], negatively 
buoyant surface discharge in an ambient current under a 
variety of conditions [15], negatively buoyant discharges in 
which the boundary influences were eliminated [16], and 
30° and 45° inclined dense jets in shallow coastal waters 
[17]. A limited number of experimental works have involved 
studies on jets discharged from multiple diffusers, such as 
a comprehensive laboratory study on wastewater diffusers 
with multiport rosettes [4], experiments on multiport diffus-
ers for dense effluents into stationary receiving waters [1], 
and experimental investigation on the behavior of multiple 
vertical buoyant jets discharged into stagnant ambient water 
[3]. Despite the scale effects, these methods are quite accu-
rate and reliable; however, they are usually quite expensive 
and time-consuming, restricting their wider application in 
practical engineering problems. 

In addition to physical or experimental methods, many 
researchers have developed theoretical or numerical mod-
els to study the mixing properties of wastewater effluent 
jets. Integral models such as the CORMIX3 expert system 
[18,19], the CorSuf system [20], and the Modified CorJet 
system [12] are widely used in both academic and practical 
applications. Recent advances in computational techniques 
and resources have provided a new avenue of modeling 
wastewater effluent jets by solving fully three-dimensional 
(3D) Navier–Stokes equations. These 3D computational 

fluid dynamics (CFD) models have been developed and 
applied for turbulent wall jets in stationary ambient water 
[21–23], 45° inclined dense jets [13], and vertical buoyant 
jets subjected to lateral confinement [5]. These studies have 
demonstrated well that a 3D CFD model can provide satis-
factory results for the mixing properties of a wastewater jet. 
However, CFD modeling is still very time-consuming and 
requires measurements for validation, so its wider applica-
tion in practical engineering problems is also restricted.

In the past several years, genetic programming (GP), a 
well recognized artificial intelligence (AI) algorithm, has 
been successfully utilized in many engineering applications 
and has proven to be more advanced than conventional 
methods [24–27]. The present study focuses on the multigene 
genetic programming (MGGP) technique, which is a recent 
advancement of GP [28–30]. Garg et al. [31] employed an 
MGGP technique for the simulation of soil water retention 
curves. They also conducted parametric sensitivity analyses 
and found explicit equations that can effectively describe the 
nonlinear relationship between the degree of saturation, the 
suction, and the net stress of three different soils. Their study 
demonstrated that MGGP can be a powerful tool to pro-
vide detailed numerical information on soil water energetic 
states. Kaydani et al. [32] utilized the MGGP technique to 
perform permeability estimations in heterogeneous oil reser-
voirs, and their results showed the superiority of the MGGP 
model in predicting the permeability of porous media as 
compared with the ANNs, ANFIS, and GP techniques, espe-
cially in terms of the capability of generating compact mod-
els and not suffering from structural dependency. Safari and 
Mehr [29] used MGGP to model the sediment transport in 
sewers for conditions of non-deposition with a bed deposit. 
Their study indicated the higher efficiency of the technique 
in comparison with conventional regression models. Mehr 
and Nourani [33] proposed a new rainfall-runoff model 
that integrated a season algorithm with MGGP, and the 
results implied that MGGP was better than monolithic GP 
in identifying the underlying structure of the rainfall-run-
off process at Haldizen Catchment, Trabzon, Turkey. Yan 
and Mohammadian [34] applied MGGP to predict the ini-
tial dilution of laterally confined vertical buoyant jets, Yan 
and Mohmmadian [35] used MGGP to model inclined dense 
jets discharged from multiport diffusers, and both stud-
ies demonstrated that MGGP was better than traditional 
methods.

To the authors’ knowledge, MGGP has never been 
applied to predict the variables that describe the mixing 
properties of multiple vertical buoyant jets in stationary 
ambient water. In addition, some challenges remain in terms 
of design improvement considerations for multiple vertical 
buoyant jets because the mixing and dilution properties 
have not been adequately understood. The vertical displace-
ment of the merging point and the centerline concentration 
where the jets start merging (the transition between the 
axisymmetric zone and the transitional zone) are the pri-
mary parameters describing the merging properties of jets 
discharged from multiport diffusers, and thus are import-
ant considerations in outfall designs and environmental 
impact assessments. Above the location that the merging 
process is completed (the transition between the transitional 
zone and two-dimensional zone, hereafter referred to as 

 

Fig. 1. Schematic diagram of multiple vertical buoyant jets.
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the “well-mixed location”), the jets follow the behavior of a 
large two-dimensional (2D) jet, and thus additional proper-
ties can be predicted by using the well-established expertise 
and knowledge of 2D single jets. Therefore, the vertical dis-
placement of the well-mixed location and the concentration 
where the jets are well mixed are also very important char-
acteristic variables. 

Therefore, the objectives of this work are threefold: 
(1) to verify whether the MGGP technique can correlate the 
important characteristic variables of multiple jets with the 
flow input values; (2) to develop and present explicit equa-
tions for calculating the characteristic variables using MGGP; 
and (3) to assess how varying input parameters can affect 
the crucial variables. 

2. Methodology

2.1. Analysis of multiple jets

Previous studies on single jets [36–38] have pointed 
out that the flow and mixing properties of the jets are pri-
marily dominated by the jet densimetric Froude number, 
Fr. Fr denotes the ratio of inertia to buoyancy force, and is 
defined as:

Fr =
′

U
gD
0 	 (1)

with

′ =
−

g g a j

a

ρ ρ

ρ 	 (2)

where U0 is the initial velocity, D is the diameter of the dis-
charge port, g is the gravitational acceleration, g’ is the 
modified gravitational acceleration, ρa is the ambient density, 
and ρj is the jet’s initial density.

This study focuses on multiple vertical buoyant jets 
in stationary ambient water. For multiple jets, the effect 
of port spacing should also be considered. Therefore, the 
non-dimensional vertical displacement of the merging point 
(ym/D), the non-dimensional centerline concentration (Cm/C0) 
where the jets start merging, the non-dimensional vertical 
displacement of the well-mixed location (yw/D), and the 
non-dimensional concentration where the jets are well mixed 
(Cw/C0) can be written as functions of Fr and the non-dimen-
sional port spacing Sp (distance between two neighboring 
ports divided by the port diameter) as:
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2.2. CFD modeling

The governing equations for mass and momentum for 
an incompressible multiphase fluid can be expressed as [38]:
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where t is time, U is velocity, ρ is density, p represents pressure 
where ∇(prgh) and gh∇ρ are obtained by using P = prgh + ρgh, 
g is gravitational acceleration, T is the stress–strain tensor, α 
is volume fraction, with subscript i denoting either fluid 1 or 
2, I is the identity tensor, T denotes the transpose operation, 
μeff is the effective viscosity, μ is dynamic viscosity, and μt is 
turbulent viscosity. 

The alpha diffusion equation is given as: 
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where Dab is the molecular diffusivity, νt is the turbulent 
eddy viscosity, and SC is the turbulent Schmidt number.

The re-normalisation group (RNG) k-ε turbulence model 
can be expressed as:
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where k is the turbulent kinetic energy, ε is the turbulent 
energy dissipation rate, αk and αε are the inverse effective 
Prandtl numbers for k and ε, respectively, μeff is the effective 
viscosity, G is the production of turbulence due to shear, Sk 
and Sε are source terms, and c1ε and c2ε are model constants 
equal to 1.44 and 1.92, respectively.

The term Rε is given by:
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where Cμ = 0.0845, η = Sk/ε, η0 = 4.38, and β = 0.012.
The effective viscosity is calculated by the differential 

equation:
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where /ν µ µ= effˆ  and Cν ≈ 100 . 

2.3. Multigene genetic programming

As mentioned earlier, MGGP is a recent extension of GP. 
Each gene of a multigene individual is a traditional GP tree 
that can capture nonlinear behavior. The genes are linearly 
combined, and their weights are determined using the ordi-
nary least squares approach. For instance, Fig. 2 shows a 
sample MGGP chromosome. The mathematical model that 
the chromosome represents is:

y x x x x xx= ( ) + −( )  + ( ) − ( )



 +α β γ1 2 2 1 20 5 1 4 2cos . tanh . exp log
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where x1 and x2 are the input variables, α and β are the 
weights of the genes, and γ is the bias term. The chromo-
some has two genes, which are traditional GP trees that 
have nonlinear terms. The individual mathematical mod-
els that the two trees represent are linearly combined using 
the weights and the bias term, which are solved using the 
classical least squares method during the process of model 
training. Therefore, MGGP combines the best properties of 
the traditional GP and linear least squares parameter estima-
tion techniques, and allows for multiple genes. Therefore, 
it can develop models more effectively and accurately than 
the standard GP. The detailed theory, formulations, and 
modeling procedures have been well documented elsewhere 
in the literature [28–30]. 

2.4. Procedure

The experimental data available in the literature are 
very rare and do not include all aspects of the merging 
and mixing properties of multiple vertical buoyant jets in 
stationary ambient water. Therefore, numerical simula-
tions were conducted in this work to enrich the data sets, 
and the governing and alpha diffusion equations presented 
in this paper were solved using the finite volume method 
using a transient solver called “twoLiquidMixingFoam” 
within the OpenFOAM (Open-source Field Operation and 
Manipulation) framework. The solver has been widely 
employed and validated in previous studies [13]. The RNG 
k-ε model, which is a modified version of the standard k-ε, 
was utilized for turbulence modeling. While various solvers 
are available in the literature, [5,21–23], as well as various 
turbulence models (e.g., large-eddy simulation, detached-
eddy simulation, and realizable k-ε), preparatory studies 
have shown that the performance of the current simpler 
solver and turbulence model is satisfactory. The experi-
ment by Lyu et al. [3] was simulated using the numerical 
model, and the validated numerical model was utilized to 
carry out additional simulations for 100 cases with differ-
ent Sp (ranging from 1 to 10 with an interval of 1) and Fr 
(ranging from 4.5 to 13.5 with an interval of 1) values, which 
covered the typical data ranges for practical applications, in 
order to enrich the data sets. A better model can be expected 
with the utilization of purely experimental data sets, but it 
is common and practical to use a validated numerical model 
to enrich data sets when observational data sets are not ade-
quate [39]. The four jet characteristic parameters, namely, 
ym/D, Cm/C0, yw/D, and Cw/C0, for each case were calculated 
from the obtained results. 

The data were divided into two groups: 80% of the data 
were randomly selected for use as a training data set, and 
the remaining were utilized as a testing (unseen) data set, 
which was the same setup as in Bashiri et al. [40]. The MGGP 
training and testing were then conducted using the open-
source MATLAB code GPTIPS2 [30]. The population size 

 
Fig. 2. An example of an MGGP chromosome.
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was set at 250, and the maximum generation was set at 1,000. 
The tournament size was set at 20, and the probability of the 
Pareto tournament was set at 0.3. The elite fraction was set 
at 0.3, with approximately 30% of the models being copied 
from a parent generation to the child generation. The cross-
over and mutation probabilities were set at 0.84 and 0.14, 
respectively. The function set contained the most commonly 
used operators, including ‘times’, ‘minus’, ‘plus’, ‘rdivide’, 
‘square’, ‘sin’, ‘cos’, ‘exp’, ‘mult3’, ‘add3’, ‘sqrt’, ‘cube’, 
‘power’, ‘negexp’, ‘neg’, ‘abs’, and ‘log’. Based on the evolu-
tionary predictions, the model performance was evaluated. 
Finally, the variation trends of the parameters with the input 
variables were analyzed by utilizing the evolved model. 

3. Results and discussion

3.1. Validation of the CFD model

In the experiment by Lyu et al. [3] and in the present 
CFD simulations for model validation, the nozzles had a 
diameter of 0.003 m, the port spacing was 0.015 m, the den-
sity difference between the jet and the ambient water was 
2.297 kg/m3, the initial velocity was 0.111 m/s, and the den-
simetric Froude number was about 13.5. The diffuser model 
in the experiment had 24 possible holes for the nozzles, and 
these nozzles were assumed to be part of an infinite array 
of nozzles. As shown in Fig. 1, the current simulations, 
including both the validation case and the additional cases, 
only incorporated three nozzles, and set the front and back 
patches as symmetric. The boundary condition at the noz-
zle surfaces was set as the velocity inlet, and the inlet-out-
let boundary condition was used for the top patch. When 
there is no backward flow, the boundary condition becomes 
the zero-gradient open boundary condition, and when 
there is backward flow, the boundary condition automati-
cally becomes a fixed-value boundary condition. No-slip 
wall boundary conditions were assigned to the walls, and a 
structured mesh with finer grids closer to the jets was used. 
The simulated domain was 0.505 m in the transverse direc-
tion and 0.7  m in the vertical direction. The dimension in 
the direction passing through the jet centers varied with the 
port spacing. PIMPLE algorithms were used for coupling 
the pressure and momentum. The temporal terms were dis-
cretized using the Euler scheme; the gradient terms, veloc-
ity divergence terms, and viscous stresses tensor terms were 
discretized using the Gauss linear scheme; and the Laplacian 
terms were discretized using the corrected Gauss linear 
scheme. The maximum Courant number was set as 0.5. 
A default value of 0.05 s was assigned to the time step, and 
the model automatically adjusted the time step based on the 
numerical stability criteria. The end time for the simulations 
was set as 90 s, which was sufficiently long for the present 
cases. The number of computational cells was 910,800, and 
the sensitivity simulations showed that the uncertainty 
induced by the grid resolution was well below 2%.

The measured and simulated velocity profiles at various 
locations are presented in Fig. 3. In this figure, the local axial 
velocity, U, is normalized by the local centerline velocity, 
Uc, and the span-wise displacement from the jet center, x, is 
normalized by the vertical displacement from the jet inlet, y. 
The mean bias errors (MBEs), mean absolute errors (MAEs), 

root mean square errors (RMSEs), and R-squared values (R2s) 
were calculated and are indicated on the plots. 

As can be seen in the plots, the simulated velocity pro-
files are very close to the measured ones. The average MBE 
value was –0.014, indicating that the model slightly under-
estimated the local jet velocity. The average MAE and RMSE 
values were 0.020 and 0.024, respectively. These values of 
error indication are quite low, indicating that the modeled 
results matched the experimental data very well. The small-
est R2 value was 0.997, which was very high, again confirm-
ing that the model can accurately predict the flow properties 
of multiple vertical buoyant jets in stationary ambient water. 
Therefore, the numerical model was used further to carry 
out additional simulations for 100 different cases in order 
to enrich the data sets. The jets merged almost immediately 
when the port spacing was very close (Sp = 1 and 2), and so 
the data for these cases were not used for further analyses 
for ym and Cm. Similarly, the jets did not completely mix with 
each other within the study domain when the port spacing 
was very far (Sp = 10), and so these data were not included in 
further analyses for yw and Cw. The final data sets are shown 
in Fig. 4. 

3.2. MGGP predictions

The best evolutionary equations obtained by using the 
MGGP technique for the four jet characteristic variables 
are summarized in Table 1. Some simpler models were also 
obtained; however, the simpler models provided lower 
accuracy without reducing the computational cost, and so 
they are not discussed further herein. 

To compare the data and evolutionary predictions, scat-
ter plots for the four variables, namely ym/D, Cm/C0, Yw/D, 
and Cw/C0, were made and are presented in Fig. 5. These 
plots show that almost all the scatter points are very close 
to the identity line. To obtain a quantitative measure of the 
difference between the data and predictions, the statistics 
and the results of the error analysis were calculated and are 
summarized in Table 2. In addition to MBE, MAE, RMSE, 
and R2, some additional error measures, including the mean 
absolute percentage errors (MAPEs) and normalized root-
mean-squared errors (NRMSEs), are also presented in order 
to comprehensively evaluate the prediction performance.

The MGGP model predicted ym/D very well, as the scat-
ter points shown in Fig. 5a is very close to the identity line. 
The MBE value was 0.0066, indicating that the MGGP model 
tended to slightly overestimate the merging locations. The 
MAE and RMSE values were 0.0563 and 0.0759, respectively, 
so the error magnitude was about 0.07. The MAPE and 
NRMSE values were 0.6474% and 0.4083%, respectively, 
indicating that the error in MGGP prediction for ym/D was 
about 0.5%. The R2 value was almost 1, demonstrating 
that the evolved model predicted the data variation trends 
almost perfectly. 

The evolutionary predictions for Cm/C0 were also very 
accurate. The MBE value was –0.0001, which is very close to 
zero, indicating that the model provided a good prediction 
of the mean jet properties. The MAE and RMSE values were 
0.0016 and 0.0024, respectively, so the error magnitude was 
about 0.002. The MAPE and NRMSE values were 0.5191% 
and 0.5568%, respectively, indicating that the error in MGGP 



X. Yan, A. Mohammadian / Desalination and Water Treatment 178 (2020) 41–5246

prediction for Cm/C0 was about 0.5%, which is close to the 
prediction accuracy for ym/D. The relative error indicator, 
R2, was 0.9999, which is very close to 1. The absolute error 
measures were very low and the relative error measure was 
quite high, so the results demonstrated the capability of the 

evolved model to accurately predict Cm/C0 for multiple verti-
cal buoyant jets in stationary ambient water.

The evolved model performed rather worse for yw/D 
than for ym/D. The MBE value was 0.0660, implying that 
the model tended to overestimate the well-mixed locations. 

 

Fig. 3. Comparison of experimental and numerical results of velocity profiles: (a) y = 0.03 m; (b) y = 0.06 m; (c) y = 0.09 m; (d) y = 0.12 m; 
(e) y = 0.15 m; (f) y = 0.18 m; (g) y = 0.21 m; (h) y = 0.24 m; (i) y = 0.27 m; (j) y = 0.30 m.
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The MAE and RMSE values were 0.4845 and 0.7325, respec-
tively, so the error magnitude was about 0.6. The error 
magnitude was about 10 times that for ym/D, but this was 
primarily because the well-mixed locations were higher than 
the merging locations. The MAPE and NRMSE values are 

more useful for comparing the performance of the model in 
predicting ym/D and yw/D. The NRMSE value can be defined 
as the RMSE value normalized by either the range or the 
mean of the experimental data, and the latter definition 
was employed in this study. The RMSE value for yw/D was 

 

Fig. 4. 3D plots of data sets: (a) ym/D; (b) Cm/C0; (c) yw/D; and (d) Cw/C0.

Table 1
MGGP-based equations for the jet characteristic variables

Variable Equation

ym/D
12Sp + 0.549Fr – 5.75cos(Sp0.5) + 60sin(Sp0.5) + 1.41 × 10–4exp(Sp3/Fr3) – 5.75log(Fr) + (0.54Sp2)/Fr – (1.32Sp3)/
Fr3 + (5.75Sp)/Fr – (4.93Fr)/Sp2 + 52.3Fr(1/Sp²) + 1.25exp(Sp – Fr)0.5 – (0.418Sp)/(Fr2cos(Fr)log(Fr)) – 151

Cm/C0

14.8exp(exp(exp(-Sp))) – 0.0108sin(Sp) + (1.08 × 10–19(8.93 × 1015cos(Fr) + 8.93 × 1015SpFr2 + 8.93 × 1015Fr2))/
Fr0.25 + 1.42sin(sin(Sp))exp(-Fr) – 0.0103SpFr – (136exp(-Sp))/Sp – 0.00299Fr2 + 0.447Fr0.5 + (64.2exp(-Sp))/
(SpFr0.25) – (3.44Spcos(Sp – Fr)exp(-Sp))/Fr2 – 40.8

yw/D
5.4Sp – 0.529Fr + 0.251sin(3.14SpFr) + 0.669cos(Fr4) + 0.462cos(Sp2/Fr) + 1655exp(-5Sp) + 0.291sin(SpSp) – 
(0.251Sp2)/Fr3 – (0.0207Sp9)/Fr9 + (12.2Sp)/Fr – 8 × 10–4SpFr2 + 0.291Sp2 – 8 × 10–4Sp4 – 0.77Fr0.5 + 32

Cw/C0

0.0116Fr – 0.15sin(log(Sp)) + 1.2 × 10–5abs(Sp)3abs(Fr) – (0.222log(Fr)2)/Fr(Sp) – 5.84 × 10–5Sp3 + 
0.0314(2.6Sp2Fr)exp(–*Sp) + 0.001Frexp(-Sp)cos(Fr) – 0.00102SpFrlog(Sp) – 5.94 × 10–5Fr2log(SpFr)
log(Fr) + 1.47 × 10–4Fr2log(Sp)log(Fr) + 0.147
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0.7325, and the mean of the experimental data was 67.7924, 
and thus the NRMSE value was 1.0800%. The MAPE value 
was 0.7191%. Thus, the error in MGGP prediction for yw/D 
was about 0.9%, which was higher than that for yw/D, indi-
cating that the predictions obtained by the evolved model for 
ym/D were more reliable than those for yw/D. The R2 value was 
0.9989, which was smaller than that for ym/D, but this value 
was still very high, confirming the accuracy of the MGGP 
predictions for yw/D.

For Cw/C0, the absolute error indicators had very low 
values. The MBE value was almost zero because the biases 
for overestimation and under-estimation canceled out, indi-
cating that the model accurately predicted the overall jet 
properties. The MAE and RMSE values were 0.0007 and 
0.0011, respectively, so the error magnitude was about 0.001. 
This magnitude was smaller than that for Cm/C0 primarily 

because the Cw/C0 values were smaller than the Cm/C0 values, 
as the jet was diluted along the upward trajectory. The MAPE 
and NRMSE values were 1.1437% and 1.2872%, respectively. 
Thus, the error in MGGP prediction for Cw/C0 was about 1.2%, 
which was the only variable that had an error exceeding 1%. 
The R2 value was 0.9997. The MAPE, NRMSE, and R2 val-
ues implied that the evolutionary predictions for Cw/C0 were 
less accurate than those for Cm/C0; however, the errors were 
acceptably small, thus demonstrating that the evolved model 
can provide reasonable estimations.

3.3. Sensitivity analysis

A partial derivative sensitivity analysis (PDSA) [41,42] 
was conducted to evaluate how the varying inputs affected 
the ym/D, Cm/C0, Yw/D, and Cw/C0 for multiple vertical buoyant 

Table 2
Statistics and error analysis for the MGGP predictions

Variable MBE MAE MAPE (%) RMSE NRMSE (%) R2

ym/D 0.0066 0.0563 0.6474 0.0759 0.4083 1.0000
Cm/C0 –0.0001 0.0016 0.5191 0.0024 0.5568 0.9999
yw/D 0.0660 0.4845 0.7191 0.7325 1.0800 0.9989
Cw/C0 0.0000 0.0007 1.1437 0.0011 1.2872 0.9997

 
Fig. 5. Scatter plots of MGGP predictions of ym/D, Cm/C0, Yw/D, and Cw/C0.
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jets in stationary ambient water. The sensitivity of the jet 
property parameter, yi, to an input variable, xi, was defined 
as the partial derivative ∂yi/∂xi. The partial derivative at each 
point was calculated using Euler’s numerical method, that is, 
[yi(xi +  Δh)-yi(x)]/Δh, where Δh is a small step size, and the 
value of yi(xi + Δh) was obtained by carrying out additional 
computations using the developed models. 

The results of the sensitivity analysis for ym/D are pre-
sented in Fig. 6. The PDSA values in Fig. 6a were all positive, 
implying that ym/D increased with increased Sp. This was 
because the jets with greater port spacing needed to travel 
greater distances to arrive at the symmetry plane between 
two neighboring jets. Most of the PDSA values in Fig. 6b 
were negative, implying that ym/D generally decreased 
with increased Fr. A higher Fr number indicated a smaller 
density difference between the jet and ambient water, so 
the buoyancy effect, which forced the jet to move faster in 
the upward direction, became weaker as the Fr increased. 
Therefore, the upward velocity of the jet generally decreased 
in conjunction with increased Fr, which in turn caused ym/D 
to decrease. For the extreme case, with an Sp value of 10 and 
Fr value of 4.5, the jet merging occurred at a very high loca-
tion, and small changes in Sp and Fr substantially affected 
the merging location. Except for this extreme case, the mean 
sensitivities of ym/D to Sp and Fr were 4.66 and –0.94 respec-
tively, indicating that ym/D was more sensitive to Sp than to 
Fr. For the cases with large Fr values, the sensitivity of ym/D 
in relation to Fr was quite small, as shown in Fig. 6b, because 
the PDSA values approached zero.

Similarly, the results of the sensitivity analysis for 
Cm/C0, yw/D, and Cw/C0 are presented in Fig. 7. The PDSA val-
ues for Cm/C0 implied that Cm/C0 decreased in conjunction 
with increased Sp; Cm/C0 generally increased with increased 

Fr for small Fr values and decreased with increased Fr for 
the cases with large Fr values; Cm/C0 was more sensitive to Fr. 
The PDSA values for yw/D implied that yw/D increased with 
increased Sp, and there was no clear trend for the sensitivity 
of yw/D in relation to Fr. The PDSA values for Cw/C0 implied 
that Cw/C0 decreased with increased Sp; Cw/C0 generally 
increased in conjunction with increased Fr; Cw/C0 was more 
sensitive to Sp than to Fr, and that the sensitivity became 
weaker with increasing values of Sp and Fr. 

3.4. Uncertainty analysis

The uncertainty analysis results for the ym/D, Cm/C0, yw/D, 
and Cw/C0 models are presented in Table 3. The uncertainty 
analyses were conducted by using the MATLAB non-lin-
ear prediction confidence interval function “nlpredci”. This 
function uses equations [43] based on the t distribution, 
which gives a symmetric confidence interval at every point 
[44]. Further details regarding this function can be found in 
the literature [43–45]. The results in Table 3 indicate that the 
mean widths of the uncertainty bounds were ±0.473, ±0.013, 
±4.621, and ±0.003 for ym/D, Cm/C0, yw/D, and Cw/C0.

3.5. Advantages and disadvantages of the models

A major contribution of the present study is that it demon-
strated that the MGGP technique can be a promising tool for 
correlating the important characteristic variables of multiple 
jets with the flow input values, and that is provided explicit 
equations for calculating these characteristic variables. The 
results demonstrated the capability of the proposed models in 
accurately predicting ym/D (MAPE = 0.6474%; RMSE = 0.0759; 
R2  =  1.0000), Cm/C0 (MAPE  =  0.5191%; RMSE  =  0.0024; 

  

Fig. 6. Results of sensitivity analysis for ym/D. (a) Sensitivity vs. Sp and (b) Sensitivity vs. Fr.

Table 3
Uncertainty analysis of the developed MGGP models

Parameters ym/D Cm/C0 yw/D Cw/C0

Mean uncertainty interval half-width ±0.473 ±0.013 ±4.621 ±0.003
Mean 95% prediction error interval (–0.466 0.479) (–0.014 0.013) (–4.555 4.687) (–0.003 0.003)
Max uncertainty interval half-width ±0.617 ±0.016 ±5.983 ±0.004
Max 95% prediction error interval (–0.617 0.618) (–0.016 0.017) (–5.828 6.139) (–0.003 0.005)
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R2  =  0.9999), yw/D (MAPE  =  0.7191%; RMSE  =  0.7325; 
R2  =  0.9989), and Cw/C0 (MAPE  =  1.1437%; RMSE  =  0.0011; 
R2 = 0.9997). The observations from the sensitivity analyses 
were consistent with both the existing knowledge and engi-
neering sense from the perspective of wastewater mixing 
engineering, confirming that the proposed models are capa-
ble of capturing the important mixing properties of multiple 
vertical buoyant jets in stationary ambient water.

It is acknowledged that the simulated data from the 
CFD model might already be representative of the average 
fitting function, and that one can simply run the validated 
CFD model for a specific configuration. However, develop-
ing MGGP models are still beneficial in two respects: first, 
a 3D CFD model typically takes days to complete one sim-
ulation, whereas an MGGP model can be run in seconds for 
a large number of cases and is thus much more efficient; 
second, an MGGP model can be continuously and readily 
improved or extended with the availability of more data. For 
uncomplicated problems, an empirical model based on tradi-
tional regression analysis may also be useful, but for multiple 
vertical buoyant jets, a generally accepted regression-based 
empirical model has not been reported because the mecha-
nisms underlying the jet interactions are quite complicated.

A common drawback of a data-driven model, developed 
by either AI or traditional regression techniques, is that it 
is typically only valid within the range of the training data. 
Therefore, the present models are only reliable for the cases 
with Fr ranging from 4.5 to 13.5 and Sp ranging from 1 to 
10. However, this is not a major concern because the training 
datasets already covered the typical data ranges for multiple 
vertical buoyant jets in practical applications, and an MGGP 

model can be continuously and readily improved upon and 
generalized with the availability of more data. 

Another typical disadvantage of a model developed 
using that MGGP algorithm is that the physical significance 
in the mathematical expressions is not as clear as in phys-
ical-based or empirical models. This lack of clear physical 
significance in an MGGP model is partially due to two facts: 
first, MGGP detects hidden nonlinear relationships between 
variables, while physical-based or empirical models may 
only use a calibration or regression parameter to represent 
the relationships; second, MGGP uses linearly combined 
low-order nonlinear terms to describe a phenomenon, while 
physical-based models typically use complicated partial dif-
ferential equations. Therefore, the sacrifice of obvious phys-
ical significance makes an MGGP model more accurate than 
an empirical model and much more efficient than a physi-
cal-based model, and the sacrifice is of less concern as long as 
the model is carefully tested. 

4. Conclusions

The current paper has presented the application of the 
MGGP approach to developing a model for estimating the 
properties of multiple vertical buoyant jets in stationary 
ambient water. The focus has been on four characteristic 
parameters: the non-dimensional vertical displacement 
of the merging point (ym/D), the non-dimensional center-
line concentration (Cm/C0) where the jets start merging, the 
non-dimensional vertical displacement of the well-mixed 
location (yw/D), and the non-dimensional concentration 
where the jets are well mixed (Cw/C0). The MGGP technique 

 

Fig. 7. Results of sensitivity analysis for Cm/C0 (a and b), yw/D (c and d), and Cw/C0 (e and f).
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was introduced in order to obtain explicit equations for 
these variables through an evolutionary process. The results 
demonstrated the capability of the proposed models in accu-
rately predicting ym/D, Cm/C0, yw/D, and Cw/C0. Sensitivity 
analyses utilizing the PDSA approach were conducted to 
assess how varying the Sp and Fr values affect the character-
istic variables, and the results revealed that ym/D and Cw/C0 
were more sensitive to Sp than to Fr, Cm/C0 was more sensitive 
to Fr, and there was no clear trend regarding the sensitivity 
of yw/D in relation to Fr. Moreover, uncertainty analysis was 
conducted, and the uncertainty band-widths identified for 
ym/D, Cm/C0, yw/D, and Cw/C0 were ±0.473, ±0.013, ±4.621, and 
±0.003, respectively. Therefore, the proposed MGGP mod-
els can be regarded as promising tools for studying jets 
discharged from multiport diffusers.
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