Adsorptive removal of nitrogen, phosphorus, and micropollutants in sewage wastewater by using different sorbents: application of ANOVA

Yusra Safa^{a,b,*}, Tariq Khan^b

^aDepartment of Chemistry, Lahore College for Women University, Lahore, Pakistan, email: yusra_safa@yahoo.com ^bThe University of Auckland, Auckland, New Zealand, email: t.khan6492@yahoo.com

Received 9 April 2019; Accepted 2 October 2019

ABSTRACT

The present research work involved the effectiveness of seven different sorbents (three inorganics, three organic, and one biopolymer) in eliminating sixteen micropollutants (dyes, metals, organophosphates, pharmaceuticals, pesticides, food additives, surfactants, and cosmetics), nitrogen and phosphorus was investigated in batch mode study using wastewater. Three inorganic sorbents were silica gel/rice flour decorated biochar, Ca/rice flour decorated biochar and bentonite clay whereas organic materials comprised of organic charcoal, fruit peel (kiwi) and *Aloe vera* and one biopolymer was magnetic, silica gel chitosan beads. The maximum nitrogen (93%) and phosphorus (73%) were removed by inorganic sorbents efficiently as compared to other sorbents. Maximum dyes removal was occurred by magnetic, silica gel chitosan beads (96%), whereas the highest metals (93%) and pesticides (94%) removal were investigated by using inorganic sorbents. The surfactants and pharmaceuticals showed promising removal y using organic sorbents. Magnetic, silica gel chitosan beads showed the highest removal efficiency (93%–97%) for food additives. Whereas cosmetics and organophosphates were moderately eliminated by all sorbents. Analysis of variance was applied to data to calculate the difference in removal capacity. The results showed that both Langmuir and Freundlich's isotherms were best fitted to experimental data.

Keywords: Micro-pollutants; Sorbents; Equilibrium study; Analysis of variance; pH effect

1. Introduction

The presence of organic and inorganic micropollutants including natural and synthesized in sewage wastewater can affect the environment as well as the quality of water badly [1]. These micropollutants include pesticides, food additives, cosmetics, surfactants, dyes, metals, pharmaceuticals, and organophosphates pose a major problem for human beings and aquatic organisms [2]. Even minor concentration of these pollutants cause serious damage [3]. A large number of wastewater treatments have been investigated for the removal of micropollutants from sewage wastewater, including abiotic transformation, biodegradation [4], membrane bioreactors [5] and ozonation [6]. But some techniques are not cost-effective and others may generate toxic byproducts [7]. Micro-pollutants can be removed efficiently through sorption processes [8].

Sorption process of micropollutants in sewage wastewater depends upon various factors such as properties of wastewater (pH, micropollutants concentration), the characteristics of sorbents (surface area, size of particles) and physical interaction with sorbents [9]. The presence of dyes in wastewater affects human health seriously due to their carcinogenetic and toxic nature [10]. Metals intake can cause failure of the nervous and cardiac system as well as inhibition of enzyme activity [11]. Increased quantity of nutrients in water triggers the expansion of blue-green algae which leads to the deficiency of oxygen. Nitrogen along

^{*} Corresponding author.

^{1944-3994/1944-3986 © 2020} Desalination Publications. All rights reserved.

with phosphorus reduces the growth of plants. So wastewater treatments require the reduction of these nutrients in water [12]. Along with the above micropollutants, humans and aquatic organisms are also affected by pharmaceuticals pollution. Functions of hormones are disturbed by some pharmaceuticals [8]. Water contaminated with pesticides is also problematic as pesticides may cause mutation in living organisms [13]. The effect of food additives on our ecosystem is highly concerned because some of them are released unchanged and disturbed aquatic life [14]. Surfactants are widely used in our daily life. So, water becomes polluted due to the high consumption of surfactants [15]. Cosmetics and personal healthcare products are manufactured as persistent substances. Their concentration in groundwater has reached up to 100 μ g L⁻¹ that is alarming [16].

Activated carbon has been commonly and efficiently used sorbent for micropollutants uptake from wastewater [17]. Granular activated carbon is also a promising adsorbent but its effectiveness depends upon the type used and highly costly [18]. Some other adsorbents such as lignite, zeolite, and sand have been investigated and found good removal potential for many pollutants [19]. Chitosan, a polymer is also studied as a cost-effective sorbent for various dyes removal [20]. But alternative sorbents are always getting the interest of scientists.

The main objective of this study was to investigate better sorbent for uptake of micropollutants and nutrients from sewage water as these are harmful and toxic. In a batch study for removal of micropollutants (dyes, metals, organophosphates, pharmaceuticals, pesticides, food additive, surfactants, and cosmetics), and nutrients (nitrogen and phosphorus) various inorganic and organic sorbents were tested.

2. Materials and methods

2.1. Chemicals

Chemicals used in this study were of analytical grade and acquired from Sigma-Aldrich and Merck.

2.2. Sorbent materials

The choice of sorbent materials was based on their applicability and literature survey. Three inorganics, three organic and one biopolymer, consisting of natural and modified materials were investigated. Three inorganic sorbents were silica gel/rice flour decorated biochar, Ca/rice flour decorated biochar and bentonite clay whereas organic materials comprised of organic charcoal (OC), fruit peel (kiwi) (FP) and *Aloe vera* and one biopolymer was magnetic, silica gel chitosan beads (Table 1).

2.3. Preparation of sorbents

For the preparation of biochar, rice flour was obtained from the market and dried it at 100°C to remove all moisture contents. Silica gel/rice flour decorated biochar, calcium/ rice flour decorated biochar were synthesized through carbonization at 800°C. Silica gel and rice flour, $Ca(OH)_2$ and rice flour were mixed in equal ratio. After the addition of distilled water, dilute gels were formed and stirred to form

Table 1

Sorbent materials used in batch study

Sorbent	Abbreviation	Particle size	Surface area pore size	
		(mm)	$(m^2 g^{-1})$	(nm)
Inorganic				
Silica gel/rice flour	SR-biochar	0.20-0.35	0.5	3.7
decorated biochar				
Barium/rice flour	BR-biochar	0.25-0.40	0.4	4.0
decorated biochar				
Bentonite clay	B-clay	3–5	2.0	24
Biopolymer				
Magnetic silica gel	MSG-beads	2–4	8.0	18
chitosan beads				
Organic				
Organic charcoal	OC	1.0-2.5	6.5	13.5
Fruit peel (kiwi)	FP	0.5-1.0	2.5	14.0
Aloe vera	AV	1–3	3.0	10.0

the homogeneous mixture. Then the mixture was put in an oven to remove moisture, the dried mixture was put in a furnace at 800°C in the presence of nitrogen for 2 h. The dried biochar was named as Sg-BC (Silica gel/rice flour decorated biochar) and Ca-BC (calcium/rice flour decorated biochar) [21].

Bentonite clay and OC were purchased from the market. Magnetic, silica gel chitosan beads were synthesized by Wang et al. [22]. Silica gel suspension was made by adding 3 g of silica gel in 40 ml of water with constant stirring of 30 min. Then 1.5 g of chitosan was mixed with constant stirring to silica gel suspension. Then 5 ml of FeCl₃ solution was added and stirred it continuously for 30 min to obtain a homogenous mixture. Then the mixture was added dropwise into a crosslinking solution prepared by mixing sodium citrate and sodium hydroxide. The obtained beads were washed and stored.

Kiwi FP was obtained from the market and then washed with distilled water to remove impurities. After that kept it under sunlight for 10 d and then it was dried in an oven for about 12 h at 70°C. Then the peel was ground, sieved and stored in plastic bottles.

Aloe vera leaves were obtained from a plant. After washing with water, the skin was removed carefully from the gel. First, the skin was dried in sunlight, then in an oven at 60°C. Then it was ground with a food processor, sieved and stored.

2.4. Micropollutants, preparation, and analysis

The micropollutants evaluated including dyes, metals, organophosphates, pharmaceuticals, pesticides, food additives, surfactants, cosmetics, phosphorus and nitrogen (Table 2). For the preparation of the sample solution, 8 μ L of a standard solution of each chemical compound was added in 44 L of wastewater solution to make a concentration of 4 μ g L⁻¹ of each component. This wastewater sample was stored in dark glass bottles at 4°C–5°C. Instrument analysis

Table 2 Standard micro-pollutants used in batch study

Compound	Component	Abbreviation
Dyes	Reactive Red 22	RR22
	Direct Blue 17	DB17
Metals	Cu+2	Cu ⁺²
	As ^{III}	As ^{III}
Organophosphates	Triphenyl phosphate	TPP
	Malathion	MT
Pharmaceuticals	Caffeine	CF
	Amocolline	AM
Pesticides	Hexafluorobenzene	HFB
	Atrazine	AZ
Food additives	α -Tocopheryl acetate	α -TPA
	Monosodium glutamate	MSG
Surfactants	Dodecyldimethylamine	DDO
	oxide	
	Amide alcohol	AAE
	ethoxylates	
Cosmetics	Galaxolide	HHCB
	Oxybenzone	OB

was done by using high-performance liquid chromatography which is coupled with a mass spectrometric technique.

2.5. Batch sorption studies

The effect of different parameters such as pH, wastewater concentration and contact time was evaluated through batch experiments. A wastewater solution containing micropollutants of known pH, concentration, sorbent dose was shaken for 4 h at 100 rpm at 25°C. The same conditions were given to a blank solution except for the sorbent. Selected pHs (2, 4, 6, 8, and 10) were used to study the pH effect. Isotherm's study was conducted by applying various isotherm models such as Langmuir [23], Freundlich [24] and Harkins–Jura [25] isotherm models. The percentage of sorption was evaluated through the following equation,

$$\text{%sorption} = \frac{C_0 - C_e}{C_0} \times 100 \tag{1}$$

 C_0 is the initial and C_e are the equilibrium concentrations of a sample solution, respectively. The mean values of results are reported after conducting triplicate experiments.

2.6. Statistical analysis (ANOVA)

Analysis of variance (ANOVA) is a statistical analysis tool which divides the variation into different parts and every part is linked with different variation source [26]. ANOVA and the least significance difference test were applied to data to calculate the difference in removal capacity. The removal capacity was tested as a dependent variable and various sorbents and micropollutants were considered as independent variables.

3. Results and discussions

3.1. Effect of pH changes

Nitrogen removal from the sample is affected by a change in pH value. Inorganic sorbents eliminated nitrogen more effectively as compared to organic sorbents. The maximum nitrogen was removed (87%–90%) at pH 8 with Ca/rice flour decorated biochar and silica gel/rice flour decorated biochar. Nitrification is inhibited at high pH value which decreased the nitrogen removal efficiency [27]. Maximum phosphorus removal (73%) was achieved by Ca/rice flour decorated biochar at alkaline pH. Calcium-containing sorbents facilitated the formation of calcium-phosphorus precipitates [28]. Whereas other sorbents showed an average removal rate of phosphorus.

Maximum dyes removal was occurred by magnetic, silica gel chitosan beads and FP sorbents. The adsorption process was high due to chelating and ion-exchange reactions of chitosan which enhanced the sorption function of silica gel [29]. The maximum dye removal (90%-96%) was gained at low pH value and decreased with an increase in pH value up to 10%. At high pH value, there was a decrease in protonating sites that interacted with dye's functional groups [10]. The highest metal concentration was removed (92%–96%) at pH 4 by bentonite clay and about 93% by silica gel/rice flour decorated biochar at pH 10. Krstic et al. [30] studied the copper ion sorption and found the optimum pH value around 3-8. The sorption potential decreased with an increase in pH value in all other sorbents which may be due to an increase in repulsion between sorbent surfaces and ionic Arsenic species [31].

The chemicals such as cosmetics and organophosphates were moderately eliminated by all sorbents with 63%-75% removal at lower pH value. Whereas the removal efficiency of pesticides was maximum with inorganic sorbents. Bentonite clay and silica gel/rice flour decorated biochar showed the highest removal (94%-96%) at pH 2. The highest sorption was might be due to hydrophobic forces of attraction between chemicals and sorbent materials [2]. The pharmaceuticals were absorbed mostly by organic sorbents as compared to inorganic and biopolymer sorbents. Charcoal exhibited the highest sorption capacity of about 93%-97% at low pH value. This seemed the occurrence of functional groups on the sorbent's surface [32]. Two types of food additives were tested on various sorbents. Magnetic, silica gel chitosan beads showed the highest removal efficiency (93%-97%) for both food additives. This efficiency decreased with an increase in the pH value. Whereas charcoal was the promising sorbent for the removal of surfactants at pH 2 with removal efficiency up to 96%. This could be explained by the hydrophobic interactions between chemicals and sorbents [33]. The effect of pH on the removal of pollutants by various sorbents are shown in Figs. 1-10. The sorbents affect the sorption efficiency (p < 0.05, ANOVA) of micropollutants, which is illustrated in Table 3. The sorption efficiency of FP was lowered as compared to other sorbents.

3.2. Sorption isotherm behavior

Isotherm model study is carried out to optimize various parameters. In this study three isotherm models Langmuir, Freundlich, and Harkins–Jura were interpreted.

Fig. 1. Effect of pH on the removal of N₂ by various sorbents.

Fig. 2. Effect of pH on the removal of P by various sorbents.

Fig. 3. Effect of pH on the removal of dyes by various sorbents.

Fig. 4. Effect of pH on the removal of metals by various sorbents.

3.2.1. Langmuir sorption isotherm model

The Langmuir model suggests the homogenous monolayer sorption on sorption surface sites and when the saturation level is achieved, then no further sorption occurs [33].

The Langmuir model is expressed as:

$$\frac{C_e}{q_e} = \frac{1}{K_a q_m} + \frac{C_e}{q_m}$$
(2)

According to equation q_e is the amount of micropollutants sorption (mg g⁻¹), C_e is the concentration at equilibrium, q_m is the highest sorption capacity (mg g⁻¹) and K_a is sorption constant (L mg⁻¹). The values of various constants are illustrated in Table 4. The R^2 values described the best applicability of this model.

3.2.2. Freundlich sorption isotherm model

The Freundlich model explains the heterogeneous sorption. This isotherm shows the empirical relationship between liquid and solid [31].

240

Fig. 5. Effect of pH on the removal of organophosphates by various sorbents.

Fig. 6. Effect of pH on the removal of pharmaceuticals by various sorbents.

Fig. 7. Effect of pH on the removal of pesticides by various sorbents.

The Freundlich model is defined as:

$$\ln q_e = \frac{1}{n} \ln C_e + \ln K_F \tag{3}$$

In the equation, K_F is the Freundlich model constant described the bonding energy (mg g⁻¹). The values of R^2 , K_F , and *n* are described in Table 4. The values of *n* are more than 1 showing that the sorption process is favorable.

Fig. 8. Effect of pH on the removal of food additives by various sorbents.

Fig. 9. Effect of pH on the removal of surfactants by various sorbents.

Fig. 10. Effect of pH on the removal of cosmetics by various sorbents.

Table 3 Least significance difference test for sorbents

Sorbent	Sorbent	Mean difference	Standard error	Sigma
(a)	(b)		(a–b)	
SR-biochar	BR-biochar	0.341	0.9842	0.001
	B-clay	0.211	0.9842	0.024
	MSG-beads	0.429	0.9842	0.126
	OC	0.237	0.9842	0.145
	FP	0.110	0.9842	0.000
	AV	-0.215	0.9842	0.120
BR-biochar	SR-biochar	0.427	0.9842	0.010
	B-clay	0.234	0.9842	0.025
	MSG-beads	0.422	0.9842	0.041
	OC	0.101	0.9842	0.110
	FP	-0.128	0.9842	0.062
	AV	0.266	0.9842	0.044
B-clay	SR-biochar	0.356	0.9842	0.102
	BR-biochar	0.415	0.9842	0.001
	MSG-beads	0.311	0.9842	0.000
	OC	0.233	0.9842	0.137
	FP	0.348	0.9842	0.141
	AV	0.241	0.9842	0.012
MSG-beads	SR-biochar	0.355	0.9842	0.011
	BR-biochar	0.432	0.9842	0.039
	B-clay	0.343	0.9842	0.040
	OC	0.284	0.9842	0.022
	FP	-0.209	0.9842	0.021
	AV	-0.257	0.9842	0.126
OC	SR-biochar	-0.321	0.9842	0.000
	BR-biochar	0.438	0.9842	0.054
	B-clay	0.277	0.9842	0.062
	MSG-beads	0.421	0.9842	_
	FP	0.244	0.9842	0.011
	AV	0.459	0.9842	0.072
FP	SR-biochar	-0.237	0.9842	0.033
	BR-biochar	-0.100	0.9842	0.041
	B-clay	-0.366	0.9842	0.023
	MSG-beads	-0.112	0.9842	0.000
	OC	-0.210	0.9842	0.011
	AV	0.331	0.9842	0.000
AV	SR-biochar	0.235	0.9842	0.038
	BR-biochar	-0.213	0.9842	0.051
	B-clay	0.187	0.9842	0.072
	MSG-beads	0.356	0.9842	0.148
	OC	0.321	0.9842	0.001
	FP	0.111	0.9842	0.061

Dependent variable is removal. Mean square error is 0.982.

Sorbents							
Micro-pollutants	SR-biochar	BR-biochar	B-clay	MSG-beads	OC	FP	AV
Langmuir							
$q_m ({ m mg g}^{-1})$							
RR22	195	187	147	352	266	467	232
DB17	201	184	131	290	243	265	185
Cu ⁺²	472	193	182	211	120	156	99
As ^{III}	498	187	116	202	97	124	119
TPP	436	237	91	167	179	268	401
MT	420	261	112	87	193	245	387
CF	489	467	451	174	109	86	67
AM	478	475	476	169	93	75	61
HFB	73	80	126	159	398	417	436
AZ	71	68	101	184	367	422	452
α-ΤΡΑ	348	459	446	480	356	74	86
MSG	357	440	473	469	330	69	55
DDO	117	143	139	245	459	357	232
AAE	96	137	126	213	426	382	297
ННСВ	134	166	110	150	175	119	123
OB	148	135	188	147	149	105	98
R _L							
RR22	0.04	0.07	0.14	0.08	0.03	0.09	0.21
DB17	0.09	0.06	0.08	0.23	0.14	0.04	0.11
Cu ⁺²	0.13	0.07	0.02	0.16	0.26	0.03	0.07
As ^{III}	0.09	0.08	0.12	0.04	0.01	0.11	0.03
TPP	0.17	0.13	0.06	0.05	0.09	0.04	0.07
MT	0.12	0.11	0.14	0.09	0.04	0.12	0.03
CF	0.05	0.08	0.01	0.01	0.04	0.07	0.05
AM	0.11	0.06	0.04	0.16	0.12	0.06	0.13
HFB	0.06	0.03	0.01	0.02	0.05	0.04	0.02
AZ	0.17	0.12	0.07	0.23	0.06	0.11	0.05
α-ΤΡΑ	0.06	0.06	0.12	0.07	0.01	0.08	0.07
MSG	0.08	0.04	0.01	0.03	0.04	0.01	0.03
DDO	0.13	0.16	0.23	0.01	0.05	0.11	0.07
AAE	0.08	0.04	0.04	0.01	0.03	0.02	0.19
HHCB	0.06	0.02	0.07	0.13	0.06	0.08	0.02
OB	0.06	0.11	0.05	0.06	0.07	0.03	0.01
<i>R</i> ²							
RR22	0.99	0.98	0.9	0.93	0.96	0.97	0.99
DB17	0.98	0.99	0.96	0.94	0.93	0.96	0.91
Cu ⁺²	0.96	0.98	0.98	0.95	0.99	0.94	0.98
As ^{III}	0.99	0.99	0.96	0.97	0.99	0.98	0.99
TPP	0.94	0.93	0.99	0.97	0.99	0.93	0.97
MT	0.98	0.98	0.99	0.98	0.99	0.99	0.98
CF	0.99	0.97	0.98	0.96	0.95	0.97	0.96
AM	0.93	0.95	0.97	0.99	0.96	0.94	0.91
HFB	0.97	0.97	0.98	0.94	0.96	0.96	0.97
AZ	0.96	0.98	0.98	0.95	0.99	0.94	0.98

Table 4 Isotherm study for removal of micropollutants onto various sorbents

α-ΤΡΑ	0.98	0.98	0.99	0.98	0.99	0.99	0.98
MSG	0.99	0.97	0.98	0.96	0.95	0.97	0.96
DDO	0.99	0.98	0.9	0.93	0.96	0.97	0.99
AAE	0.98	0.99	0.91	0.99	0.95	0.96	0.95
ННСВ	0.96	0.96	0.99	0.98	0.96	0.94	0.97
OB	0.96	0.98	0.98	0.94	0.97	0.99	0.96
Freundlich							
K _F							
RR22	25.8	34.2	12.9	21.7	12.7	17.5	29.2
DB17	44.7	17.9	10.1	15.8	37.5	41.7	31.9
Cu ⁺²	25.7	15.4	24.8	14.9	37.3	18.9	22.9
As ^{III}	18.6	21.6	29.3	10.6	40.8	24.1	14.4
TPP	49.6	33.7	41.8	26.9	22.7	20.1	33.6
MT	17.8	18.5	11.5	43.1	32.6	19.2	29.5
CF	37.8	30.3	23.6	36.1	17.2	19.8	24.5
AM	48.4	43.6	26.3	35.9	31.4	25.1	19.9
HFB	9.4	17.9	39.4	11.6	28.7	22.6	17.9
AZ	18.9	39.5	36.1	29.8	14.8	11.5	21.0
α-ΤΡΑ	38.6	30.8	27.8	26.5	19.6	16.8	43.9
MSG	27.6	23.3	17.6	18.9	24.6	29.9	24.6
DDO	15.7	19.4	16.4	22.5	19.5	35.1	18.7
AAE	44.7	17.9	10.1	15.8	37.5	41.7	31.9
ННСВ	25.5	9.6	23.8	34.1	33.8	31.3	12.6
OB	17.8	27.4	29.5	31.8	27.9	33.9	32.1
n							
RR22	3.5	2.1	2.7	4.7	2.9	5.4	2.0
DB17	2.0	2.7	2.2	2.8	3.1	2.7	2.5
Cu ⁺²	3.7	3.6	4.1	2.3	4.8	3.0	3.7
As ^{III}	2.9	3.4	3.8	3.5	3.1	2.7	4.1
TPP	2.1	2.7	2.2	2.0	2.4	2.5	2.3
MT	2.9	3.2	4.1	3.6	3.8	3.8	2.2
CF	3.0	2.2	2.8	2.4	3.0	2.5	2.1
AM	3.1	3.1	3.0	2.7	2.5	2.6	2.7
HFB	4.6	5.0	5.2	2.8	4.2	3.8	4.0
AZ	2.6	2.7	2.0	2.1	2.6	2.6	3.1
α -TPA	2.9	2.0	3.4	3.0	2.8	2.0	2.4
MSG	3.8	4.1	4.6	4.0	3.2	3.1	2.9
DDO	3.0	2.2	2.8	2.4	3.0	2.5	2.1
AAE	2 (27
ННСВ	2.6	5.3	3.0	3.1	2.6	2.8	2.7
OB	2.6 2.6	5.3 3.8	3.0 2.2	3.1 2.4	2.6 3.3	2.8 3.1	3.6
	2.6 2.6 3.5	5.3 3.8 2.7	3.0 2.2 2.0	3.1 2.4 2.2	2.6 3.3 2.6	2.8 3.1 2.8	2.7 3.6 2.7
R^2	2.6 2.6 3.5	5.3 3.8 2.7	3.0 2.2 2.0	3.1 2.4 2.2	2.6 3.3 2.6	2.8 3.1 2.8	3.6 2.7
RR22	2.6 2.6 3.5	5.3 3.8 2.7	3.0 2.2 2.0	3.1 2.4 2.2	2.6 3.3 2.6	2.8 3.1 2.8	2.7 3.6 2.7
<i>R</i> ² RR22 DB17	2.6 2.6 3.5	5.3 3.8 2.7 0.95 0.95	3.0 2.2 2.0 0.89 0.96	3.1 2.4 2.2 0.91 0.99	2.6 3.3 2.6 0.92 0.95	2.8 3.1 2.8 0.99 0.94	2.7 3.6 2.7 0.95 0.93
<i>R</i> ² RR22 DB17 Cu ⁺²	2.6 2.6 3.5 0.91 0.89 0.97	5.3 3.8 2.7 0.95 0.95 0.99	3.0 2.2 2.0 0.89 0.96 0.93	3.1 2.4 2.2 0.91 0.99 0.87	2.6 3.3 2.6 0.92 0.95 0.94	2.8 3.1 2.8 0.99 0.94 0.95	2.7 3.6 2.7 0.95 0.93 0.99
R² RR22 DB17 Cu*² As ^{III}	2.6 2.6 3.5 0.91 0.89 0.97 0.99	5.3 3.8 2.7 0.95 0.95 0.99 0.95	3.0 2.2 2.0 0.89 0.96 0.93 0.96	3.1 2.4 2.2 0.91 0.99 0.87 0.94	2.6 3.3 2.6 0.92 0.95 0.94 0.96	2.8 3.1 2.8 0.99 0.94 0.95 0.99	2.7 3.6 2.7 0.95 0.93 0.99 0.89
$ \begin{array}{c} R^2 \\ RR22 \\ DB17 \\ Cu^{+2} \\ As^{III} \\ TPP \end{array} $	2.6 2.6 3.5 0.91 0.89 0.97 0.99 0.97	5.3 3.8 2.7 0.95 0.95 0.99 0.95 0.95 0.97	3.0 2.2 2.0 0.89 0.96 0.93 0.96 0.98	3.1 2.4 2.2 0.91 0.99 0.87 0.94 0.94	2.6 3.3 2.6 0.92 0.95 0.94 0.96 0.96	2.8 3.1 2.8 0.99 0.94 0.95 0.99 0.96	2.7 3.6 2.7 0.95 0.93 0.99 0.89 0.89
$ \begin{array}{r} R^2 \\ RR22 \\ DB17 \\ Cu^{+2} \\ As^{III} \\ TPP \\ MT MT $	2.6 2.6 3.5 0.91 0.89 0.97 0.99 0.97 0.98	5.3 3.8 2.7 0.95 0.95 0.99 0.95 0.97 0.98	3.0 2.2 2.0 0.89 0.96 0.93 0.96 0.98 0.98 0.99	3.1 2.4 2.2 0.91 0.99 0.87 0.94 0.94 0.94 0.98	2.6 3.3 2.6 0.92 0.95 0.94 0.96 0.96 0.99	2.8 3.1 2.8 0.99 0.94 0.95 0.99 0.96 0.99	2.7 3.6 2.7 0.95 0.93 0.99 0.89 0.97 0.98
R^{2} RR22 DB17 Cu ⁺² As ^{III} TPP MT CF	2.6 2.6 3.5 0.91 0.89 0.97 0.99 0.97 0.98 0.86	5.3 3.8 2.7 0.95 0.95 0.99 0.95 0.97 0.98 0.89	3.0 2.2 2.0 0.89 0.96 0.93 0.96 0.98 0.99 0.99 0.97	3.1 2.4 2.2 0.91 0.99 0.87 0.94 0.94 0.98 0.98	2.6 3.3 2.6 0.92 0.95 0.94 0.96 0.96 0.99 0.95	2.8 3.1 2.8 0.99 0.94 0.95 0.99 0.96 0.99 0.96	2.7 3.6 2.7 0.95 0.93 0.99 0.89 0.97 0.98 0.99
R^{2} RR22 DB17 Cu ⁺² As ^{III} TPP MT CF AM	2.6 2.6 3.5 0.91 0.89 0.97 0.99 0.97 0.98 0.86 0.91	5.3 3.8 2.7 0.95 0.95 0.99 0.95 0.97 0.98 0.89 0.94	3.0 2.2 2.0 0.89 0.96 0.93 0.96 0.98 0.99 0.99 0.97 0.93	3.1 2.4 2.2 0.91 0.99 0.87 0.94 0.94 0.94 0.98 0.98 0.98 0.99	2.6 3.3 2.6 0.92 0.95 0.94 0.96 0.96 0.99 0.95 0.98	2.8 3.1 2.8 0.99 0.94 0.95 0.99 0.96 0.99 0.96 0.99 0.96 0.89	2.7 3.6 2.7 0.95 0.93 0.99 0.89 0.97 0.98 0.99 0.99 0.99

(continued)

Table 4 (continued)

Mice optilutantSR biocharBR biocharBe dayMSC-beadsOCFPAVHTB0.960.970.910.990.930.940.95ATA0.970.950.940.990.95ATA0.970.950.940.940.95DDO0.980.970.950.990.940.94DDO0.960.980.910.960.940.91AAR0.770.940.910.940.910.95DBO0.910.940.920.940.910.95CB0.970.940.930.990.990.940.91CB0.970.940.990.950.950.950.95CB0.970.940.990.970.940.910.95CB0.970.940.990.970.940.910.91CB0.970.940.990.970.950.970.91CB0.97879894.367754.31DBT67754.3191673541673CB7163391673541673541AfF7163391716630916731CB600901850520731612916AFF714632690627731612916AFF7146326		Sorbents						
HFB0.980.990.910.990.950.950.970.940.97a.TPA0.970.990.990.950.940.990.940.97a.TPA0.970.990.980.970.940.990.940.93MSG0.990.980.970.940.940.930.950.940.94DDO0.960.880.970.940.940.930.970.940.94AAR0.870.930.990.970.990.930.97DBO0.940.930.990.970.990.930.97CB0.940.930.990.970.990.930.97DBT687989943767775453DBT877989991765564776324Cu ¹¹ 674751633522321327ATT543553411496433844643CF690901850532998431761AZ774632699631690831631ATTA531560885893841506217AZ774632699691780783782ATTA531560885893832890881DDO764981993805901780780 <td< th=""><th>Micro-pollutants</th><th>SR-biochar</th><th>BR-biochar</th><th>B-clay</th><th>MSG-beads</th><th>OC</th><th>FP</th><th>AV</th></td<>	Micro-pollutants	SR-biochar	BR-biochar	B-clay	MSG-beads	OC	FP	AV
AZ 0.96 0.97 0.95 0.95 0.97 0.97 0.98 0.97 mKSC 0.99 0.98 0.97 0.95 0.94 0.94 0.95 DDO 0.96 0.98 0.97 0.95 0.94 0.94 0.95 DDO 0.96 0.98 0.91 0.96 0.85 0.95 0.93 DITC 0.97 0.94 0.94 0.99 0.94 0.94 0.95 DBIT 0.97 0.93 0.97 0.99 0.93 0.97 0.99 0.93 0.97 RK22 987 875 989 943 767 775 453 Cu² 674 751 633 981 673 584 721 Cu² 674 751 633 981 673 582 321 387 Cu² 676 901 805 532 321 387 781 MT 5	HFB	0.98	0.99	0.91	0.99	0.95	0.96	0.95
artPA 0.97 0.99 0.98 0.95 0.94 0.99 0.98 0.97 MSG 0.99 0.94 0.98 0.95 0.99 0.94 0.95 DDO 0.96 0.98 0.97 0.94 0.96 0.85 0.95 0.99 AAE 0.87 0.89 0.91 0.96 0.85 0.95 0.99 DBO 0.94 0.94 0.94 0.94 0.94 0.95 0.99 CB 0.94 0.93 0.93 0.99 0.97 0.99 0.93 0.97 Harkins-Jura Z Z Z Z Z Z Z A 987 989 991 765 564 776 321 Out" 674 771 633 584 673 584 974 Qu" 980 342 338 845 981 922 TP 768 887 721 653 532 998 431 781 Cu" 731	AZ	0.96	0.97	0.95	0.95	0.97	0.94	0.97
MSG 0.99 0.88 0.97 0.95 0.94 0.94 0.95 DDO 0.96 0.98 0.91 0.96 0.85 0.93 0.93 AAE 0.97 0.94 0.94 0.99 0.94 0.93 HCB 0.97 0.94 0.93 0.99 0.94 0.93 Harkins-Jura	α -TPA	0.97	0.99	0.95	0.94	0.99	0.98	0.87
DDO 0.66 0.98 0.95 0.99 0.94 0.98 AAE 0.87 0.89 0.91 0.96 0.85 0.93 0.93 BHCE 0.97 0.94 0.93 0.99 0.97 0.99 0.93 0.93 BRAINE V V 0.93 0.99 0.97 0.99 0.93 0.97 Harkine-Jura V V V 0.93 0.99 0.97 0.99 0.93 0.97 RZ2 987 875 989 943 767 775 453 DB17 674 751 633 981 673 544 784 As ^a 992 980 342 338 445 643 844 643 Cf 600 901 850 552 998 431 761 774 731 642 965 aTDA 531 560 761 776 240 388 <td>MSG</td> <td>0.99</td> <td>0.98</td> <td>0.97</td> <td>0.95</td> <td>0.94</td> <td>0.94</td> <td>0.95</td>	MSG	0.99	0.98	0.97	0.95	0.94	0.94	0.95
AAE 0.87 0.89 0.91 0.96 0.85 0.95 0.93 HHCB 0.97 0.94 0.93 0.99 0.94 0.93 0.95 Barkins-Jura - - - - - RR22 987 875 989 943 767 775 453 DB17 887 899 991 765 564 776 321 Cu ² 674 751 633 981 673 544 744 As ^a 992 980 342 338 455 981 922 TPF 768 887 721 653 532 321 387 MT 543 553 411 496 433 844 643 CF 690 901 532 998 431 781 AM 731 890 287 431 790 850 AZ 774 632 609 662 731 642 965 a-TPA 331 560 885 893 832 890 836 DDO 764 981 933 805 901 128 <	DDO	0.96	0.98	0.98	0.95	0.99	0.94	0.98
HHCB 0.97 0.94 0.94 0.99 0.97 0.94 0.95 DR 0.93 0.99 0.97 0.94 0.94 0.95 Markins-Jura Harkins-Jura K K K K R22 987 875 989 943 767 775 433 DB17 887 899 941 765 564 776 211 Cur ² 674 751 633 981 673 544 784 As ^m 992 980 342 338 845 981 922 TP 768 887 721 653 532 321 387 AM 731 890 287 431 790 879 560 AZ 774 632 609 662 731 642 965 AZ 774 631 566 761 776 240 383 241	AAE	0.87	0.89	0.91	0.96	0.85	0.95	0.93
CB 0.94 0.93 0.97 0.99 0.93 0.97 Harkus-Jura A	ННСВ	0.97	0.94	0.94	0.99	0.94	0.94	0.95
A A RR22 987 875 989 943 767 775 453 DB17 887 899 991 765 564 776 321 Cu ² 674 751 633 981 673 544 784 As ^{ai} 992 980 342 338 845 981 922 TP 766 887 721 653 532 321 387 MT 543 553 411 496 433 844 643 AM 731 890 287 431 790 879 560 AZ 774 632 609 662 731 642 965 AZ 774 632 609 855 993 832 890 881 MSG 954 566 761 776 240 388 421 DDO 764	OB	0.94	0.93	0.99	0.97	0.99	0.93	0.97
Å KR22 967 875 989 943 767 775 453 Cu ² 674 751 633 981 673 544 784 As ⁱⁿ 992 980 342 338 845 981 922 TPP 768 887 721 663 552 321 387 MT 543 553 411 496 433 844 643 CF 690 901 850 532 998 431 781 AM 731 890 287 431 790 879 560 AZ 774 652 699 662 731 642 965 aTA 531 560 885 893 832 890 851 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 <td>Harkins–Jura</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Harkins–Jura							
RR22 987 875 989 943 767 775 453 DB17 887 899 991 765 564 776 321 Cu ² 674 751 633 981 673 544 784 As ^{ai} 992 980 342 388 845 981 922 TPP 768 887 721 653 332 321 387 MT 543 553 411 466 433 844 643 CF 690 901 850 552 998 431 781 AM 731 890 287 431 790 879 560 HFB 678 907 850 889 843 842 965 AZ 774 632 609 662 731 642 965 AFE 669 980 931 650 651 690 783 HHCB 678 761 552 219 810 128 <	Α							
DB17 887 899 991 765 564 776 321 Cu ² 674 751 633 981 673 544 784 As ^{at} 992 980 342 338 845 981 922 TPP 768 887 721 653 532 321 387 MT 543 553 411 496 433 844 643 CF 690 901 850 552 998 541 506 217 AZ 774 632 609 662 731 642 965 a-TPA 531 560 885 893 832 890 881 MSG 954 566 761 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 6	RR22	987	875	989	943	767	775	453
Cu ² 674 751 633 981 673 544 784 As ^m 992 980 342 338 845 981 922 TPP 768 887 721 663 532 991 337 MT 543 553 411 496 433 844 643 CF 690 901 850 532 998 431 781 AM 731 890 227 431 700 879 560 HFB 678 907 850 889 541 506 217 AZ 774 632 609 662 731 642 965 ATPA 531 560 885 893 832 890 933 MAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210<	DB17	887	899	991	765	564	776	321
As ^{aii} 992 980 342 338 845 981 922 TPP 768 887 721 653 532 321 387 MT 543 553 411 496 433 844 643 CF 690 901 850 532 998 431 781 AM 731 890 287 431 790 879 560 AZ 774 632 609 662 731 642 965 A_TPA 531 566 876 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210 Cu [*] 2 1.6 2.4 2.3 1.9 2.0 2.4	Cu ⁺²	674	751	633	981	673	544	784
TPP 768 887 721 653 532 321 387 MT 543 553 411 496 433 844 643 CF 600 901 850 532 998 431 781 AM 731 890 287 431 790 879 560 HFB 678 907 850 889 541 506 217 AZ 774 632 609 682 731 622 963 MTSG 954 560 885 893 832 890 881 MSG 954 566 761 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 783 HCB 678 761 552 219 810 128 210 OB 345 762 611 443 120 542 559 B 721 2.0 2.1 1.6 1.7 DD17 2.0 2.1 2.0 2.1 1.6 <td>As^{III}</td> <td>992</td> <td>980</td> <td>342</td> <td>338</td> <td>845</td> <td>981</td> <td>922</td>	As ^{III}	992	980	342	338	845	981	922
MT 543 553 411 496 433 844 643 CF 690 901 850 532 998 431 781 AM 731 890 287 431 790 879 560 HFB 678 907 850 889 541 506 217 AZ 774 632 609 662 731 642 965 ATPA 531 560 885 893 832 890 881 MSG 954 566 761 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 610 128 210 OB 345 762 611 443 120 542 559 B 27 2.7 2.0 2.1 1.6 1.7 R22 1.9 2.7 2.7 2.0 2.1 1.6	TPP	768	887	721	653	532	321	387
CF690901850532998431781AM731890287431790857560HFB678907850889541506217AZ774632609662731642965 α TPA531560885893832890881MSG954566761776240338421DDO764981993805901780553AAE669890931690651690783HHCB678761552219810128210OB345762611443120542559BRR221.92.72.72.02.11.61.7DB172.02.12.01.71.41.01.5Cu'21.62.62.42.31.92.02.4As ^{aii} 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.31.31.01.4AF1.61.12.31.31.01.4As ^{aii} 1.01.4	MT	543	553	411	496	433	844	643
AM 731 890 287 431 790 879 560 HFB 678 907 850 889 541 506 217 AZ 774 632 609 662 731 642 965 α TPA 531 560 885 893 832 890 881 MSG 954 566 761 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210 OB 345 762 611 443 120 542 559 B Cr² 1.6 2.1 1.6 1.7 1.4 1.0 1.5 Cu²² 1.6 2.4 2.3 1.9 2.0	CF	690	901	850	532	998	431	781
HFB678907850889541506217AZ774632609662731642965ATPA531560855893832890881MSG954566761776240338421DDO764981993805901780553AAE669890931690651690783HHCB678761552219810128210OB345762611443120542559BRR221.92.72.72.02.11.61.7DB172.02.12.62.42.31.92.02.4As ^{an} 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.61.91.41.01.1AM2.72.02.11.01.11.91.4AZ1.71.52.52.31.92.22.6HFB2.02.11.61.12.31.31.0AS1.71.52.52.31.92.22.4MSG1.01.81.32.82.51.50.9	AM	731	890	287	431	790	879	560
AZ 774 632 609 662 731 642 965 α -TPA 531 560 885 893 832 890 881 MSG 954 566 761 776 240 338 421 DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210 OB 345 762 611 443 120 542 559 B RR22 1.9 2.7 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu^{-2} 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As^{lT} 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 TT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.3 1.9 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 <td>HFB</td> <td>678</td> <td>907</td> <td>850</td> <td>889</td> <td>541</td> <td>506</td> <td>217</td>	HFB	678	907	850	889	541	506	217
α -TPA531560885893832890881MSG954566761776240338421DDO764981993805901780553AAE669890931690651690783HHCB678761552219810128210OB345762611443120542559BRR221.92.72.72.02.11.61.7DB172.02.12.01.71.41.01.5Cu*21.62.62.42.31.92.02.4As ^{sii} 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.1AM2.72.02.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4AGE1.01.81.32.82.51.50.9DDO2.02.52.32.02.11.01.5AZ1.71.11.01.71.91.50.6DDO2.0<	AZ	774	632	609	662	731	642	965
MSG954566761776240338421DDO764981993805901780553AAE669890931690651690783HHCB678761552219810128210OB345762611443120542559BRR221.92.72.72.02.11.61.7DB172.02.12.01.71.41.01.5Cu*21.62.62.42.31.92.02.4As ^{lii} 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.02.11.01.11.4AM2.72.02.02.11.01.11.9AK1.61.12.31.31.01.41.81.71.51.6DAZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.90.90.70.80.81DDO2.02.52.	α -TPA	531	560	885	893	832	890	881
DDO 764 981 993 805 901 780 553 AAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210 B B State State State State State State RR22 1.9 2.7 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu ⁻² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^{III} 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0	MSG	954	566	761	776	240	338	421
AAE 669 890 931 690 651 690 783 HHCB 678 761 552 219 810 128 210 OB 345 762 611 443 120 542 559 B E E E E E E E RR22 1.9 2.7 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu*2 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^m 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1	DDO	764	981	993	805	901	780	553
HHCB678761552219810128210OB345762611443120542559BRR221.92.72.72.02.11.61.7DB172.02.12.62.42.31.92.02.4As ^m 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.11.12.31.31.5 <t< td=""><td>AAE</td><td>669</td><td>890</td><td>931</td><td>690</td><td>651</td><td>690</td><td>783</td></t<>	AAE	669	890	931	690	651	690	783
OB 345 762 611 443 120 542 559 B RR22 1.9 2.7 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu ² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^m 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 1.9 2.5 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1	ННСВ	678	761	552	219	810	128	210
B RR22 1.9 2.7 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu ⁻² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^m 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 1.9 2.5 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 α-TPA 1.6 2.6 2.0 2.3 1.9<	OB	345	762	611	443	120	542	559
RR22 1.9 2.7 2.0 2.1 1.6 1.7 DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu ² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^{III} 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 1.9 2.5 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 α -TPA 1.6 2.6 2.0 2.3 1.9 2.2 2.4	В							
DB17 2.0 2.1 2.0 1.7 1.4 1.0 1.5 Cu ² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^m 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 1.9 2.5 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 AZ 1.7 1.5 2.5 2.3 1.1 1.9 2.2 2.4	RR22	1.9	2.7	2.7	2.0	2.1	1.6	1.7
Cur ² 1.6 2.6 2.4 2.3 1.9 2.0 2.4 As ^m 1.1 1.6 1.3 1.0 1.8 1.1 1.2 TPP 2.2 2.8 1.9 1.6 2.4 2.1 1.7 MT 1.0 1.4 1.8 1.7 1.5 1.6 1.9 CF 1.8 2.3 2.2 2.0 2.1 1.0 1.1 AM 2.7 2.0 2.0 1.9 2.5 2.2 2.6 HFB 2.0 2.1 1.6 1.1 2.3 1.3 1.0 AZ 1.7 1.5 2.5 2.3 1.1 1.9 1.4 a-TPA 1.6 2.6 2.0 2.3 1.9 2.2 2.4 MSG 1.0 1.8 1.3 2.8 2.5 1.5 0.9 DDO 2.0 2.5 2.3 2.6 2.7 2.2 2.1 AAE 1.5 2.3 0.5 2.0 2.1 1.0 <t< td=""><td>DB17</td><td>2.0</td><td>2.1</td><td>2.0</td><td>1.7</td><td>1.4</td><td>1.0</td><td>1.5</td></t<>	DB17	2.0	2.1	2.0	1.7	1.4	1.0	1.5
As ^{III} 1.11.61.31.01.81.11.2TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4\arcolor AZ1.71.52.52.31.11.91.4\arcolor AZ1.71.52.52.31.11.91.4\arcolor AZ1.71.52.52.31.11.91.4\arcolor AZ1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu ²² 0.710.80.810.780.720.700.76As ^{III} 0.770.720.850.800.790.7	Cu ⁺²	1.6	2.6	2.4	2.3	1.9	2.0	2.4
TPP2.22.81.91.62.42.11.7MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R ² DB170.810.750.790.690.770.830.81Cu ^{*2} 0.710.80.810.780.720.700.76As ⁱⁿ 0.770.720.850.800.790.760.70	As ^{III}	1.1	1.6	1.3	1.0	1.8	1.1	1.2
MT1.01.41.81.71.51.61.9CF1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R ² RR220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.700.76As ^m 0.770.720.850.800.790.760.70	TPP	2.2	2.8	1.9	1.6	2.4	2.1	1.7
CF1.82.32.22.02.11.01.1AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4α-TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu ^{*2} 0.710.80.810.780.720.700.76As ⁿⁱ 0.770.720.850.800.790.760.70	MT	1.0	1.4	1.8	1.7	1.5	1.6	1.9
AM2.72.02.01.92.52.22.6HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.760.70As ⁿⁱ 0.770.720.850.800.790.760.70	CF	1.8	2.3	2.2	2.0	2.1	1.0	1.1
HFB2.02.11.61.12.31.31.0AZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5R ² RR220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.760.76As ^{III} 0.770.720.850.800.790.760.70	AM	2.7	2.0	2.0	1.9	2.5	2.2	2.6
AZ1.71.52.52.31.11.91.4 α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5RR220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.700.76As ^{III} 0.770.720.850.800.790.760.70	HFB	2.0	2.1	1.6	1.1	2.3	1.3	1.0
α -TPA1.62.62.02.31.92.22.4MSG1.01.81.32.82.51.50.9DDO2.02.52.32.62.72.22.1AAE1.52.30.52.02.11.02.8HHCB1.81.71.11.01.71.91.5OB2.82.11.11.12.31.31.5RR220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.700.76As ^{III} 0.770.720.850.800.790.760.70	AZ	1.7	1.5	2.5	2.3	1.1	1.9	1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α-ΤΡΑ	1.6	2.6	2.0	2.3	1.9	2.2	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MSG	1.0	1.8	1.3	2.8	2.5	1.5	0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DDO	2.0	2.5	2.3	2.6	2.7	2.2	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AAE	1.5	2.3	0.5	2.0	2.1	1.0	2.8
OB 2.8 2.1 1.1 1.1 2.3 1.3 1.5 R² RR22 0.77 0.72 0.85 0.79 0.71 0.82 0.84 DB17 0.81 0.75 0.79 0.69 0.77 0.83 0.81 Cu ⁺² 0.71 0.8 0.81 0.78 0.72 0.70 0.76 As ^{III} 0.77 0.72 0.85 0.80 0.79 0.76 0.70	ННСВ	1.8	1.7	1.1	1.0	1.7	1.9	1.5
R^2 0.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81 Cu^{*2} 0.710.80.810.780.720.700.76 As^{III} 0.770.720.850.800.790.760.70	OB	2.8	2.1	1.1	1.1	2.3	1.3	1.5
RR220.770.720.850.790.710.820.84DB170.810.750.790.690.770.830.81Cu*20.710.80.810.780.720.700.76As ^{III} 0.770.720.850.800.790.760.70	<i>R</i> ²							
DB17 0.81 0.75 0.79 0.69 0.77 0.83 0.81 Cu*2 0.71 0.8 0.81 0.78 0.72 0.70 0.76 As ^{III} 0.77 0.72 0.85 0.80 0.79 0.76 0.70	RR22	0.77	0.72	0.85	0.79	0.71	0.82	0.84
Cu ⁺² 0.71 0.8 0.81 0.78 0.72 0.70 0.76 As ^{III} 0.77 0.72 0.85 0.80 0.79 0.76 0.70	DB17	0.81	0.75	0.79	0.69	0.77	0.83	0.81
As ^{III} 0.77 0.72 0.85 0.80 0.79 0.76 0.70	Cu ⁺²	0.71	0.8	0.81	0.78	0.72	0.70	0.76
	As ^{III}	0.77	0.72	0.85	0.80	0.79	0.76	0.70

246

TPP	0.81	0.68	0.69	0.75	0.78	0.79	0.84
MT	0.83	0.70	0.79	0.81	0.77	0.83	0.81
CF	0.84	0.78	0.74	0.80	0.71	0.75	0.69
AM	0.81	0.81	0.84	0.76	0.67	0.69	0.71
HFB	0.67	0.71	0.79	0.81	0.77	0.83	0.84
AZ	0.65	0.67	0.71	0.67	0.79	0.81	0.63
α -TPA	0.77	0.78	0.83	0.61	0.80	0.80	0.66
MSG	0.63	0.71	0.79	0.66	0.77	0.83	0.74
DDO	0.85	0.81	0.84	0.78	0.79	0.61	0.64
AAE	0.67	0.65	0.60	0.76	0.71	0.68	0.82
ННСВ	0.66	0.81	0.76	0.82	0.82	0.81	0.80
OB	0.65	0.83	0.84	0.60	0.79	0.61	0.64

Table 5

Comparison of the present study with previously reported data

Sorbent	Percentage removal (%)	References
Lignite	76	[1]
Iron coated peat	80	[34]
Sorbent	-	-
Activated sludge	91	[4]
Tetraselmis suecica (microalgae)	64	[35]
Biological activated carbon	84	[36]
Silica gel/rice flour decorated	90	Present study
biochar		
Bentonite clay	93	Present study
Magnetic, silica gel Chitosan	96	Present study
beads		

The R^2 values of pollutants showed that data was also good fitted to the Freundlich model.

3.2.3. Harkins–Jura sorption isotherm model

The Harkins–Jura model describes a multi-layer sorption process. The Harkins–Jura model is presented as:

$$\frac{1}{q_e^2} = \frac{B}{A} - \left(\frac{1}{A}\right) \log C_e \tag{4}$$

The values of various constants of this model are presented in Table 4. The values of correlation coefficients described that experimental data was poorly fitted to this model.

The comparison of the present study with previously reported data is presented in Table 5.

4. Conclusions

This study conducted to evaluate seven different sorbents that either these were promising for micropollutants removal or not. It was observed that nitrogen, phosphorus, metals, and pesticides were removed efficiently by inorganic sorbents. While surfactants and pharmaceuticals were eliminated by organic sorbents more effectively. Sorption of micropollutants by various sorbents was strongly affected by the change in pH values. Inorganic, biopolymer and organic sorbents except FP exhibited significantly higher removal capacity (ANOVA, p < 0.05). The results depicted that Langmuir and Freundlich's isotherms were best fitted to experimental data.

References

- [1] A. Rostvall, W. Zhang, W. Dürig, G. Renman, K. Wiberg, L. Ahrens, P. Gago-Ferrero, Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, xylit, sand, granular activated carbon (GAC) and GAC+polonite[®] in column tests - role of physicochemical properties, Water Res., 137 (2018) 97–106.
- physicochemical properties, Water Res., 137 (2018) 97–106.
 Y.L. Luo, W.S. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–614.
- [3] N.A. Doerr-MacEwen, M.E. Haight, Expert stakeholders' views on the management of human pharmaceuticals in the environment, Environ. Manage., 38 (2006) 853–866.
- [4] J. Sipma, B. Osuna, N. Collado, H. Monclús, G. Ferrero, J. Comas, I. Rodriguez-Roda, Comparison of removal of pharmaceuticals in MBR and activated sludge systems, Desalination, 250 (2010) 653–659.
- [5] W. Li, R.Q. Wu, J.M. Duan, C.P. Saint, D. Mulcahy, Overlooked effects of organic solvents from sample preparation on reaction constants of micropollutants in UV-based advanced oxidation processes, Chem. Eng. J., 313 (2017) 801–806.
- [6] Î.A. Katsoyiannis, S. Canonica, U. von Gunten, Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O₃/H₂O₂ and UV/H₂O₂, Water Res., 45 (2011) 3811–3822.
- [7] M. Petala, P. Samaras, A. Zouboulis, A. Kungolos, G.P. Sakellaropoulos, Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents, Water Res., 42 (2008) 4929–4940.
- [8] M. Cirja, P. Ivashechkin, A. Schäffer, P.F.X. Corvini, Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR), Rev. Environ. Sci. Biotechnol., 7 (2008) 61–78.
- [9] Z.W. Du, S.B. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, G. Yu, Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents – a review, J. Hazard. Mater., 274 (2014) 443–454.
- [10] Y. Safa, S.R. Tariq, H.N. Bhatti, M. Sultan, I. Bibi, S. Nouren, Synthesis and characterization of sugarcane bagasse/zinc aluminium and apple peel/zinc aluminium biocomposites: application for removal of reactive and acid dyes, Membr. Water. Treat., 9 (2018) 301–307.

- [11] I. Morosanu, C. Teodosiu, A. Coroaba, C. Paduraru, Sequencing batch biosorption of micropollutants from aqueous effluents by rapeseed waste: experimental assessment and statistical modelling, J. Environ. Manage., 230 (2019) 110–118.
- [12] M. Kasprzyk, M. Gajewska, Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P, Sci. Total Environ., 650 (2019) 249–256.
- [13] V. Sánchez, F.J. López-Bellido, M.A. Rodrigo, L. Rodríguez, Electrokinetic-assisted phytoremediation of atrazine: differences between electrode and interelectrode soil sections, Sep. Purif. Technol., 211 (2019) 19–27.
- [14] Y. Deng, Y.L. Wang, Y. Xia, A.N. Zhang, Y.H. Zhao, T. Zhang, Genomic resolution of bacterial populations in saccharin and cyclamate degradation, Sci. Total Environ., 658 (2019) 357–366.
- [15] J.K. Braga, M.B.A. Varesche, Commercial laundry water characterization, Am. J. Anal. Chem., 5 (2014) 8–16.
- [16] Y. Yang, Y.S. Ok, K.-H. Kim, E.E. Kwon, Y.F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review, Sci. Total Environ., 596 (2017) 303–320.
- [17] J. Altmann, D. Rehfeld, K. Träder, A. Sperlich, M. Jekel, Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal, Water Res., 92 (2016) 131–139.
- [18] X.Y. Wei, N.Y. Gao, C.J. Li, J. Deng, Y.P. Zhu, Q.F. Wang, Adsorption of bentazon on two kinds of granular activated carbons: equilibrium, kinetic and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 28762–28775.
- [19] W. Zhang, K. Blum, M. Gros, L. Ahrens, H. Jernstedt, K. Wiberg, P.L. Andersson, B. Björlenius, G. Renman, Removal of micropollutants and nutrients in household wastewater using organic and inorganic sorbents, Desal. Wat. Treat., 120 (2018) 88–108.
- [20] G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
- [21] S.D. Wang, L.J. Kong, J.Y. Long, M.H. Su, Z.H. Diao, X.Y. Chang, D.Y. Chen, G. Song, K.M. Shih, Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies, Chemosphere, 195 (2018) 666–672.
- [22] K.X. Wang, H. Ma, S.Y. Pu, C. Yan, M.T. Wang, J. Yu, X.K. Wang, W. Chu, A. Zinchenko, Hybrid porous magnetic bentonitechitosan beads for selective removal of radioactive cesium in water, J. Hazard. Mater., 362 (2019) 160–169.
- [23] T. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.

- [24] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
- [25] W.D. Harkins, G Jura, Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid, J. Am. Chem. Soc., 66 (1944) 1366–1373.
- [26] Y. Safa, H.N. Bhatti, Adsorptive removal of direct textile dyes by low cost agricultural waste: application of factorial design analysis, Chem. Eng. J., 167 (2011) 35–41.
- [27] N.A. Booker, A.J. Priestley, I.H. Fraser, Struvite formation in waste water treatment plants: opportunities for nitrogen recovery, Environ. Technol., 20 (1999) 777–782.
- [28] M. Zuo, G. Renman, J.P. Gustafsson, A. Renman, Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburization slag designed for wastewater treatment, Water Res., 87 (2015) 271–281.
- [29] S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite-and carbon nanotube-based composites, J. Hazard. Mater., 274 (2014) 46–52.
- [30] V. Krstic, T. Urosević, B. Pasovski, A review on adsorption for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci., 192 (2018) 273–287.
- [31] T.G. Kazi, K.D. Brahman, J.A. Baig, H.I. Afridi, A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater, J. Hazard. Mater., 357 (2018) 159–167.
- [32] M. Petrovic, S. Gonzalez, D. Barcelo, Analysis and removal of emerging contaminants in wastewater and drinking water, Trends Anal. Chem., 22 (2003) 685–696.
- [33] V.O. Herrera, R.S. Alvarez, Removal of perfluorinated surfactants onto granular activated carbon, zeolite and sludge, Chemosphere, 72 (2008) 1588–1593.
- [34] A. Kausiuliene, I. Carabante, P. Bhattacharya, A.G. Caporale, P. Adamo, J. Kumpiene, Removal of metal (oid)s from contaminated water using iron coated peat sorbent, Chemosphere, 198 (2018) 290–296.
- [35] E. Daneshvar, M.J. Zarrinmehr, A.M. Hashtjin, O. Farhadian, A. Bhatnagar, Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption, Bioresour. Technol., 268 (2018) 523–530.
- [36] L. Sbardella, J. Comas, A. Fenu, I.R. Roda, M. weemaes, Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater, Sci. Total Environ., 636 (2018) 519–529.

248