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a b s t r a c t
The leakage mechanism of the clamp connector for submarine pipeline is investigated. The contact 
seal of a clamp connector is regarded as a half-cylinder squeezing a plane. Moreover, mean stress of 
the contact region is used to calculate the permeability, based on an observation length-dependent 
mechanic model and a new fractal porous media model. The analysis yields insight into the effects 
of surface fractal parameters on the permeability, when mean stress rises within the yield limit. 
Compared with experiment results, the prediction of this model shows well consistency in the trend.

Keywords:  Submarine pipeline connecter; Contact seal; Observation length-dependent mechanics 
model; Fractal porous media model; Leakage analysis

1. Introduction

Offshore oil and gas development has gradually become 
an important part of global energy growth, as land resources 
dried up. Submarine pipeline connectors are widely used 
in underwater oil extraction system. The seal of two con-
tact surfaces plays an important role in typical connectors, 
such as clamp connector, bolted flange connector, collet 
connector, and pipeline stopper. The failure of seals results 
in catastrophic consequences, such as oil spills, the Marine 
environment pollution, and marine life extinction. Since 
machined surfaces usually have roughness and fractal char-
acter, micropores, and leakage channels can be observed in 
the contact seal region, even in ultra-tight seal.

The contact seal have attracted research interest of 
scholars. Ji et al. [1] reviewed the recent research of contact 
seal and discussed a leakage model based on percolation 
theory. Feng and Gu [2] and Feng [3] suggested a leakage 
model for metal flat gasket, based on MB fractal contact 
model and the laminar flow theory of incompressible vis-
cous fluid. He studied the effects of fractal parameters on 
leakage characteristics and conducted experiments to prove 
his theory. Shi [4] proposed a leakage model of contact static 
seal based on the percolation model, and studied the effect 

of element shape on the percolation threshold and leakage 
characteristics. Persson [5] and Persson and Yang [6] pre-
sented a theory of the leak-rate of seals, which was based on 
percolation theory and a contact mechanics theory. Lorenz 
and Persson [7] presented experimental results for the leak 
rate of rubber seals and compared the results to Persson’s 
theory. The results showed good agreement between theory 
and experiment. When the contact between two surfaces is 
quite sufficient, the application of a porous medium model 
is more reasonable to describe the fluid flow between the 
seal region [8]. Yu [9] and Yu and Li [10] derived a uni-
fied model to describe the fractal characteristics of porous 
media, and proposed a criterion for judging whether the 
porous medium has fractal characteristics. Huang et al. [11] 
proposed a leakage model based on MB model and fractal 
porous medium model. The gas leakage of metal gasket was 
predicted, which was consistent with the experiment. Liu et 
al. [12] studied the effects of fluid pressure change on leak-
age of contact seal based on a fractal porous media model.

However, there is still a lack of research on the contact 
seal of the surface with macroscopic non-flat geometry. 
In this work, the leakage mechanism of clamp connector 
was investigated based on contact mechanic model and 
leakage model. An observation length-dependent (OLD) 
mechanic model was applied to analyze contact mechanism 
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of isotropic fractal rough surfaces. Therefore, a fractal porous 
media model was proposed to calculate the permeability of 
contact surface, based on the critical observation length. 
A leakage experiment of clamp connector was carried out to 
verify the theory.

2. Mechanics and leakage models of clamp connector

2.1. Contact seal of clamp connector

The subsea clamp connector adopts a typical contact seal 
of a sphere and a cone, which consists of a metal lens seal 
ring and flanges, respectively, as shown in Fig. 1. The contact 
seal can be regarded as a half cylinder squeezing a plane. 
Moreover, the seal region is a rectangle with length L and 
width 2r. Oil and gas leak from one side of the seal region to 
the other along the width, as shown in Fig. 2.

The half of the contact width r can be calculated by Hertz 
theory [13],

r
F R
E L
L=

4
π *

 (1)

where FL is the normal load, R is the radius of the cylin-
der, E* is the equivalent modulus of Hertzian elasticity, 
1/E* = (1 – v2

1)/E1 + (1 – v2
2)/E2, E1, E2, v1, and v2 are Young’s 

modulus and Poisson’s ratios of two contacting surfaces, 
respectively.

The mean stress is:

σm
LF
rL

=
2

 (2)

Since the width of seal region is very small, the contact of 
seal region can be simplified the contact of a rigid plane and 
a deformable fractal surface, as shown in Fig. 3. In addition, 
the mean stress is usually an important calculation param-
eter for the contact seal of submarine pipeline connection 
system [14–16].

2.2. Contact mechanics model

2.2.1. Ideal subplane

We have presented an OLD mechanic model to calculate 
the real contact area, recently. The profile height of surface 
z(x) is defined by WM function [7,17]

z x G
x
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( ) =
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=
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γ
 (3)

where G is the fractal roughness parameter, D is the 
surface fractal dimension and 1 < D < 2, γn determines the fre-
quency spectrum of the surface roughness and for most typi-
cal surfaces, γ = 1.5. nL = logγ(1/L0) and L0 is the sample length.

The sample surface with length L0 is assumed to be 
composed of ideal subplanes with length of λ, which is 
observation length and 0 < λ < L0, as shown in Fig. 4. A ref-
erence plane is defined, based on which the average height 
of the surface profile is zero, that is, 〈z(x)〉 = 0, where 〈…〉 is 
ensemble average.

The height of the ideal subplane is:

h x z xi,λ( ) = ( )  (4)
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Fig. 2. The equivalent seal model of submarine pipeline connectors.

   

Fig. 1. Subsea clamp connector and contact seal.
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where xi is the coordinate of the ideal subplane, in the range 
of (–λ/2, λ/2).

According to the law of large numbers, it is assumed that 
the height of the ideal subplane obeys the Gaussian distri-
bution. Therefore, the rough surfaces observed in different 
observation lengths conform to the Gaussian distribution, 
as shown in Fig. 5. The probability density of ideal subplane 
at observation length λ is:

′( ) =
( )

−
( ) − ( ) 

( )
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where h λ( ) is the mean height of the ideal subplane, 
h z x yλ( ) = ( ) =, 0. τh(λ) is the standard deviation of the 
ideal subplane height.
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 (6)

So that, Eq. (5) can be rewritten as
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Suppose a linear relationship applies, τh(λ) can be 
expressed as:

τ λ λ τ δ δ λτh hk L( ) = + ( ) ≤ <( ), 0  (8)

where kτ is the fitting slope, δ is the minimum observation 
length. τh(δ) is the standard deviation of surface profile at δ, 
and could be calculated with fractal surface parameters [17,18]
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2.2.2. Contact model of an ideal subplane

The contact of a rigid plane and a deformable rough 
surface can be idealized as the contact of a rigid plane 
and deformable ideal subplanes with a given observation 
length λ. It is assumed that the ideal subplanes are asperities 
of the same curvature radius.

According to MB model, the initial profile of asperity 
before deformation is:

h x G x xp
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The curvature radius of the asperity profile is:
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The elastic contact force can be calculated with Hertz 
theory [5,13] as:

f s E R sel el( ) =
4
3

1 2 3 2* / /  (12)

where sel is the normal deformation of the asperity in elastic 
contact, as shown in Fig. 6.

The contact area of the asperity is:

a Rsasp el el, = π  (13)

The contact area of the ideal subplane is:

asub el, = λ2  (14)

Rigid Plane

λ=L0

λ=L0/10

λ=L0/50

Fractal Deformable
Surface

Fig. 3. A rigid plane contact with a fractal deformable surface.

 
Fig. 5. Probability densities of the ideal subplane height, λ = L0, 
L0/5, and L0/10.

λ=L0 λ=L0/5

Ideal SubplaneSample Surface Refference Plane

Fig. 4. Sketch of sample surface at λ = L0 and ideal subplane at 
λ = L0/5.
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The sum of the contact area of subplanes is the real 
contact area of the contact surfaces. The contact area of the 
asperity is used to calculate the contact depth that will be 
used in subsection 2.3.

The critical deformation, sc, of the plastic contact of a 
single asperity, is presented by Jackson and Green [19] based 
on Von Mises’ yield criterion, as shown below:
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*  (15)

where CY is the yield strength coefficient obtained by curve 
fitting, CY = 1.295exp(0.736v). v is Poisson’s ratio of the 
softer surface in the contact pairs. f is the material property, 
f = sY/E*.

The plastic contact area of the asperity can be calculated 
by CEB model based on volume conservation [20].
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where spl is the normal deformation of the asperity in plastic 
contact, spl > sc.

The contact load of such an asperity is:
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2.2.3. Contact areas and mechanics

According to WM model, the dimensionless real contact 
area of the sample surface is:

A h dhr
d

* ,λ λ
λ

( ) = ′( )
( )

∞

∫ Φ  (18)

where d(λ) is the distance between the rigid plane and the 
reference plane of the deformable fractal surface with the 
observation length, λ, as shown in Fig. 7.

The surface contact force consists of elastic and plastic 
parts:

F F FN λ λ λ( ) = ( ) + ( )el pl  (19)

where Fel(λ) and Fpl(λ) are the elastic and plastic forces 
with the observation length of λ respectively, which can be 
calculated as the sum of elastic or plastic contact forces of 
asperities.
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where s(h, λ) is the contact depth of the ideal subplane 
asperity, s(h, λ) = h(x, λ) – d(λ). dY(λ) is the plastic separation 
of the rigid plane and the reference plane of the deformable 
fractal surface at the observation length λ, dY(λ) = d(λ) + sc(λ).

Normalize contact force, FN, with E*A0 as, 

F
F
E AN
N*
*λ

λ( ) =
( )

0

 (22)

Neglecting the effect of small probability events, the 
limits of the integral are ±kτh(λ) and k = 3.

2.3. Fractal porous medium model

In this work, the seal region formed by contact surfaces 
can be regarded as the fractal porous medium composed 
of capillary bundles. Capillaries are tortuous touristy in 
the length direction, and any two couldn’t intersect in the 
space, as shown in Fig. 8.

According to the investigations of Yu and his partners 
[10,21,22], the cumulative number of pore diameters in a unit 
cross-section of porous media has a fractal characteristic, 
and can be obtained by the fractal scaling law:

N l
Dp

≥( ) =














max  (23)
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Fig. 6. Contact of asperity.
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Fig. 7. Asperities of ideal subplane contact with a soft ideal plane.
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where N is the number of pores or capillaries, l is the 
length scale,  and max are respectively the pore diameter 
and the maximum pore diameter. The fractal dimension Dp 
for pore spaces is in the range of 0 < Dp < 2 in two dimensions.

Since the number of pores of porous media is very 
large, Eq. (23) in general is approximated as a continuous 
and differentiable function. The pores number in an infini-
tesimal range from  to  + d can be obtained by differentiat-
ing Eq. (23) with respect to , that is,

− =
− +( )dN D dp

D Dp p
  max

1  (24)

where –dN > 0, the negative sign means that the pore number 
decreases with the increase of pore diameters. The pores in 
a unit cell (a set of fractal pores) can be considered as circles 
with different diameters . Therefore, the total pore area Ap 
in the cross-section of a unit cell (a set of fractal pores) can be 
calculated by the following formula, that is:
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The total cross-sectional area is:
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where e is the areal porosity of the cross-section.
The height of fractal rough surface z(x) is mainly distrib-

uted in the range form –kτh(δ) to kτh(δ). The asperity outside 
this range can be ignored. Therefore, the initial cross-section 
area of the contact surfaces Across is 2kτh(δ)L0.

Considering the squeezing force and the contact area, the 
effective porosity e has the following boundary conditions:

• When two surfaces are in contact but do not squeeze each 
other (F*N = 0), the half of the cross-section of the contact 
region is occupied by asperity, as e = 0.5.

• When two surfaces are in tight contact (F*N →  ∞), the 
pores are completely compressed. So e is nearly 0.

•  e decreases with the rising of squeezing force at a certain 
observation scale.

•  e increases with the rising of observation scale under a 
certain squeezing force.

Based on these boundary conditions, the linear calcula-
tion formula of effective porosity is denoted as:

ε
τ λ τ λ

τ δ
δ λ λ=

( ) − ( )
( ) < <( )h c h c

h
c c

2 1
2 12

,  (27)

where λc1 is the critical observation length of maximum pore, 
λc2 is the critical observation scale of minimum pore.

The fractal dimension of the cross-section of a unit cell 
could be obtained by following Eq. (28) [10]:

D dp E= − ( )
ln

ln /min max

ε
 

 (28)

where dE is the Euclidean dimension of the cross-section, 
dE = 2.

According to percolation theory, the threshold for 2D 
quadrangle system is 0.593 [4,23–29]. Therefore, when the 
initial leak path emerges, the dimensionless real contact area 
A*

r at the critical observation length λc1 is 0.407.

Fig. 8. A fractal porous medium model of a capillary bundle.
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Leak Path
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Maximum Pore

Blind Pore

Fig. 9. Leak path at critical observation length for initial leakage.
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Substitute Eq. (7) into Eq. (18) and obtain the standard 
normal distribution equation:

A e dh e dhr
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where c is the ratio d(λc1)/kτh(λc1), which is a constant at any 
observation length, as c = 0.2353.

The cross-section of the initial leak path is the maximum 
pore in the contact region. The shape of the maximum pore is 
composed of the profile of the asperity and the flat plane. The 
area of the maximum pore is:

A h x dx Gc
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The area of the maximum pore is equivalent to a circle, 
whose diameter is:

max = 4
Apore

π
 (31)

In general, the minimum pore diameter min should sat-
isfy min/max < 10–2 in porous media [30,31]. According to 
Eqs. (30) and (31), the critical observation scale for the mini-
mum pore is:

λ πc
D

D

G2
2 2 1

1 3
1
8

=










−
−( )

min

/

 (32)

The tortuous capillary length is [22]:

L D Dt t
  ( ) = −1

0  (33)

where, 0 is the sample length of a unit cell of fractal porous 
media, 0 = (Aunit)0.5. Dt is the tortuosity fractal dimension of 
the tortuous capillary and can be calculated as follows:
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where ¯̂o is the average tortuosity, 
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The fluid flow in a single capillary is regarded as vis-
cous Poisseuille flow. The macroscopic flow caused by a 

pressure gradient can be regarded as a laminar and steady-
state process and is described by Darcy’s law (inertial/tur-
bulent effects are ignored). According to Hagen–Poiseuille 
function [32,33], the volume leak rate through a single tor-
tuous capillary can be expressed as:

q p
L
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π

µ

4

128
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where μ is the fluid viscosity, Dp/L() is the fluid pressure gra-
dient of both sides of a capillary. Therefore the total flow rate 
Q can be acquired by integrating the single fluid flow rate 
q(), in the range of pore diameters form the minimum pore 
min to the maximum pore max.

Q q dN= − ( ) ( )∫  
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According to Darcy’s law, the permeability of a porous 
medium could be obtained as follows:
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3. Numerical results and discussion

3.1. Surface fractal dimension with the same G

Two fractal surface profiles obtained with Eq. (3) with 
G = 1.0 × 10–11 m and D = 1.3 and 1.5 are plotted in Fig. 10. By 
increasing D from 1.3 to 1.5, more surface details can be seen 
in Fig. 10a.

Permeability Pe decreases with the rising of mean stress 
s0 as shown in Fig. 11. The decrease of D results in an incre-
ment of Pe in the full range of s0. Pe with D = 1.5, 1.6, and 1.7 
can be clearly divided into two stages, the trend of Pe is an 
approximate straight line in logarithmic coordinate system. 
The smaller D is, the greater s0 is at the turning point. For 
D = 1.4, the change of Pe is more significant until s0 increases 
to 8 MPa. On the contrary, the change of Pe with D = 1.3 is 
smooth and steady when s0 ≤ 8 MPa.

3.2. Surface fractal dimension with the same τh(δ)

The roughness of the surfaces generated by the same 
fractal roughness parameter G and different surface frac-
tal dimensions D differs by several orders of magnitude. 
Therefore, in order to study the effects of the surface fractal 
dimension, it is supposed that the standard deviation, τh(δ), 
is a constant, 5.0 × 10–7 m. The surface parameters are listed 
in Table 1. The surfaces have similar surface roughness (Ra).

Permeability (Pe) decreases with the increase of mean 
stress s0, with the same τh(δ) and different D, as shown in 
Fig. 12. Pe increases with rising of D when s0 ≥ 0.2 MPa. When 
D = 1.1 and 1.3, the trend of Pe is an approximate straight 
line in logarithmic coordinate. When D ≥ 1.5, the trend of 
Pe can be clearly divided into two stages by a turning point. 
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The difference of Pe with various D at the same s0 is very 
small until the turning point. In addition, the greater D is, the 
greater s0 is at the turning point. When D = 1.9, the trend of 
Pe is nonlinear in logarithmic coordinates. The surface with 
larger D has a higher Pe, which can be interpreted as that 

the complex surface topography will have a positive impact 
on the contact leakage characteristics. Furthermore, the sur-
face with a greater D has a smaller surface roughness Ra but 
a greater Pe, with the same τh(δ), as shown in Fig. 13. That 
means that D plays a decisive role in the influence of perme-
ability when Ra is similar.

3.3. Effects of fractal roughness parameter G

The permeability Pe is plotted in Fig. 14, with G = 1.0 × 10–9, 
1.0 × 10–10, 1.0 × 10–11, 1.0 × 10–12, and 1.0 × 10–13 m. Increase of 
G can enlarge Pe at the same mean stress in the full range of 
s0. Pe decreases with the increase of s0, which can be clearly 
divided into two stages. The turning point of Pe can be seen 
and the corresponding s0 moves from 9 to 12, 30, and 60 MPa, 
when the value of G equals 1.0 × 10–9, 1.0 × 10–10, 1.0 × 10–11, and 
1.0 × 10–12 m. In the first stage, Pe and s0 are approximately 
linear in the logarithmic coordinate system. In addition, there 
is a better linear relationship with a lower G. In the second 
stage, the descent rate of Pe with increasing s0 significantly 
decreases, and the slopes of the curves are approximately 
equal.

4. Experiments

We have performed a leakage experiment of a clamp 
connector to test the model presented above. The hydrau-
lic torque wrench provides the normal preloading force for 
contact seal of a clamp connector. The seal chamber is filled 
with water, and the pump, as shown in Fig. 15, provides its 
fluid pressure. Since the leakage of the liquid through the 
seal region is very small and hard to be measured. Therefore, 
considering the compressibility of the fluid, the leak rate Q 
can be obtained from the change of fluid volume, which can 
be obtained indirectly by pressure change, in the isothermal 
process. The pressure gauge with the precision 0.4 MPa dis-
played data of pressure change, which is recorded every 0.5 h 
when the pressure drop is stable, and a single experiment 
may take 5–11 h. The leak rate Q can be written as:

Q V
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t t

= = − ( ) ( ) − ( ) 
−
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κ 0
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1 1
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Fig. 10. Two fractal surface profiles with the same surface with: (a) D = 1.3 and (b) D = 1.5.
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 D=1.5
 D=1.6
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Fig. 11. Permeability vs. mean stress, with G = 1.0 × 10–11 m, 
E* = 110 GPa, f = 0.0010, and D = 1.3, 1.4, 1.5, 1.6, 1.7.

Table 1
Surface fractal dimension and corresponding parameters

D G (m) Ra (m)

1.1 6.47 × 10–54 4.42 × 10–7

1.2 5.99 × 10–28 4.41 × 10–7

1.3 2.64 × 10–19 4.38 × 10–7

1.4 5.40 × 10–15 4.31 × 10–7

1.5 2.03 × 10–12 4.23 × 10–7

1.6 1.02 × 10–10 4.13 × 10–7

1.7 1.60 × 10–9 4.06 × 10–7

1.8 1.18 × 10–8 4.03 × 10–7

1.9 5.02 × 10–8 3.96 × 10–7
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where ΔV is the change in water volume. V(t0) is the initial 
water volume in the seal chamber. p is the fluid pressure. Δt 
is the change of time, Δt = t1–t0. κ is compressibility of water, 
κ = 4.5 × 10–10 m2/N.

In order to simplify the effect of fluid pressure on flow 
rate, flow resistance is introduced as the ratio of fluid 
pressure to leakage rate, which can be written as:
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Considering the reaction of fluid pressure to preloading 
force, the contact force of the seal region is:0.1 1 10 100
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Fig. 12. Permeability vs. mean stress, with τh(δ) = 5.0 × 10–7 m, 
E* = 110 GPa, f = 0.0010, v = 0.30, and D = 1.1, 1.3, 1.5, 1.7, 1.9.
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Fig. 13. Pe and Ra vs. mean stress, with τh(δ) = 5.0 × 10–7 m, 
E* = 110 GPa, f = 0.0010, s0 = 110 MPa, and D = 1.1, 1.3, 1.5, 1.7, 1.9.
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Fig. 14. Permeability vs. mean stress, with D = 1.5, E* = 110 GPa, 
f = 0.0010, v = 0.30, and G = 1.0 × 10–9, 1.0 × 10–10, 1.0 × 10–11, 
1.0 × 10–12, 1.0 × 10–13 m.
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Fig. 15. Clamp connector leakage experiment. (a) Schematic diagram of experimental principle, (b) clamp connector and hydraulic 
torque wrench, (c) pump and pressure gauge, and (d) metal lens seal ring.
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F F pSL = −0 in  (42)

where F0 is the normal preloading force on seal region, Sin is 
the efficient area of the fluid acting on seal region.

The flow resistance of present model can be obtained by 
Eq. (39):

R p
Q Af = =
∆ µ0

Pe cross

 (43)

where 0 is the width of contact region, 0 = 2r. Across is the 
cross-section area of contact region, Across = 2kτh(δ) L.

The hardness of metal lens seal ring is lower than the 
flange. Therefore, the flange can be regarded as a rigid 
plane, and the seal ring as a fractal deformable surface. 
The parameters of the surface are D = 1.304, G = 1.308 × 10–13 m, 
L0 = 1 mm, Ra = 0.62 μm, τh(δ) = 0.93 × 10–6 m, sY = 175 MPa, 
E* = 112 GPa, v = 0.3. The initial water volume in the seal 
chamber V(t0) is 2.92 × 10–2 m3.

Fig. 16 indicates that the predictions of the fluid resis-
tance Rf of the present model are consistent with the 
results of clamp connector leakage experiment in trend. 
However, Rf predicted by present model is higher than 
most experiment results. The reason may be that the leak-
age of valve is inevitable. The difference of Rf between the 
present model and experiment data is small, when s0 is 
close to the yield limit sY. Therefore, the present model for 
fluid resistance can predict the leakage mechanisms of the 
clamp connector within the yield limit of the deformable 
surface.

5. Conclusion

An OLD mechanic model and a new fractal porous 
media model were proposed to calculate the permeabil-
ity of the contact seal consist of a rigid plane and a fractal 
deformable surface. The fractal surface parameters fractal 
dimension D, fractal roughness parameter G, and standard 
deviation τh(δ) had significant effects on the permeability of 
the contact seal. The fluid resistance was applied to analyze 
the leakage mechanism of the clamp connector, which is a 

typical contact seal of the surfaces with macroscopic non-flat 
geometry. The leakage experiment of a clamp connector was 
performed, and the results showed good agreement with the 
prediction of the present model in trend, within the yield 
limit of the deformable surface.
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