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a b s t r a c t
In modern societies, water distribution networks (WDNs) play a significant role in maintaining the 
standards of the desired life quality. The previous research findings indicated that meta-heuristic 
algorithms are stunningly capable of choosing the optimal sizes from a set of commercially avail-
able diameters in order to minimize the investment cost of WDNs. However, these methods usu-
ally suffer from falling in local optima or highly computational efforts. Therefore, in this study, a 
hybrid method referred to as a simple hybrid of genetic algorithm and particle swarm optimization 
(SHGAPSO) has been employed for the first time which depends on genetic algorithm (GA) and 
simple modified particle swarm optimization (SMPSO). SHGAPSO is developed based on a very 
simple but efficient hybrid use of GA and SMPSO, and then It is implemented on a real-life WDNs 
in Iran. In addition, an innovative constraint, which is called head loss gradient, is introduced that 
could replace the maximum velocity constraint. The results demonstrate that the hybrid technique 
is quite superior, mitigates the weakness of these two methods, and consequently increases the total 
efficiency. The results also show that the network design cost using SHGAPSO method is reduced by 
about 11% and 6%, respectively, compared to the GA and SMPSO algorithms. Moreover, using the 
maximum head loss gradient constraint causes pressure uniformity and creates surplus pressure in 
the nodes to the minimum permissible pressure, thereby increases the network hydraulic reliability, 
and velocity uniformity decreases velocity and head loss gradient in the pipes and ultimately 
reduces energy loss in the network.

Keywords:  GA; SMPSO; SHGAPSO; EPANET 2.0; Water distribution networks; Optimization; 
Head loss gradient constraint

1. Introduction

Water distribution network (WDN) is considered as 
one of the infrastructures that noticeably facilitate human 
activities. WDNs are concerned with a safe as well as reliable 

water supply. The ultimate goal of WDNs is to both pro-
vide the consumers with the amount of water demand at 
the desired level of quality and pressure from the source 
to the end-user. In practice, only a limited number of pipe 
diameters are commercially available and the dependency 
between pipe diameter and the cost involved is quite non-
linear. In addition to this, there is a further nonlinearity 
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imposed by the energy equation to calculate the head loss 
and the water flow in pipes that are the basic components 
used in the hydraulic study. That numerous candidate con-
figurations can be applied to a WDN which will impose 
further complication to the design optimization problem. 
Due to the fact that the water flow direction along a pipe is 
not fixed in looped networks, determining the optimal-cost 
design is even more difficult [1]. In that regard, the tradi-
tional approaches to optimally design a water network do 
not allow to reach the optimal or even near-optimal solution. 
That is why there are a considerable number of research 
efforts in literature dealing with the optimal design of water 
networks. For instance, Alperovits and Shamir [2] proposed 
designed a linear programming (LP) gradient method to 
cope with the aforementioned issues by modifying the prob-
lem into a linearized sub-problem. The same method has 
been used and improved by many other research studies 
[3–7], which utilized dynamic programming (DP), approach 
to obtain the least-cost design [8] and attempted to find 
an optimal cost design by integrating a gradient-based 
technique with a hydraulic analysis model KYPIPE [9].

However, such mathematical methods were seen as 
insufficient to reach the optimal design of WDNs [10,11]. 
It should be mentioned that most of the well-known math-
ematical methods are limited in the way that they do not 
guarantee reaching the global optimum as the optimal 
design of a WDN involves discrete variables. Therefore, 
these mathematical methods yield relatively optimal results. 
That is why simulation-based meta-heuristic algorithms 
have been lately applied to optimal designing of WDNs so 
as to compensate for the weaknesses of the conventional 
trial-and-error and mathematical approaches. A bunch of 
research efforts that tried to employ heuristic methods are 
as follows: Some researchers [12–15] used genetic algo-
rithms (GAs) to optimally design a WDN. Maier et al. [16], 
Zecchin et al. [17], and Mora-Melia et al. [18], adopted shuf-
fled frog-leaping algorithms and ant colony optimization, 
respectively. Moreover, shuffled complex evolution, tabu 
search, cross-entropy, scatter search [19–22] was applied 
by other researches. A particle swarm optimization (PSO) 
algorithm was employed by Montalvo et al. [23], Ezzeldin 
et al.[24], and Qi et al. [25] and a harmony search algorithm 
was applied by Geem [26,27] for the optimal cost design 
of WDNs. Bolognesi et al. [28] applied genetic heritage 
evolution by stochastic transmission, whereas Vasan and 
Simonovic [29] applied a differential evolution approach. 
Recently, Fallah et al. [30,31] investigated improved crow 
search algorithm and gravitational search algorithm optimal 
pipe dimensioning in WDNs.

Such metaheuristic algorithms have been used in vari-
ous ways for the optimal design of WDNs and have pro-
vided more efficient designs than previous ones. When 
PSO and GA are used individually, they may be stuck at 
local minimums, and in addition, are computationally 
demanding. To overcome this issue, some researchers have 
attempted to hybridize these two algorithms in the hope of 
enhancing the outcome. The key reason for hybridization is 
to take advantage of the strengths of each individual tech-
nique while simultaneously overcoming its main limitations 
[32]. The basic idea is to overcome critical problems of these 
methods such as premature convergence (particles in PSO 

can get stuck in a poor region of the search space), mem-
ory loss (if an individual in GA is not selected, its informa-
tion is lost), and the parameter tuning [33]. In fact, hybrid 
evolutionary systems based on GA and PSO have shown 
to outperform its individual components in a number of 
(constrained and unconstrained) optimization problems.

Recently, many research studies on how to best combine 
GA and PSO have been performed. Their research findings 
show that combining these two algorithms gives a better 
performance than standard versions of GA and PSO. For 
example, Juang [34] presented a new evolutionary algorithm 
based on a hybrid of GA and PSO to best design recurrent 
neural-fuzzy networks. In this algorithm, both GA’s opera-
tors and PSO are iteratively involved to generate well-mod-
ified populations. Premalatha and Natarajan [35] presented 
three new strategies to properly combine GA with PSO, and 
implemented the resulting algorithm on three well-known 
objective functions from the literature. They found that the 
proposed hybrid model outperforms the results obtained by 
the original algorithms. Esmin and Matwin [36] introduced 
a hybrid algorithm referred to as hybrid particle swarm 
optimization algorithm that used the mutation operator of 
GA to improve the PSO algorithm.

Moghaddam et al. [37] adopted a simple modified par-
ticle swarm optimization (SMPSO) to optimize the design 
of WDNs by using SMPSO as a novel technique in order 
to iteratively decrease inertia weight proportional to sim-
ulation time so as to guide the search toward the globally 
optimal point. This algorithm was applied to three bench-
mark networks and the results indicate that a significant 
improvement in the performance of PSO could be achieved 
by decreasing inertia weight over the iterations.

Minaee et al. [38] were used the simple hybrid of genetic 
algorithm and particle swarm optimization (SHGAPSO) 
method along with GA and PSO algorithms for qualitative 
calibration of a real-life WDN to minimize the difference 
between observed chlorine concentrations at measurement 
points and the concentrations simulated by the EPANET 2.0 
hydraulic-qualitative simulation model. The results show 
that the SHGAPSO method enhanced the performance of 
GA and PSO algorithms in the scenarios studied.

This paper aimed at removing the well-known GA and 
PSO algorithms limitations and applying the results of a 
new hybrid optimization algorithm to the real executive 
projects. To achieve this goal, it has been tried to apply 
all engineering views and judgments to the problem. This 
paper was applied to the SHGAPSO algorithm for WDNs 
optimization based on the engineering approach. The 
performance of the hybrid method is discussed by imple-
menting it on a real-life WDN in Iran. From the engineer-
ing point of view, a new and quite applicable constraint, 
which is called head loss gradient, is proposed successfully, 
as will be verified when presenting the simulation results, 
replaces for the usual maximum velocity constraint in the 
pipes. The optimization program is first coded in MATLAB 
and then is linked to EPANET 2.0 as a hydraulic simulation.

2. Optimization model

The optimal design of a WDN is defined as finding the 
best combination of the system components and settings 
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such as pipe size diameters, pump types, pump locations 
and maximum power, and reservoir storage volumes, that 
satisfy the network objectives in a way that hydraulic con-
straints such as continuity of flow and energy as well as 
flow and nodal pressure requirements or other constraints 
reflecting network-specific considerations could be met. 
In this article, the design of a WDN is formulated to mini-
mize investment costs [Eq. (1)] in which the pipe diameters 
are the decision variables. Therefore:

Minimize obj

pipe

F C D Li i i
i

n

= ( )×
=
∑

1
 (1)

where Di is the diameter of pipe i, Li is the pipe length, C(Di) 
is the unit cost of pipe diameter Di, and npipe is the total 
number of pipes needed in the network.

The constraints of the problem are defined as follows:

Constraint 1: Nodal mass balance

Flow that enters and leaves a node should be equal:

q q q jj j
in

j
out nd− +( ) = = …0 1 2 3, , , ,  (2)

where qj
in is the flow entering from upstream pipes to node 

j; qj
out is the flow to downstream pipes from node j; and qj is 

the demand satisfied at the node j.

Constraint 2: Loop energy balance

Head loss summation associated with any loops in a 
WDN should be zero:

k l
kH l

∈
∑ = ∀ ∈
Loop 

nl∆ 0,  (3)

where ∆Hk is the head loss in pipe k, and nl is the total 
number of loops in the system. The head loss in each pipe 
is the head difference between the receiving and ending 
nodes that can be calculated by using the Hazen–Williams 
equation:

∆H H H
L
C D

Q k nk k k
k

k k
k= − = ∀ ∈1 2, , ,ω

α β
α pipe  (4)

where H1,k and H2,k are the heads at the two ends of the pipe, ω 
is the numerical conversion constant of the equation (which 
depends on the units used), Ck is the roughness coefficient of 
pipe k, (which depends on the material), and α and β are the 
regression coefficients. Given that the EPANET 2.0 software 
has been used here to solve the equation, the values of ω, α, 
and β are 10.667, 1.852, and 4.871, respectively.

Constraint 3: Pressure at nodes

Pressure available at all the demand nodes should be 
greater than or at least equal to the minimum required level 
and also smaller than or equal to the maximum allowed level 
of pressure.

P P P jj j j
min max , , , , ,≤ ≤ = …1 2 3 nd  (5)

where Pj is the pressure available at node j; Pj
min is the min-

imum pressure required at node j; Pj
max is the maximum 

pressure allowed at node j; and nd is the number of demand 
nodes.

Constraint 4: Velocity at pipes

Velocity in each pipe must be within the permissible 
band. Therefore:

V V V kk k k
min max , , , , ,≤ ≤ = …1 2 3 np  (6)

where Vk is velocity in pipe k, and Vk
min and Vk

max are the min-
imum and maximum allowed velocities in each pipe, respec-
tively. np is the total number of the pipes of the network.

Constraint 5: Available pipe diameters

Pipe diameters must be selected from the commercially 
available pipe sizes, which form a discrete set:

D i ki k∈{ }∀ = …CD nc1 2 3, , , ,  (7)

where, Di is the diameter of pipe i; CDk is the kth commer-
cially available pipe size; and nc is the number of available 
pipe diameters.

Constraint 6: Maximum head loss gradient (an engineering 
approach)

The head loss gradient is considered as one of the basic 
factors in WDN design, which has been disregarded by most 
of the experts when analyzing a WDN. From the engineer-
ing perspective, it is not correct to consider the same maxi-
mum velocity for all pipes as they are of different diameters, 
particularly for those made of polyethylene, widely used in 
Iran’s WDNs. The authors have figured if a WDN is designed 
in a way that velocities close to 2 m/s occur in small-diam-
eter pipes, the pipes, and the fittings will be incapable of 
tolerating such high velocities, and there will definitely 
be some breakage or burst due to vibration.

Thus, to optimize the WDN understudy, a new con-
straint has been defined and used in this article. The con-
straint is responsible for the maximum head loss gradient 
in a 1 km length of a pipe. The proposed constraint replaces 
for the maximum velocity constraint defined by Eq. (8). 
Indeed, Eq. (8) is a different expression of Hazen–Williams 
equation [8]:

V C R S kk k k k= = …0 894 1 2 30 63 0 54. , , , ,. . np  (8)

where Vk is the velocity in pipe k (m/s), Ck is the roughness 
coefficient of pipe k, Rk is the hydraulic radius of pipe k (m) 
for a full pipe of geometric diameter D that is D/4, and S 
is the friction head loss per unit length or the slope of the 
energy grade line in meters per meter that is equal to Hk/
Lk and named the head loss gradient. The Eq. (8) can be 
rewritten as below:
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To apply this constraint to the problem formulation 
based on [Eq. (9)], if the maximum head loss gradient value 
(Hk/Lk) is assumed to be 8 m in a length of 1 km (1,000 m) 
in pipes with different diameters, the maximum velocity 
will also be reduced as diameter decreases. The Hazen–
Williams roughness coefficient is assumed to be 135 for 
polyethylene pipes. Table 1 illustrates the maximum veloc-
ity for all commercially available polyethylene pipe diam-
eters that have been used in this study. It should be noted 
that the velocity equal to 2 m/s is considered for the pipe of 
the largest diameter (Table 1, [Eq. (9)]). Based on practical 
experience, maximum head loss gradient constraint causes 
the resulting design to be more resilient against breakage.

Table 1 presents the maximum allowed velocity varia-
tions for different diameters when the maximum head loss 
gradient constraint is taken into consideration.

It should be mentioned that the conservation of mass 
and energy constraints are satisfied during the simula-
tion with EPANET, and other constraints are added to the 
objective function as penalty functions [37].

3. Genetic algorithm

GA is an adaptive search algorithm that works based 
on the evolutionary ideas of natural selection and genetics 
[39,40]. The genetic algorithm includes three major opera-
tors, (1) selection, (2) crossover, and (3) mutation. It gener-
ates a random initial population (represented by a string 
of genes or chromosomes) within the search bounds. The 
fitness values of these candidate solutions are assigned pro-
portionally to their pertinent objective function values. Based 
on fitness values, GA forms a mating pool using the selec-
tion operation. The selection process allows multiple copies 
of elite solutions in the mating pool by removing inferior 
solutions. This phase does not create any new population. 
Subsequently, GA performs crossover operations to generate 
a new population. In this phase, having randomly picked up 
two individuals from the mating pool, the crossover operator 

partly crosses them in order to generate two new offspring. 
However, to maintain some of the superior solutions that 
exist in the parent population, crossover operation will be 
carried out only when the crossover probability is satisfied. 
Mutation operation is responsible for maintaining the diver-
sity of the solutions through locally altering the genes. The 
mutation is also allowed only when the mutation probability 
is met. For an effective search, a higher value of crossover 
probability and lower value of mutation probability should 
be meticulously regulated [39]. The genetic algorithm per-
forms the selection, crossover, and mutation operation in an 
iterative way until it reaches the stopping criterion.

4. Simple modified particle swarm optimization algorithm

PSO is a promising optimization technique proposed 
[41]. It models a set of potential solutions as a swarm of 
particles moving around in a virtual search space. A swarm 
with P particles is optimized in an N-dimensional search 
space. Each particle of i has a position Xi

t = (xi1, xi2,…, xis) 
and the velocity Vi

t = (vi1, vi2,…, vis) is at iteration t. Each 
particle keeps tracking its position vector pbest for which 
it has achieved the best fitness function so far. Position vec-
tor gbest which represents the best value of fitness func-
tion obtained by the particles so far is also remembered. 
The values of the fitness function for these particles are 
stored as well. The PSO concept consists of changing the 
velocity of each particle towards its pbest and gbest. Once 
the velocities are determined, the position vectors of the 
particles will be updated. At these updated positions, the 
fitness function is recalculated and position vectors pbest 
and gbest will be updated again. This process goes on until 
a stopping criterion is met. In PSO, the following equations 
are used which iteratively modify the particle velocities 
Vij

t and positions Xij
t at iteration t [37,42,43].

V wV c r p i j X c r g Xjij
t

ij
t t

ij
t t

ij
t+ = + ( ) −( ) + ( ) −( )1

1 1 2 2best best,  (9)

X X Vij
t

ij
t

ij
t+ = +1  (10)

where i = (1, 2,..., P) and j = (1, 2,..., n), c1 and c2 are accel-
eration constants and r1, r2 are random numbers between 
(0 and 1). The position vector gbest (globally best position) 
and pbest (particles’ best positions) are modified during 
each iteration. Finely tuning the parameters of c1 and c2 in 
Eq. (9) may result in faster convergence and keeping the 
algorithm away from local minima. To control the velocity 
change, Clerc [44] introduced the constriction factor into 
the standard PSO algorithm to ensure the convergence of 
the search. The role of the inertial weight w in Eq. (9) is to 
control the impact of the previous velocities on the current 
one. A large inertial weight facilitates global exploration 
(searching for new areas), while a small weight tends to 
facilitate local exploration. Hence, the selection of a suitable 
value for the inertial weight w usually reduces the num-
ber of iterations required to locate the optimum solution 
[45–47] recommending that ω change between (0.4 and 0.9) 
in the standard PSO algorithm.

Therefore, in this study, a simple modified PSO, known 
as SMPSO presented by Moghaddam et al. [37], is used. 

Table 1
Maximum allowable velocity variations calculated for different 
diameters

Diameter (mm) Maximum velocity* (m/s)

76.6 0.7
93.8 0.8
106.6 0.86
136.4 1.01
170.6 1.16
191.8 1.25
213.2 1.33
238.8 1.43
268.6 1.54
302.8 1.66
341.2 1.79
403.8 2

*Computed velocity based on maximum headloss gradient con-
straint (length = 1,000 m, CHW = 135, and Hk/Lk = 8 m/km).
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SMPSO employs a reduction factor known as wdamp that is 
effective in improving the speed convergence of the algo-
rithm. It is important to determine the appropriate value 
of wdamp, as it reduces w following a linear form in each 
iteration based on Eq. (11):

w w wt t+ = ×1
damp  (11)

To manage any changes in the particles’ velocities, the 
relevant upper and lower limits are defined as follows in 
the Eq. (12):

V V Vmin max<− <−  (12)

Here, Vmax is calculated by:

V X Xmax max min.= × −( )0 5  (13)

V Vmin max= −  (14)

In which, Xmax and Xmin are the maximum and mini-
mum diameters and can be taken into consideration for 
each network.

5. SHGAPSO (simple hybrid PSO – GA model)

The advantages of SMPSO algorithm over GA include 
simplicity, intelligibility, and controllability of convergence 
rate. In GA, mutation rate and crossover probability are 
effective on the algorithm convergence, but cannot control 
the rate of convergence as easily as inertia factor in SMPSO 
does. The effect of an increase in the rate of convergence 
can be observed directly in SMPSO as the inertia factor 
decreases, but the major drawback of SMPSO is its prema-
ture convergence and getting stuck in locally optimal points 
[48]. To avoid this, the best position of the swarm should 
be changed iteratively, and to this end, diversity among the 
population members can be increased through the inclusion 
of the mutation and crossover operators of GA in SMPSO, 
so that the probability of falling into local optima will be 
reduced.

In SHGAPSO, the total number of iterations is first 
specified and then the algorithm is divided into two 
sub-algorithms namely GA and SMPSO. In the first step, GA 
provides SMPSO with the best population, sorted by cost in 
ascending order. This population is imposed on SMPSO as 
the best individual and the global experience for the whole 
population. Then, at the end of each iteration, SMPSO cal-
culates the values for the best member of the population 
for all of them based on the information calculated by GA 
for each population. These steps continue in each iteration 
until either the termination conditions are met or the maxi-
mum number of iterations is reached [38]. Fig. 1 illustrates 
the SHGAPSO flowchart.

Finally, it worth mentioning that the method used in 
this study consists of two phases called optimization and 
simulation. Firstly, in the optimization phase, GA, SMPSO, 
and SHGAPSO algorithms calculate the selected solutions 
(commercial diameters selected for the network pipes). 
Then, these solutions are introduced to simulation phases 

for hydraulic computation by EPANET 2.0 and computed 
the node’s pressure, velocity, and head loss gradient pipes. 
The computed parameters are compared to the standard 
values as the network constraints. The objective func-
tion will be calculated after applying the penalty func-
tion if the constraints are not satisfied. This process will be 
repeated between the simulation and optimization phases 
until the conditions are satisfied. Fig. 2 shows the applied 
solution methodology in this paper.

Fig. 1. Flowchart of the SGAPSO algorithm.
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6. Results and discussion

In this section, the performances of GA, SMPSO, and 
SHGAPSO for optimization of WDN design problems are 
evaluated by applying them to a real-life WDN in Iran. 
This network was already designed and the cost of the 
network was available, and optimized by a consulting 
private company.

6.1. Jangal network

The WDN of Jangal is skelebrated and includes 37 
pipes, 24 nodes, and one reservoir with the head of 962 m 

(Fig. 3). The aim of the optimal design of this network is 
the rehabilitation and expansion of the existing WDN. To 
reach this purpose, some of the existing pipes that are of 
diameters larger than 100 mm were involved in the analy-
sis of future conditions. Polyethylene pipes with a Hazen–
Williams coefficient of 130 have been used to design the 
network. The details of nodes and pipes of the network 
are presented in Table 2, and the set of commercially avail-
able polyethylene pipe diameters along with the pertinent 
costs are presented in Table 3. In this article, the minimum 
and the maximum pressure limit areas were summed to be 
maintained within 14–60 m, respectively, and the minimum 
allowed velocity must not be lower than 0.2 m/s [49].

Fig. 2. Solution methodology.

Fig. 3. Layout of Jangal network.
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Fig. 4 demonstrates the convergence rate graph of the 
optimization algorithms when applied to Jangal network.

In order to avoid the impact of the random nature of 
the initial population on the convergence, the algorithms 
were run 10 times and all the results were presented in 
Table 4. As can be seen, the SHGAPSO algorithm obtained 
the best value at a cost of 1.034 × 109 rials over 10 times 
run of the GA, SMPSO, and SHGAPSO algorithms.

As observed, not only the rate of convergence is 
improved in the SHGAPSO, but also it is possible to obtain 
a solution at a lower cost than those of the other two meth-
ods (GA and SMPSO methods). In this study, to eliminate 
the effect of the random nature of the initial population 
on the convergence rate, the initial population gener-
ated randomly was considered the same for all the three 
algorithms.

The results obtained for the Jangal network using the 
three optimization methods are listed in Tables 5 and 6 in 
comparison with the ones suggested by the consulting 
engineers’ company. As can be seen, the constraints repre-
senting nodal pressure limits, velocity, and head loss gradi-
ent in pipes are within the permissible range.

Table 7 shows the final costs along with a summary of 
the results obtained for the Jangal network when it was 
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Table 3
Pipe sizes and costs for Jangal network

Pipe  
number

Diameter  
(mm)

Cost  
(Rial/m)

Pipe  
number

Diameter  
(mm)

Cost  
(Rial/m)

1 76.6 49,560 6 191.8 305,200
2 93.8 73,360 7 213.2 375,200
3 106.6 94,360 8 238.8 470,400
4 136.4 154,000 9 268.6 593,600
5 170.6 239,680 10 302.8 753,200

Fig. 4. Convergence of GA, SMPSO, and SHGAPSO algorithms 
in Jangal network optimization.
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optimally designed by the four different methods. Since 
the pipeline (pipe 25) is quite long, all four methods have 
assigned the largest available diameter to it. The cost of 
this pipe has been disregarded at the final costs, so only 
those of the designed pipes (pipes 1–24) have been taken 
into account. As can be seen, SHGAPSO outperforms the 
other two algorithms, giving a design cost by 26% lower 
than the one suggested by the consulting engineers, while 
GA and SMPSO have presented optimal solutions with 
16% and 21% cost reduction, respectively. Furthermore, 
in GA, SMPSO, and SHGAPSO, the minimum veloc-
ity constraint of the pipes, which is 0.2 m/s, is satisfied 
unlike that of the consulting engineers’ method in which it 
is 0.13 m/s. All the other constraints have been met by all 
four methods.

To show the difference between network optimal design 
by an applied method in this study and the earlier meth-
ods, the design of the Jangal network was optimized by 
only using SHGAPSO algorithm and the constraint was 
considered as the maximum velocity constraint equal to 
2 m/s [49] without considering maximum head loss gradi-
ent constraint. Table 8 presents results of optimal design 
using SHGAPSO algorithm in two conditions: (I) maxi-
mum head loss gradient was defined as the constraint and 
(II) maximum velocity equal to 2 m/s was considered as 
the constraint.

Fig. 5–7 show pressure changes in nodes, velocity, and 
head loss gradient in pipes in both conditions I and II. Based 
on Table 7, the standard deviation of the pressure nodes 
in the design condition II with a value of 4.92 m is greater 
than that of condition I. It is also evident in Fig. 5 because 
the pressure nodes variations in design condition I are less 
than condition II. Furthermore, the pressure uniformity 
and surplus pressure in the nodes increase when the net-
work is designed with condition I. In this case, the hydraulic 

reliability of the network increases to compensate for the defi-
ciency pressure in the state of pipes and pumps failure [50].

Similarly, the standard deviation, velocity variations, 
and head loss gradients in pipes in design condition II are 
much higher than in design condition I. Fig. 6 demonstrates 
that the maximum velocity in design condition II increases 
to 1.72 m/s, while in design condition I the velocity changes 
within the range of 0.21–1.07 m/s. Fig. 7 demonstrates 
that the head loss gradient in design condition II has very 
high variations and higher values in comparison to design 
condition I, which results in a large loss of water energy in 
the pipes of network and flow turbulence.

It can be concluded that in the proposed optimal 
design method presented in this paper and with using the 
maximum head loss gradient constraint, even though the 
network design cost increased by 27.74% economically 
compared to the design condition I and hydraulics param-
eters of the network were designed at optimum values, 
reliability increased, and energy loss decreased.

6.2. Sensitivity analysis

The most important step before starting the optimi-
zation process is to find the best value for the algorithm 
parameters. To reach this purpose, the parameters of SMPSO 
and GA algorithms were changed in their standard range 
and their sensitivity was calculated. Due to the importance 
of the initial population size for the start of the algorithm, 
first, this parameter was examined. At the outset, different 
initial populations were introduced to the SMPSO and GA 
algorithms and the best one was selected for the Jangal net-
work. As can be seen from Fig. 8 population size 50, 100, 150, 
200, 250, and 300 were examined. Least cost was obtained by 
considering the population size equal to 200 for both algo-
rithms equal to 1.329 × 109 and 1.403 × 109 Rials, respectively. 
While determining population size for SMPSO algorithm 
the values of w = 0.9, wdamp = 1, and c1 = c2 = 2 and for GA 
algorithm Pc = 0.8 (crossover probability), Pm = 0.5 (muta-
tion probability), and mu = 0.01 (mutation rate) was selected 
by default.

By considering the population size of 200, w value in its 
standard range increased from 0.4 to 0.9 and its behavior 
was investigated. The least cost of the network was obtained 
(1.228 × 109 Rials) by w = 0.4 (Fig. 9). By iterative runs of the 
algorithm, the appropriate interval for wdamp was suggested 
(0.99–1). Finally, after sensitivity analysis in this interval, 
the optimum solution was obtained at wdamp = 0.998 equal 
to 1.128 × 109 Rials (Fig. 10). The tests were performed on 
the values of c1 and c2 within their permissible range [2–4] 
and as seen in Fig. 11, c1 and c2 are very sensitive parame-
ters and it is time-consuming to determine their exact val-
ues. The minimum cost was obtained from c1 = c2 = 2.05 and 
equal to 1.102 × 109 Rials after examining the simultaneous 
changes of these two parameters.

Based on previous research on the optimal design of 
water and wastewater networks using GA, the Roulette 
Wheel method is better than other random and tournament 
selection methods. Also, the uniform crossover operator 
performs better than single-point and two-point crossover 
[10,51]. Thus in this paper, the Roulette Wheel method and 
uniform crossover operator were applied. To examine the 

Table 4
Result of running algorithms 10 times

Run number Methods

Consulting 
company 
(106 rials)

GA  
(106 
rials)

SMPSO 
(106 
rials)

SHGAPSO 
(106 rials)

1

1.403

1.169 1.144 1.112
2 1.305 1.204 1.201
3 1.178 1.213 1.156
4 1.170 1.161 1.068
5 1.403 1.329 1.321
6 1.245 1.247 1.221
7 1.167 1.102 1.034
8 1.185 1.119 1.114
9 1.190 1.170 1.155
10 1.180 1.122 1.034
Best 1.403 1.167 1.102 1.034
Worst 1.403 1.403 1.329 1.321
Average 1.403 1.219 1.181 1.142
Standard deviation 0.000 0.074 0.066 0.085
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Fig. 5. Nodes pressure variations in network optimal design for condition I and II.

Fig 6. Pipes Velocity variations in network optimal design for condition I and II.

Fig 7. Pipes headloss gradient variations in network optimal design for condition I and II.
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sensitivity of Pc and Pm parameters, their values were changed 
from (0.6–1) to (0.1–1), respectively, and their best values for 
Jangal network were obtained Pc = 0.8 (cost = 1.293 × 109 Rials) 
and Pm = 0.3 (cost = 1.182 × 109 Rials) (Figs. 12 and 13). The 
mutation is one of the most important GA operators and in 
this paper, its values increased from 0 to 0.05 (Fig. 14). The 
network cost was reduced to 1.167 × 109 by mu = 0.01 but 

by increasing the mutation rate to 0.04, the cost gradually 
increased. In SHGAPSO, the algorithm parameters are the 
same as those of the sub-algorithms.

7. Conclusions

In this research, GA, a modified version of PSO, and 
a novel hybrid optimization algorithm referred to as 
SHGAPSO, were utilized to optimize the pipe sizes of 
WDNs. The performances of these methods were then 
evaluated by applying them to a real-life WDN in Iran, 
Jangal city. Additionally, an engineering idea was taken 
into account which is a practical constraint on the head 
loss gradient in pipes. The proposed constraint replaces 
the maximum velocity limit. The results demonstrated that 
SHGAPSO remarkably outperforms the other two algo-
rithms as it could find an optimal design with a cost lower 
than that of the configuration suggested by the consulting 
company. This is while the cost reductions obtained by GA 
and SMPSO were 16% and 21%, respectively. Moreover, 
in GA, SMPSO, and SHGAPSO methods the constraint on 
minimum velocity in the pipes, which was 0.2 m/s, was Fig. 8. Changes of population size of SMPSO and GA algorithms 

for the Jangal network.

Fig. 9. Changes of w for Jangal network. Fig. 10. Changes of wdamp for Jangal network. 

Fig. 11. Changes of c1 and c2 for Jangal network.
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met unlike the one obtained using the method employed 
by the consulting company, in which the minimum veloc-
ity is 0.13 m/s. The convergence rate is considerably better 
in case the SMPSO algorithm is used. It was observed that 
widely explores the search space, leading to a lower con-
vergence rate than that of SMPSO. In short, it can be con-
cluded that the SHGAPSO algorithm has kind of removed 
the restrictions of GA and SMPSO in a way that the result-
ing hybrid algorithm performs quite better when finding 
the least-cost design of WDNs. Furthermore, to show the 
performance of the introduced constraint (maximum head 
loss gradient per 1,000 m) in this study, the optimal design 
of the studied network was evaluated in both cases with 
and without considering this constraint. The results showed 
that the application of maximum head loss gradient leads to 

not only uniformity and excess pressure in the nodes to the 
minimum permissible pressure and an increase in network 
hydraulic reliability but also uniformity and reduction of 
velocity and head loss gradient in pipes which consequently 
results in network energy loss reduction.
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