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a b s t r a c t
For effective dye removal from wastewater, chitosan was simultaneously cross-linked with poly-
ethylenimine (PEI) and triethylenetetramine (TETA) to prepare two kinds of polyamine modified 
chitosan adsorbents PEI-CCTS and TETA-CCTS, respectively. The physicochemical properties of 
the obtained materials were characterized by Fourier-transform infrared spectroscopy, scanning 
electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and TGA. In adsorp-
tion experiments, TETA-CCTS and PEI-CCTS showed better adsorption performance for reactive 
brilliant red (RBR) compared with chemically cross-linked chitosan (CCTS), and the adsorption 
capacity per unit area was increased of 83.15% and 118.93%, respectively. The effects of experimental 
parameters such as pH and ionic strength on the absorption process of TETA-CCTS and PEI-CCTS 
for RBR were investigated in detail. The adsorption kinetics and equilibrium adsorption data of 
dye wastewater onto adsorbents were fitted with various models. All in all, TETA-CCTS and PEI-
CCTS, with simple preparation methods and high adsorption capacity, were expected to be widely 
used for the treatment of dye wastewater.
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1. Introduction

With the development of industrialization, the treat-
ment of environmental pollutants has become a serious 
problem [1]. Synthetic dyes, with low production costs, 
bright colors, and high resistance towards environmental 
factors, have been widely used for most types of industrial 
applications [2]. However, these dyes, especially the azo 
ones and their degradation products are detrimental to the 
environment and human beings owing to their toxicity and 
carcinogenic effects [3]. Even with low concentrations of 
dyes, the water quality will be deteriorated exponentially, 
thereby affecting the aquatic ecosystem [4,5]. Therefore, 
it is urgent to search for an effective approach to remove 
the dyes from wastewater [6].

Recently, a series methods including coagulation/
floccu lation [7], biological oxidation [8], ion-exchange [9], 
photocatalytic degradation [10], and adsorption [11] have 
been employed into dye wastewater scavenging, among 
which, adsorption is considered as the most effective and 
economic one [12].

Among varieties of adsorbents, chitosan viewed as a 
suitable candidate has been extensively employed in var-
ious forms for dyes removal. As a natural polymer, chi-
tosan has a series of advantages such as low cost, excellent 
biocompatibility, environmental friendliness, and antibac-
terial activity [13–15]. The presence of a large number of 
hydroxyl and amino functional groups in its polymer chain 
moiety exerts an outstanding ability to interact with a wide 
variety of molecules via physical and chemical forces [16]. 
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However, during adsorption, pure chitosan still has its own 
shortcomings including low mechanical strength, inade-
quate absorption sites, and finite adsorption surface, which 
seriously limits its application to be an effective adsorbent 
[17]. Therefore, it is necessary to remedy these intrinsic 
defects and further improve its adsorption capability.

In order to overcome these shortcomings, chemically 
cross-linked chitosan (CCTS) has been prepared by using 
some different cross-linking agents such as glutaraldehyde 
[18], epichlorohydrin [19], tripolyphosphate [20], ethylene-
diaminetetraacetic acid [21], adipic acid dihydrazide [22], 
and genipin [23]. Despite their merits, the adsorption capac-
ity of CCTS will be decreased owing to the consumption 
of the amine and hydroxyl groups of chitosan during the 
cross-linking reaction [24]. For improving the efficiency of 
dyes extraction, to date, CCTS has been further modified 
with other materials such as poly(vinylbenzyl chloride – 
p-divinylbenzene), ethylenediaminetetraacetic acid, eth-
ylenediamine, triethylenetetramine, xanthate and thiourea 
[16,25–28]. Among these modified methods, the introduc-
tion of active moieties onto chitosan, especially −NH2− or −
NH−, causes a great affinity for removing anionic dyes from 
aqueous solutions. In this study, aminated chitosan materials 
were prepared by simultaneous cross-linking of polyamine 
reagents polyethylenimine (PEI) and triethylenetetramine 
(TETA) respectively, and utilized into reactive brilliant red 
(RBR) removal from aqueous solutions. The chemical pro-
cesses for preparing the adsorbents are presented in Fig. 1.

2. Experimental setup

2.1. Reagents and instruments

Chitosan (CTS, deacetylation degree ≥ 90%, <200 mPa s), 
hydrochloric acid (HCl, 36%–38%), sodium hydroxide 
(NaOH), sodium chloride (NaCl) and acetic acid (AA) 
were purchased from Sinopharm Chemical Reagent Co. 
Ltd., (China); glutaraldehyde (GA, 50% in water) was pur-
chased from Beijing Huawei Ruike Chemical Co., Ltd., 
(Beijing, China); polyethylenimine (PEI, molecular weight 
of 2 × 104–5 × 104) was purchased from Wuhan Qionglong 
Chemical New Material Co., Ltd., (Wuhan, China); TETA was 
purchased from Shanghai Meryer Chemical Technology Co., 
Ltd. (Shanghai, China); RBR was purchased from Shanghai 
Jiaying Chemical Co., Ltd. (Shanghai, China); deionized 
water was prepared in the laboratory.

Fourier-transform infrared spectrometer (FTIR, Spectrum 
Two, USA); scanning electron microscope (SEM, SU8010, 
Japan); laser particle size distribution analyzer (BT-2002, 
Dandong Bettersize, China); X-ray diffraction (XRD, 
Dandong Haoyuan, China); UV-visible spectrophotometer 
(UV-2602, China) were used as analytical instruments.

2.2. Preparation of TETA-CCTS

CTS powder (2 g) was sufficiently mixed with an acetic 
acid solution (100 mL, 2%) by stirring. TETA (0.25 mL) was 
dissolved in deionized water (5 mL), then adjusted the 
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Fig. 1. Chemical process for preparing functional polyaminated adsorbents PEI-CCTS and TETA-CCTS.
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pH of the solution to weakly acidic with 1 mL acetic acid, 
followed by adding the prepared CTS-acetic acid solution 
and treated with ultrasound. Subsequently, a GA solution 
(2 mL, 25%) was added and continued to stir at 40°C for 2 h, 
then added 1 mol L–1 NaOH solution and further reacted 
for 2 h. The obtained solid product was washed with water 
and ethanol repeatedly and dried at 45°C under vacuum, 
thus, successfully preparing TETA-CCTS.

2.3. Preparation of PEI-CCTS

The preparation process of PEI-CCTS was similar to 
that of TETA-CCTS. In brief, PEI (1 mL) was dissolved in 
deionized water (5 mL), and the pH of the solution was 
adjusted to weak acid using acetic acid (1 mL), then added 
with the prepared CTS-acetic acid solution and treated 
under ultrasound for 30 min. A GA solution (2 mL, 25%) 
was added to the mixture and stirred for 2 h, followed by 
adding a NaOH solution (1 mol L–1) and reacted for another 
2 h to obtain the precipitate. After filtration, washed with 
water and ethanol, as well as dried, PEI-CCTS was success-
fully prepared.

2.4. Adsorption experiments

A stock solution of 2,000 mg L–1 RBR was prepared and 
diluted with deionized water into diverse concentrations. 
The adsorption kinetics and adsorption thermodynamics 
of CCTS, TETA-CCTS, and PEI-CCTS were systematically 
investigated.

A total of 4 mg prepared adsorbents were added to 
a number of 50 mL conical flasks, then the RBR solution 
(40 mL) was added into these flasks. The flasks were placed 
in a thermostat shaker of 20°C and shaken at 120 rpm. 
A conical flask was taken at intervals and the corresponding 
concentration was determined by UV. The adsorption capac-
ities of the adsorbents were calculated by Eq. (1), thereby 
investigating the adsorption kinetics.

Q
V C C

mt
t=

−( )0  (1)

where Qt (mg g–1) is the adsorption amount at t moment; 
V (mL) is the volume of the adsorbate; m (g) is the mass of 
the adsorbent; C0 and Ct (mg L–1) are the concentration of 
dye solution at the initial time and t moment, respectively.

The prepared adsorbents (4 mg) were added into a 40 mL 
dye solution with different concentrations. The isothermal 
adsorption experiments were performed in a constant tem-
perature oscillator at 120 rpm. After adsorption saturation, 
the concentration of the dye solution in the supernatant was 
determined by UV. The equilibrium adsorption amount was 
calculated according to Eq. (2).

Q
V C C

me
e=

−( )0  (2)

where Qe (mg g–1) is the equilibrium adsorption amount; V 
(mL) is the volume of the adsorbate; m (g) is the mass of the 

adsorbent; C0 and Ce (mg L–1) are the initial and equilibrium 
concentration of dye solution, respectively.

3. Result and discussion

3.1. Characterization of adsorbents

Fig. 2 shows the infrared spectra of CCTS, TETA-
CCTS, and PEI-CCTS. In the spectrum of CCTS (Fig. 2c), 
the broad peak near 3,430 cm–1 was the stretching vibration 
of −OH and −NH2, which also confirmed the presence of 
the hydrogen bond in the molecular structure. The bend-
ing vibration of the amine group in the chitosan molecular 
generated an absorption peak at a wavelength of 1,603 cm–1. 
For those polyamine modified adsorbents, PEI-CCTS 
(Fig. 2a), and TETA-CCTS (Fig. 2b), the peak at 1,597 cm–1 
shifted to 1,573 and 1,574 cm–1 respectively, indicating that 
the amino group was involved in the reaction [29].

Fig. 3 shows the scanning electron microscopy images of 
CCTS, TETA-CCTS, and PEI-CCTS. As shown in Fig. 3, all 
three adsorbents are irregular in shape and have relatively 
tight surfaces.

The N content of the three kinds of adsorbents was 
analyzed by energy-dispersive X-ray spectroscopy (Fig. 4). 
After the cross-linking reaction, the N content of PEI-CCTS 
and TETA-CCTS was increased between 9.9% and 6.5%, 
respectively compared with that of CCTS.

As shown in Fig. 5, the particle size distribution of 
TETA-CCTS and PEI-CCTS is relatively narrow, mainly 
concen trating at 151 and 184 μm, respectively. In contrast, 
CCTS has a wide particle size distribution. In addition, 
the surface areas of CCTS, TETA-CCTS, and PEI-CCTS 
are 0.10, 0.05, and 0.04 m2 g–1, respectively.

As presented in Fig. 6, all three adsorbents have an 
obvious diffraction peak at 20.14°, which can be attributed 
to the regular arrangement of the chitosan chain segment 
[30]. Compared with CTS powder, the diffraction peak 
intensity of CCTS at 20.14° became weak, which may be 
due to the fact that the regularity of the chitosan chain was 
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Fig. 2. Fourier-transform infrared spectroscopy spectra of three 
adsorbents (a) PEI-CCTS, (b) TETA-CCTS, and (c) CCTS.
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Fig. 3. Scanning electronic microscopy images of (1a and 1b) CCTS, (2a and 2b) TETA-CCTS, and (3a and 3b) PEI-CCTS.

Fig. 4. Energy-dispersive X-ray spectroscopy of CCTS, PEI-CCTS, and TETA-CCTS.
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reduced by the cross-linking reaction, thereby resulting in 
a decrease in the crystallinity [31]. In addition, the diffrac-
tion peak intensity of TETA-CCTS and PEI-CCTS at 20.14° 
enhanced. This may be because a large number of hydrogen 
bonds can be formed during the process of simultaneous 
cross-linking with aminated substance, thereby leading to 
an increase in the crystallinity. Furthermore, as a macro-
molecular compound, PEI possesses the specific properties 
of the polymer. Therefore, the diffraction peak intensity of 
PEI-CCTS was stronger than that of TETA-CCTS.

From Fig. 7, the TGA curves of CTS powder, CCTS, TETA-
CCTS, and PEI-CCTS can be divided into three weight-loss 
stages. The first weight-loss stage, below 200°C, was due to 
the evaporation of the adsorbed water [32]. The temperature 
from 200°C to 400°C was the second stage of weight-loss, 
which can be attributed to the decomposition of the acetyl in 

the main chain of chitosan molecules. The third weight-loss 
stage, higher than 400°C, was possibly caused by the decom-
position of the chitosan main chain. Compared with CTS 
powder, the regularity of the chitosan chain for CCTS, TETA-
CCTS, and PEI-CCTS was destroyed by the cross-linking 
reaction, thereby decreasing their degradation temperature.

3.2. Study on adsorption properties of microspheres

3.2.1. Study on adsorption kinetics

Fig. 8 depicts the adsorption kinetics curves of CCTS, 
TETA-CCTS, and PEI-CCTS for anionic dye RBR. It can be 
seen that the adsorption amount of CCTS, TETA-CCTS, 
and PEI-CCTS for RBR in 3 h reached 320.55, 180.15, and 
250.17 mg g–1, respectively.

To further explore the adsorption kinetics process 
of three particles on dye wastewater, pseudo-first-order 
kinetic model and pseudo-second-order kinetic model was 
utilized to fit the adsorption kinetics data according to 
Eqs. (3) and (4) [33].

Pseudo-first-order kinetic equation:

ln( ) lnQ Q Q k te t e− = − 1  (3)

Pseudo-second-order kinetic equation:

t
Q k Q

t
Qt e e

= +
1

2
2  (4)

where Qt and Qe are the adsorption capacities at t moment 
and adsorption equilibrium, respectively; k1 and k2 are 
equilibrium adsorption rate constant.

As shown in Table 1, a high linear correlation coefficient 
R2 can be obtained by fitting with both pseudo-first-order 
and pseudo-second-order kinetic models for PEI-CCTS, 
and the equilibrium adsorption capacity Qe obtained by 
the pseudo-second-order kinetic model is closer to the 
experimental value Qexperimental. For TETA-CCTS, the linear 

 
Fig. 5. Particle size distribution of CCTS, TETA-CCTS, 
and PEI-CCTS.
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coefficient derived from the pseudo-second-order model is 
higher than that fitted with the pseudo-first-order model. 
The results indicated that the adsorption process of RBR 
by PEI-CCTS and TETA-CCTS was mainly controlled by 
chemical adsorption. According to the surface areas of 
three particles (Fig. 5), it was calculated that the adsorp-
tion capacities of CCTS, TETA-CCTS, and PEI-CCTS for 
RBR were 3,477.7; 6,369.4; and 7,613.75 mg m–2, respectively. 
Therefore, it can be concluded that PEI-CCTS showed the 
best adsorption performance.

3.2.2. Effect of pH value and ionic strength

Fig. 9 represents the adsorption capacities of CCTS, 
PEI-CCTS, and TETA-CCTS for RBR under different pH. 
The maximum adsorption amount of PEI-CCTS and TETA-
CCTS reached 323.30 and 340.01 mg g–1 when pH was 2. 
With the increase of pH, the adsorption capacities decreased. 
The amino groups on the adsorbents were in protonation 
state under acidic condition, thereby easily combining 
with negatively charged RBR via coulomb force. Due to 
the cross-linking of TETA and PEI with CTS, the number 
of amino groups increased, resulting in a higher degree 
of protonation of TETA-CCTS and PEI-CCTS in the acidic 
environment compared with CCTS. However, in an alkaline 
environment, the degree of protonation of amino groups 
on the surface of the adsorbent decreased, which resulted 
in a decrease in the adsorption capacities of RBR.

The adsorption abilities of the adsorbents for RBR 
were investigated at various ionic strength and the results 
are presented in Fig. 10. The adsorption capacities of three 
adsorbents decreased with the increase of NaCl concen-
tration in solution. When the concentration of NaCl in the 
solution increased from 0 to 0.1 mol L–1, the adsorption 

capacities of PEI-CCTS and TETA-CCTS for RBR decreased 
by 10.21% and 5.30%, respectively. The reason may be that 
a large amount of Cl– and Na+ in the solution will compete 
with the dye for adsorption, and weaken the adsorption 
effect of the adsorbents, eventually leading to a decrease 
in the amount of the adsorption [34].

3.2.3. Isothermal adsorption study and parameter fitting

As shown in Fig. 11, the adsorption capacity of TETA-
CCTS for RBR increases with the increase of the initial 
concentration of dye. In addition, the temperature increase 
also generates an active effect on the adsorption amount of 
RBR by TETA-CCTS, which indicates that adsorption is an 
endothermic process. The isothermal adsorption data were 
fitted with different isothermal adsorption data, and the 
corresponding formulas are as follows [35–37]:

Langmuir isothermal equation:

C
Q b Q

C
Q

e

e L m

e

m

= +
1  (5)

b K M
L = − ×( )1

ρ
 (6)

R
bCL =

+( )
1

10

 (7)

Freundlich isothermal equation:

ln ln
ln

Q K
C
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Fig. 8. Effect of adsorption time on adsorption capacity of CCTS, TETA-CCTS, and PEI-CCTS for RBR; pseudo-first/second-order 
kinetic model.

Table 1
Adsorption kinetic parameters of CCTS, TETA-CCTS, and PEI-CCTS

Qexperimental 
(mg g–1)

Pseudo-first-order kinetic model Pseudo-second-order kinetic model

Qe (mg g–1) k1 min–1 R2 Qe (mg g–1) k2 (g mg–1 min–1) R2

CCTS 347.77 334.32 0.0164 0.966 445.63 3.36 × 10–5 0.940
PEI-CCTS 304.55 203.20 0.0107 0.971 266.31 3.94 × 10–5 0.956
TETA-CCTS 318.47 252.15 0.0140 0.786 383.63 3.11 × 10–5 0.869
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Dubinin–Radushkevitch isothermal equation:

ln lnQ Q Ke m D= − ε2  (9)

ε = +








RT

Ce
 ln 1 1  (10)

E
KD

=
−

1
2

 (11)

Temkin isotherm equation:

Q RT
b

K Ce
T

T e= ( )ln  (12)

The fitting parameters obtained from the four isother-
mal adsorption models are listed in Table 2. Langmuir 
isothermal adsorption model showed the best fitting 

performance, the R2 value at 20°C, 30°C, and 40°C reached 
0.995, 0.994, and 0.986, respectively. The values of RL at 
different temperatures were all between 0 and 1, indi-
cating that the conditions were favorable for adsorption 
[38]. In addition, the 1/n values of the Freundlich fitting 
parameters were all between 0 and 1 at different tempera-
tures, illustrating that the adsorption process was pref-
erential adsorption. Furthermore, Gibbs free energy ΔG 
was calculated according to the equilibrium constant K at 
different temperatures, and the values of ΔH and ΔS were 
calculated by Van’t Hoff equation [39].

∆G RT K= −  ln  (13)

lnK H
RT

S
R

= − +
∆ ∆  (14)

Table 3 shows the thermodynamic data of the adsorp-
tion process. The negative values of ΔG at different tempera-
tures indicated that the adsorption process was spontaneous. 
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The absolute values of ΔG increased with the increase 
of the temperature, indicating that the temperature rise 
was beneficial for adsorption. The positive values of ΔH 
and ΔS illustrated that the adsorption was an endother-
mic process, and the degree of freedom in the solid-liquid 
interface increased during the adsorption.

4. Conclusions

In order to effectively remove RBR from aqueous solu-
tions, PEI and TETA were simultaneously cross-linked with 
chitosan to prepare aminated adsorbents PEI-CCTS and 
TETA-CCTS, respectively. Characterization of two adsor-
bents using various techniques confirmed their successful 
preparation. The adsorption experiments indicated that 
both PEI-CCTS and TETA-CCTS were effective adsorbents 
for the treatment of RBR in aqueous solutions. The increase 
of pH, as well as, ionic strength, will cause an adverse 
effect on the adsorption capacity of aminated particles for 
RBR removal. Furthermore, the adsorption kinetics and iso-
therms of RBR on PEI-CCTS and TETA-CCTS followed the 
pseudo- second-order kinetic model and Langmuir isotherm 
model, respectively. The negative value of ΔG confirmed 
that the adsorption process was spontaneous. Based on 
the experiment results, it was concluded that the adsorp-
tion processes of RBR by PEI-CCTS and TETA-CCTS were 
mainly controlled by chemical adsorption.
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