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a b s t r a c t
The activation of hematite was conducted via thermal treatment in a hydrogen atmosphere to form 
zero-valent iron (ZVI). The physicochemical properties of ZVI before and after reaction were char-
acterized via X-ray diffraction and X-ray photoelectron spectroscopy. The effects of ZVI dose, H2O2 
concentration, initial pH, reaction temperature, initial MB concentration, and different anions on 
the degradation of MB were examined. The degradation mechanism was elucidated by combining 
the analysis of total organic carbon (TOC) removal, electron paramagnetic resonance, and UV-Vis. 
When the ZVI dose is 69 mg/L with an initial pH of 3.0, approximately 100% of color was removed, 
and a 47% TOC degradation was achieved. Furthermore, after ZVI was cycled seven times, the 
decolorization efficiency had only a slight decrease, which implies an excellent stability. Fe2+ released 
by ZVI is important and was essential in the catalytic H2O2 degradation of MB. The experimental 
data showed that H2O2 was catalyzed by activated hematite in the Fenton process. This observa-
tion indicated that the activation of hematite to prepare ZVI was a promising method and had a 
considerable application value and potential for the MB degradation.
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1. Introduction

As well know, advanced oxidation processes (AOPs) [1,2] 
(e.g., Fenton, photolysis, and ozonation) are widely used 
in wastewater treatment. Organic pollutants are oxidized 
using the abovementioned methods to harmless prod-
ucts with high biodegradability and low chemical stabil-
ity [3,4]. The Fenton process is a potential method to treat 
dye wastewater due to the generation of hydroxyl radicals 
that can degrade non-biodegradable organic pollutants. 

Methylene blue (MB), which is an extensively used and 
toxic dye, can result in hemolysis, skin irritation, nausea, 
vomiting, and respiratory distress [5,6]. Thus, MB is cho-
sen to be the target pollutant. However, a conventional 
homogeneous Fenton process has some restrictions due 
to its drawbacks including narrow pH range (pH 2.0–3.0), 
the need to neutralize the solution after the treatment, and 
the generation of iron-containing sludge [7–9]. Thus, a het-
erogeneous Fenton process was proposed to solve these 
common problems of the traditional homogeneous Fenton 
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process. Recently, a heterogeneous Fenton process, which is 
based on Fe-bearing materials [e.g., zero-valent iron (ZVI) 
[10–12], magnetite [13], siderite [8,14], and goethite [15], has 
received considerable attention. The heterogeneous Fenton 
reaction system retains the reaction rate and non-selective 
oxidation of a classical Fenton reaction and also broadens 
the reaction pH value. Moreover, it is important to develop 
the heterogeneous Fenton process to reduce the formation 
of iron sludge and increase recyclability. To our knowledge, 
ZVI (Fe0) has been widely used as a well-established cata-
lyst in heterogeneous Fenton processes to eliminate various 
organic and inorganic pollutants (e.g., chlorinated solvents 
[16], polychlorinated biphenyls [17,18], dye effluents [19], 
and heavy metals [20]) from the environment due to its 
large specific surface area [21], strong surface activity and 
low cost. Donadelli et al. [22] used ZVI to catalyze H2O2 to 
degrade azo-dye Acid Black 1 in dye wastewater. Chang et 
al. [11] reported that ZVI coupled with UV/H2O2 processes 
effectively decolorized Acid Black 24 wastewater. Ertugay 
and Acar [12] determined that a 100% decolorization of 
Direct Blue 71 was obtained using ultrasound/ZVI/H2O2. 
There are many effective methods for producing ZVI such 
as hydroboron-palladium acetate [16,23], bimetallic core/
shell Fe/Ni nanoparticles [19], and sodium borohydride 
reduction [20]. In addition, hydrogen reduction is an effi-
cient method to prepare ZVI, which possesses high purity, 
great magnetic performance, and excellent stability [24,25]. 
In this study, to lower the preparation cost and promote the 
comprehensive utilization of natural minerals, oolitic hema-
tite was selected as the source to prepare ZVI.

Oolitic hematite is a mineral resource with porous 
structure and high chemical reactivity [26]; oolitic hema-
tite accounts for 9% of the total iron ore reserves in China 
[27]. Many studies have reported the use of hematite for the 
removal of heavy metal ions or dye wastewater by adsorp-
tion and redox reactions [28–31]. However, little attention 
has been focused on the Fenton process. Therefore, in this 
study, the activation of the oolitic hematite catalyst was car-
ried out to prepare ZVI to catalyze the H2O2 degradation of 
MB. The study objectives are to (1) activate oolitic hematite 
by hydrogen to obtain ZVI, (2) investigate the effects of 
various conditions (e.g., ZVI dose, H2O2 concentration, ini-
tial pH, reaction temperature, initial MB concentration, and 
different anions) on the degradation efficiency, and (3) illus-
trate the degradation mechanism, stability, and reusability.

2. Experimental

2.1. Materials and reagents

MB (C16H18ClN3S) was purchased from Tianjin Fuchen 
Chemical Reagents Factory of China. Hydrogen perox-
ide (H2O2) (30%), HCl, NaOH, sodium chloride (NaCl), 
sodium sulfate (Na2SO4), sodium nitrite (NaNO2), sodium 
nitrate (NaNO3) were of analytic grade and used without 
any pretreatment. Oolitic hematite [30–32] was obtained 
from the Heishiban region of Enshi, Hubei Province, China 
and was mainly composed of hematite, a small amount 
quartz, illite, and apatite [26] and it’s chemical composition 
contains Fe2O3 82.90 wt.%, SiO2 8.20 wt.%, Al2O3 4.10 wt.%, 
CaO1.90 wt.%, P2O51.30 wt.%, MgO 0.70 wt.%, MnO 
0.20 wt.%.

2.2. Experimental procedure

In this study, oolitic hematite was used to prepare ZVI 
by hydrogen reduction. Briefly, 3.0 g of oolitic hematite 
(<0.075 mm) was placed in a tube furnace and heated to a 
designated temperature at a rate of 10°C 1/min under H2 at a 
flow rate of 20 mL/min to obtain ZVI. All experiments were 
carried out in a 250 mL beaker containing 200 mL MB solu-
tion (50–500 mg/L). The pH of MB was adjusted based on the 
0.001–1.0 mol/L HCl and NaOH. The degradation reaction 
was initiated by adding a certain quantity of ZVI and H2O2 
using a blender. A total of 8.0 mL of the reaction solution 
was collected at designed time intervals and filtered using 
0.22 µm syringe filters (PES).

2.3. Analytical techniques

The MB concentrations were analyzed by a UV-
visible spectrophotometer (VIS-722N) at 665 nm. The MB 
structure was observed by a UV-vis spectrophotometer  
(Shimadzu, UV-1750). The X-ray diffraction (XRD) pat-
terns of the oolitic hematite and activated products were 
recorded by an X-ray diffractometer (D/max-RB, Japanese) 
with a Cu Kα radiation in the 2θ range of 5°–70° with a 
step size of 0.02°. The valence states of elements in the 
samples were determined by X-ray photoelectron spec-
troscopy (XPS, Thermo ESCALAB250Xi, America). The 
chemical information was measured by X-ray fluorescence 
spectrometry (Shimadzu, XRF-1800). The total organic car-
bon (TOC) of the reaction solution was determined by Mutil 
N/C 3000. The concentration of Fe2+ and Fe3+ was measured 
by the phenanthroline method. The electron paramagnetic 
resonance (EPR) experiment was carried out to analyze 
samples using an EPR spectrometer (JES-FA200, JEOL, 
Japan) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as 
the spin trapping agent.

3. Results and discussion

3.1. XRD and XPS results of ZVI before and after the reaction

Fig. 1a shows the XRD patterns of oolitic hematite 
and the activated products before and after the reaction. 
Combined with the standard cards (JCPD77-1060, JCPD12-
531, and JCPD86-2368), it can be observed that 2θ = 33.3°, 
35.8°, 40.9°, 49.6°, 54.2°, 57.6°, 62.6°, and 64.1° are the reflec-
tions of hematite. When the thermal treatment temperature 
reaches 300°C, the main phase in the thermally treated prod-
uct is still hematite, while the reflections intensity becomes 
weak. When the calcination temperature reaches 400°C, the 
reflections of magnetite appear at 2θ = 35.6°, 43.2°, 57.2°, 
and 62.8°, while the reflections of hematite almost entirely 
disappeared (Fig. 1a). When the temperature reaches 500°C, 
the reflections of ZVI begins to appear at 44.4° and 64.9°, 
but the peak intensity is weak. With temperature increas-
ing to 600°C, the reflections of ZVI are stronger than those 
at 500°C, which indicates that a highly crystalline ZVI was 
successfully prepared. The XRD peaks of ZVI after the reac-
tion were considerably weaker than those before the reaction, 
which indicates that ZVI was consumed during the reaction.

XPS was used to study the species on the surface of 
ZVI before and after the reaction. Fig. 1b shows that the 
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peaks at 706.9, 710.7, and 711.6 eV belong to Fe0, Fe2+, and 
Fe3+, respectively [33]. After the reaction, the peak of Fe0 at 
706.9 eV completely disappears, and the peak at 710.7 eV 
ascribed to Fe2+ is considerably reduced; the peak ascribed 
to Fe3+/TFe simultaneously increases, which indicates that 
Fe0 and part of Fe2+ were oxidized to Fe3+.

3.2. Effect of ZVI dose and H2O2 concentration

As shown in Fig. 2a, when only H2O2 (5.0 mM) was 
present, the decolorization efficiency of MB reached only 

25% due to the stable structure of MB. The decoloriza-
tion efficiency increases with an increase in the ZVI dose 
and reaches a maximum of nearly 100% in the presence of 
69 mg/L ZVI within 60 min, which indicates that the pres-
ence of ZVI is essential and induced heterogeneous Fenton 
reactions [Eqs. (1)–(3)] [34,35]. However, with a further 
increase in the ZVI dose, the decolorization efficiency of 
MB decreases, which may be attributed to the excess of 
Fe species that are formed by ZVI scavenged HO• via the 
reaction [Eq. (4)] [36,37]. The effect of H2O2 concentration 
is illustrated in Fig. 2b. Only 9% decolorization efficiency 
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Fig. 1. Characterization of ZVI (a) XRD patterns before and after reaction and (b) XPS spectra before and after reaction.
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is observed in the presence of only ZVI (69 mg/L), which 
indicates that the reduction caused by ZVI is small and can 
be neglected. The decolorization efficiency considerably 
increased in the presence of H2O2, which may be due to the 
formation of HO• when ZVI catalyzes H2O2. However, with 
a further increase in the H2O2 concentration to 10.0 mM, 
a slight decrease in the decolorization efficiency was 
observed. The decrease can be explained by captured HO• 
by excess H2O2, which leads to the formation of HO2

• with a 
lower oxidation ability, as shown in Eqs. (5) and (6) [34,38].

Fe0 + 2H+ → Fe2+ + H2 (1)

Fe2+ + H2O2 → Fe3+ + OH– + HO• (2)

2Fe3+ + Fe0 → 3Fe2+ (3)

Fe2+ + HO• → Fe3+ + OH– (4)

H2O2 + HO• → H2O + HO2
• (5)

HO2
• + HO• → H2O + O2 (6)

During the degradation process, a variation in the 
MB solution was recorded by UV-vis spectra at different 
reaction times, as shown in Figs. 2c–e. The results show 
one main band of MB with maximum absorption at 665 nm, 
while the small shoulder at 615 nm was attributed to the 
absorbance of the dye before degradation [39]. As shown 
in Fig. 2c, the absorption peak at 665 nm rapidly decreased, 
and the visible band of MB at 615 nm gradually disap-
peared, which indicated that a fast degradation of MB can 
be effectively achieved in the presence of ZVI and H2O2. 
In Figs. 2d and e, the existence of only ZVI or H2O2 cause 
the intensity of the absorption peak at 665 and 615 nm to 
slightly weaken. Thus, the MB degradation by ZVI or 
H2O2 is not dominant. The results of the experiment are 
consistent with the abovementioned results.

3.3. Effect of the initial pH

It is known that pH is one of the most important factors 
during HO• production in the heterogeneous Fenton pro-
cess [40,41]. The decolorization efficiency of MB at differ-
ent initial pH values is shown in Fig. 3a. At pH 3.0, the MB 
decolorization efficiency is the highest with a 9.48 mg/L/
min degradation rate. A further decrease in the pH value 
to 2.0 results in a poor degradation efficiency than that 
at pH 3.0. This occurs because excess H+ can react with 
HO• to form water [42], which results in a decline in the 
MB decolorization efficiency. When the initial pH value 
varied from 3.0 to 8.0, the decolorization efficiency of the 
MB sharply decreased from 100% to 19.7% within 90 min. 
The phenomenon occurs because acidic conditions are 
beneficial to the promoted generation of HO• [43]. In addi-
tion, the inhibition can be explained by the formation of a 
hydroxy iron complex and iron hydroxide precipitate and 
the reaction between OH– and H2O2, which releases O2 and 
decreases the HO• concentration [44,45]. The trend of Fe2+/
TFe overtime during the degradation process is shown in 

Fig. 3b. It is observed that Fe2+/TFe gradually increased and 
reaches the maximum value at 1.5 h. After 1.5 h, Fe2+/TFe 
gradually decreased because Fe2+ reacted with H2O2 to form 
large quantities of Fe3+, which increased the Fe3+ concentra-
tion and decreased the Fe2+ concentration. Simultaneously, 
the Fe2+ concentration was significantly higher at pH 3.0 
than that at pH 5.0 and 7.0. It is further demonstrated that 
ZVI was more easily converted to Fe2+ under acidic condi-
tions [46], which has a positive role on the dye decoloriza-
tion by H2O2.

3.4. Effect of the initial MB concentration and reaction 
temperature

In this study, a series of experiments were conducted 
to explore the effect of the initial MB concentration. As 
shown in Fig. 3c, the MB decolorization efficiency slightly 
decreased with an increase in the initial MB concentration 
from 50 to 500 mg/L. This occurred because the number 
of MB molecules increased. However, the amount of HO• 
was constant, which resulted in the decreasing degradation 
of MB [42,46].

Fig. 3d shows the effect of reaction temperature on the 
MB decolorization. An increase in the temperature from 
10°C to 25°C considerably enhanced the MB decolorization 
from 88% to 97% within 20 min. This phenomenon occurs 
because [8]: (1) high temperature is conducive to the 
release of Fe2+ from ZVI; (2) high temperature increases 
the formation of HO•, and (3) contributes to the molec-
ular diffusion of radicals. Compared with the decolor-
ization efficiency at 25°C and 40°C, little difference in the 
MB decolorization was observed.

3.5. Effect of anions

Inorganic anions were usually detected in dye waste-
water, and their presence affects the oxidation efficiency of 
the Fenton process [47–49]. In this section, Cl–, SO4

2–, NO2
– 

and NO3
– were selected as target anions to investigate the 

effect of coexisting anions, and the results are shown in 
Figs. 4a and b. There is little inhibition on the MB decol-
orization in the presence of Cl– and SO4

2– at concentrations 
from 0 to 100 mg/L. With an increase in the concentration to 
200 mg/L, inhibition of these anions can be observed over 
time. These results are observed because (i) both Cl– and 
SO4

2– can scavenge HO• to form other radicals that have a 
lower oxidation ability and (ii) Fe-anion complexes were 
generated [48,50]. For the nonspecific adsorption between 
ZVI and anions (e.g., NO3

– and NO2
–), the results are shown 

in Figs. 4c and d; the inhibitory effect was obvious with 
an increase in the concentration. This occurs because 
NO3

– and NO2
– can easily react with HO•, which results 

in a decrease in the HO• concentration and in a decline 
in the MB decolorization [51–53].

3.6. Kinetics study

To better understand the mechanisms in the hetero-
geneous Fenton reaction, the kinetics during the degra-
dation process needs to be elucidated. In this study, the 
first-order [Eq. (7)], second-order [Eq. (8)], and Behnajady– 
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Modirshahla–Ghanbery (BMG) [Eq. (9)] kinetic models [54] 
were used to analyze the kinetics of the MB degradation at 
different reaction conditions. The corresponding kinetic 
formulas are as follows:
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where C0 (mg/L) is the initial concentration of MB, Ct (mg/L) 
represents the MB concentration after the introduction of 
H2O2; k1 (1/min) and k2 (mg/L/min) represents the reaction 
rate coefficient of the first-order and second-order models; 
m and b are the constants involved in the reaction kinetics 
and Fenton oxidation capacity limits. The physical mean-
ing of 1/m is the initial degradation rate of the substance, 

and the higher is the value of 1/m, the faster is the initial 
degradation rate of the substance [54]. When the reaction 
time is sufficiently long to approach infinity, the 1/b value 
represents the theoretical maximum removal efficiency 
of the material, which is equal to the maximum oxidizing 
capacity of the Fenton reaction at the end of the reaction [55].

The obtained parameters are shown in Table S1, the val-
ues of correlation coefficients of the BMG model are higher 
than those of the first-order and second-order models. 
Therefore, the BMG kinetic model is the best model to 
describe the MB degradation at different reaction conditions.

The effects of the initial pH value, ZVI dose, and the 
H2O2 concentration on the 1/m and 1/b values are shown in 
Figs. 5a–c. It can be seen that the 1/m value first increases 
and then decreases with an increase in the initial pH val-
ues, ZVI doses, and H2O2 concentration, which means that 
the initial MB degradation rate first increases and then 
decreases with an increase in the initial pH value, ZVI dose, 
and H2O2 concentration. For 1/b, the initial MB degradation 
rate first increases and then decreases with an increase in 
the initial pH values and H2O2 concentration. It can be seen 
that the theoretical maximum oxidation capacity of ZVI 
first increases then decreases with an increase in the initial 
pH values and H2O2 concentration. With respect to the pH 
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(Fig. 5a), the value of 1/b at the pH value range from 5.0 to 
8.0 sharply decreases. This occurs because the higher solu-
tion pH is not conducive to the production of HO· due to 
the reduction of dissolved Fe2+. Fig. 5b shows that when the 
ZVI doses increase, the 1/b value remains at approximately 
1, which indicates that the maximum oxidizing capacity 
of ZVI achieved balance at a specific dose. Meanwhile, for 
the H2O2 concentration in Fig. 5c, the maximum oxidizing 
capacity of the catalyst reaches a maximum when the con-
centration of H2O2 reaches 0.5 mM, and then, the maximum 

oxidizing capacity decreases. This phenomenon occurs 
because excess H2O2 reacts with HO• to form other free rad-
icals for which the oxidizing capacity is weaker than that 
of HO• [56].

3.7. Reusability

To explore the stability of ZVI in practical applications, 
a cycling experiment was conducted at pH = 3.0, 50 mg/L 
MB, 5.0 mM H2O2, and 69 mg/L ZVI by reusing ZVI seven 
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times to study the MB decolorization. After every 8 h of 
reaction, the solution was centrifuged, and a reusable ZVI 
was obtained for the next experiment.

Fig. 6a shows that 94% MB decolorization efficiency was 
achieved for seven cycles. Therefore, ZVI has a recyclabil-
ity potential for the dye wastewater treatment process, and 
it also has good economic benefits for experimental appli-
cations. Fig. 6b shows the mineralization capacity of ZVI 
in a different system. When only ZVI or H2O2 was added, 
the TOC removal was very bad. However, in the presence 
of ZVI and H2O2, the TOC removal efficiency at pH = 3.0 
was higher than that at pH = 5.0, 7.0, and 8.0, which is con-
sistent with the previous experimental results in Figs. 2a 
and b, and 3a. Less than 50% TOC of the MB solution was 
degraded with a high removal rate (nearly 100%), which 
indicates that MB was converted into colorless intermedi-
ates. It was reported that the intermediates of the MB deg-
radation mainly include benzoquinone, hydroquinone, 
catechol, and resorcinol. The aromatic ring intermediate is 
further oxidized by HO• into short-chain carboxylic acids 
such as oxalic acid, formic acid, and fumaric acid [57,58].

4. Mechanism exploration

In the heterogeneous Fenton reaction, HO• is essential 
for removing the active group [59]. Radical capture experi-
ments were carried out by the addition of p-benzoquinone 
(BQ, 1.0 mM) and tert-butanol (TBA, 100.0 mM) to identify 
reactive species. HO• is effectively captured by tert-butanol, 
while HO2

• is quenched by BQ [60]. Fig. 7a shows that the 
decolorization efficiency of MB reduced from 100% to 30% 
after the addition of tert-butanol, which implies that HO•, 
which is produced by the heterogeneous Fenton-like pro-
cess, is essential for the MB degradation. When BQ was 
added, the MB decolorization remained almost unchanged, 
which indicated that HO2

• was not involved in the MB 
degradation.

To detect the generation of HO•, an EPR experiment 
was carried out during the catalytic reaction process. After 
5 min of catalytic degradation, DMPO was selected as a 
spin trapping agent to capture HO•. Fig. 7b shows that the 
characteristic peaks of DMPO-OH adducts with an inten-
sity ratio of 1:2:2:1 are obtained in the ZVI/H2O2 system, 
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while the characteristic peaks of the DMPO-HO2 adducts 
with an intensity ratio of 1:1:1:1 were not observed, which is 
consistent with the results in Fig. 7a.

5. Conclusions

In this study, ZVI was prepared by the thermal treat-
ment of hematite in a hydrogen atmosphere. The XRD 
results showed that oolitic hematite was gradually con-
verted into magnetite and then completely reduced to ZVI 
with an increase in the activation temperature from 300°C 
to 600°C. It was determined that ZVI/H2O2 system can effec-
tively degrade MB solution at pH = 3.0, 5.0 mM H2O2, and 
69 mg/L ZVI, and the BMG kinetic model could describe the 
MB degradation process well. It was shown that the initial 
degradation rate first increased and then decreased with 
an increase in the initial pH values, ZVI doses, and H2O2 
concentration. ZVI exhibits high performance and reus-
ability during seven cycles. Furthermore, the TOC results 
showed that MB can be mineralized only in the ZVI/H2O2 
system. Though the mineralization of MB was incomplete, 
the decolorization was pronounced. In addition, from the 
EPR analysis and the inhibition of TBA and BQ, HO• rather 
than HO2

• was generated by ZVI and catalyzed H2O2, which 
was essential for the MB decolorization in the ZVI/H2O2 sys-
tem. In summary, ZVI, which was produced by the calcina-
tion of oolitic hematite with H2, has considerable potential 
in the treatment of dye water. In addition, the study pro-
vides a new approach for the comprehensive utilization of 
naturally occurring hematite.
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Supplementary information

Table S1
Kinetic parameters of three models and their correlation coefficients at different reaction conditions

Conditions First-order kinetic Second-order kinetic BMG model

k1 (1/min) R2 k2 (mg/L/min) R2 1/m (1/min) 1/b R2

pH

2.0 0.048 0.9873 0.0751 0.7919 1.7047 1.0027 0.9999
3.0 0.0349 0.9608 0.041 0.8715 2.8337 0.9958 0.9999
4.0 0.0431 0.9762 0.0101 0.9375 0.2517 1.0245 0.9982
5.0 0.01 0.9785 0.0008 0.9325 0.0089 1.5499 0.9741
6.0 0.0006 0.9227 2e–5 0.976 0.0063 0.6553 0.9796
7.0 0.0007 0.9489 2e–5 0.9542 0.0064 0.2262 0.9989
8.0 0.0009 0.971 2e–5 0.97 0.0051 0.2 0.998

ZVI dose

275 mg/L 0.0298 0.9482 0.0388 0.8181 2.4219 0.9956 0.99991
137 mg/L 0.0473 0.9189 0.1463 0.6212 2.8417 1.0011 1
92 mg/L 0.0588 0.946 0.1598 0.8079 5.3419 1.0001 1
69 mg/L 0.2085 0.9944 7.2545 0.9474 34.965 1.0013 1
56 mg/L 0.0451 0.9814 0.2272 0.7741 6.0205 1.0004 1

H2O2 concentration

0.1 mM 0.011 0.9862 0.0008 0.9556 0.0703 0.8992 0.9953
0.5 mM 0.0614 0.9888 0.0226 0.7237 0.1757 1.0804 0.9989
1 mM 0.0506 0.9191 0.0276 0.6911 0.3789 1.0169 0.9971
5 mM 0.0321 0.9091 0.0381 0.7547 2.791 0.9936 0.9999
10 mM 0.036 0.9689 0.0372 0.9027 1.7413 0.9981 0.9999
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