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a b s t r a c t
This paper describes an optimization approach of a novel configuration of a once-through multi-
stage flash (MSF-OT) desalination plant. The system integrates a thermal vapor compression (TVC) 
unit within the conventional MSF-OT configuration. Three objectives controlling the operating cost 
of the installation were considered. The first is to maximize plant capacity production. The second 
is to minimize thermal energy consumption. The third is to minimize the feed seawater flow rate, 
which reduces electrical energy and chemical additives consumption. Solving the multi-objective 
optimization problem, using solvers of MATLAB software, led to obtaining a large number of 
optimal operating parameters of the MSF-OT/TVC plant. The comparison between the current oper-
ating state of the desalting installation using the MSF-OT process, and optimal operating states of 
the studied installation, showed a significant improvement in parameters controlling the operating 
cost of the installation. This improvement corresponded to a reduction of feed flow rate and motive 
steam flow rate of 23% and 7.3%, respectively.

Keywords:  Pareto-optimization; Response surface methodology; regstats; Genetic algorithm; 
gamultiobj

1. Introduction

The growth in the world’s population, the improving 
living standards, the recurrence of drought periods and 
the high level of water pollution of some rivers and lakes, 
as well as the tendency for groundwater to become increas-
ingly brackish over time are reducing the quantity of natu-
rally and easily accessible freshwater. At the same time, the 
freshwater demand is augmenting excessive. In fact, annual 
consumption is growing at the rate of 4%–8%, corresponding 
to 2.5 times the world’s population increase [1]. Thus, accord-
ing to Boltz [2], freshwater demands would be 40% higher 
than the supply in 2030, if current trends do not change.

To mitigate the effects of water scarcity, desalination 
became, in many arid regions, the best alternative for sup-
plying water human habitation, agriculture, and industrial 

installations. In fact, according to the data published by the 
International Desalination Association (IDA) at the end of 
2015, there are more than 18,000 desalination plants world-
wide, that produce daily more than 86.5 million m3, and this 
number would double in 2030 [3].

Mainly there are three desalination methods, called 
thermal, membrane and electrical methods. The multistage 
flash (MSF) desalination method is the most used in the ther-
mic desalination industry. Jones et al. [4] reported that MSF 
desalination plants produce 18% of all desalinated water 
in the world. Unfortunately, this process consumes a large 
amount of thermal and electrical energy and it is, therefore, 
indispensable to improve continually MSF plant’s design and 
to operate them at their optimum conditions, which reduces 
energy consumption, and therefore the cost of freshwater 
produced.
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Several studies have been conducted on the design and 
optimization of the MSF desalination process and interesting 
results have taken place. Ben Ali and Kairouani [5] used the 
solver ‘gamultiobj’ of MATLAB software, to determine the 
optimal values of the operating variables of a recirculation 
multistage flash (MSF-BR) desalting plant of 16 stages and 
having a nominal capacity of 26,700 m3/d. In this optimiza-
tion approach, three objectives were considered. The first is 
to maximize the plant’s freshwater capacity. The second is to 
minimize the thermal energy used by the heat input section, 
and the third is to minimize the electric energy consumed 
by the main pumps of the installation. The mathematical 
resolution of the optimization problem has led to obtain-
ing, for each month, a set of optimal solutions. In the second 
study of Ben Ali and Kairouani [6], the authors considered 
objective functions, the plant performance indicators, that 
is, the thermal performance ratio, the specific cooling water 
flow rate, the specific recirculating brine flow rate, and the 
specific feed flow rate. These parameters control the specific 
consumption of steam, electricity, and chemicals. The opti-
mization results reveal that a significant improvement of the 
performance indicators can be obtained if optimal operating 
points given by solving the optimization problem are used. 
Harandi et al. [7] presented a new design of the MSF-BR pro-
cess with two ejectors that extract secondary vapor from two 
successive middle stages of the heat recovery section and 
then used as heating steam. Optimization of this configura-
tion called multistage flash desalination system with brine 
recirculation and thermal vapor compression (MSF-BR/
TVC) was done using a method based on the genetic algo-
rithm Non-dominated Sorting Genetic Algorithm (NSGA-II). 
Two objective functions were considered in this optimiza-
tion approach. The first is to maximize the performance 
ratio. The second is to minimize the specific heat transfer 
area. Solving the optimization problem led to obtaining a 
Pareto front curve composed of a large number of points 
giving the values of the objective functions as well as the 
optimal values of the decision parameters. This study also 
showed the increase in the optimum thermal performance 
ratio of the plant from 9.97 to 15.27 when the number of 
stages of the heat recovery section increases from 17 to 27. 
Tanvir and Mujtaba [8] used the MINLP technique within 
the gPROMS model builder for optimizing the number of 
flash stages, and operating parameters of the MSF-BR pro-
cess. During this optimization, the authors are interested 
in minimizing capital, utility and pumping costs of the 
installation, while taking into account variation in freshwa-
ter production capacity and seasonal variation of seawater 
temperature. Bandi et al. [9] used a differential evolution 
algorithm (DE) to optimize the design of three MSF pro-
cess configurations. The objective function to minimize was 
the annual freshwater production cost. The study showed 
that using the DE algorithm provided a better reduction in 
the optimal freshwater production cost compared to opti-
mization methods using MATLAB optimization toolbox 
solvers. However, the study revealed that the DE algorithm 
was ineffective to determine optimal values of the design 
parameters of MSF-once through (MSF-OT) configuration. 
Abduljawad and Ezzeghni [10] developed a method using 
a solver tool of Excel software for optimizing operating 
parameters of (MSF-OT) plant having 12 flash stages and 

a nominal production capacity of 1,200 m3/d. The objective 
function to maximize was the gained output ratio at fresh-
water demands between 1,000 and 1,300 m3/d. Mastro and 
Mistretta [11] presented an economic analysis of the MSF 
plant coupled to municipal solid waste (MSW) incinerator 
which would be used to produce brine heater steam. The 
study estimated the capital and operating costs of the new 
design and the revenues obtained from the sale of desalted 
water. The study showed that coupling the MSF plant with 
a MSW incinerator allowed using low-cost and sustainable 
heating steam with minimum environmental impact.

The advantages obtained by El-Dessouky et al. [12] when 
coupling thermal vapor compression with multi-stage flash 
with brine recirculation (MSF-BR/TVC), motivated us to 
conduct this study. Indeed, this paper presents an approach 
for optimization of the operating parameters of the second 
configuration of the MSF process, that is, once-through mul-
tistage flash desalination when coupled with thermal vapor 
compression, MSF-OT/TCV. In addition, this study is becom-
ing more interesting since there are no published studies on 
the MSF-OT/TCV configuration.

The following sections include a description of the 
MSF-OT/TVC process, the approach used to optimize the 
operation of the installation, results obtained, and finally 
the conclusion.

2. Description of the MSF-OT/TVC desalination process

Fig. 1 shows a schema of a desalination plant using the 
MSF-OT/TVC process. The installation essentially consists 
of the brine heater called also heat input section, the flash-
ing stages which are connected in series, and the steam ejec-
tor. Each flashing stage is constituted by a brine pool, vapor 
space, demister, condenser tubes, distillate tray, and inlet/
outlet brine orifices.

The feed seawater Mf , is first screened, deaerated, chem-
ically treated, and then it flows inside the condenser tubes 
of the different stages from the cold to the hot side of the 
plant, where it absorbs the latent heat of the condensing 
vapor produced in stages. Next, the feed seawater enters the 
heat input section, where it is heating by the heating steam, 
Ms. The temperature of the feed seawater then increases 
to a high value known as top brine temperature Tb0 whose 
maximum value depends on chemicals used to prevent scale 
formation. The heated brine then enters the brine pool of the 
first flashing stage through a submerged orifice where part 
of this brine is flashed into water vapor. This vapor passes 
through a demister used to remove entrained brine drop-
lets. This avoids contamination of the produced freshwa-
ter. Then the vapor becomes in contact with the condenser 
tubes (preheater), where it condenses and falls in a distillate 
tray. This flashing process is then repeated throughout the 
plant. Finally, at the last stage of the plant, the concentrated 
brine Mb , is discharged to the sea and the total freshwater 
produced Md is collected.

The steam jet ejector uses a high-pressure motive steam 
Mm from a boiler to compress vapor extracted from flashing 
stages, Mev , to the desired temperature Ts depending on the 
value of the top brine temperature Tb0. The mixture stream 
obtained (Mev + Mm) flows to the heat input section and 
becomes the plant heating steam, Ms.
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The novel configuration of the plant under consideration 
in this study is shown in Fig. 1. It includes 21 flashing stages 
and has a nominal capacity of 32,000 m3/d. Table 1 gives the 
plant’s characteristics [13], and those of the steam jet ejector 
[12] used to train vapor from the second flashing stage 
of the installation.

3. Optimization of operating parameters of the MSF-OT/
TVC plant

3.1. Formulation of the optimization problem

The most important factors that control the operating 
cost of MSF-OT/TVC desalination plants are motive steam 
flow rate Mm, intake seawater flow rate Mf , and distillate 
product flow rate Md [14].

In this work, the optimization problem is defined as 
follows: given the characteristics of the MSF-OT/TVC plant 
(Table 1), we determine optimal values of main operating 
parameters having a strong influence on operating cost that 
maximizes the distillate product flow rate and minimize 
the motive steam flow rate Mm and the intake seawater flow 
rate Mf . The operating parameters used in this optimization 
approach are the top brine temperature Tb0 , and the feed 
seawater flows rate Mf . The adjustment of these parame-
ters at their optimum values should reduce the rate of:

• Thermal energy consumption of the steam jet ejector;
• Electrical energy consumption of the plant main pump 

(feed seawater pump);
• Chemical additives consumption, which is used to 

control foam formation in the brine pools, and scale 
deposition inside the condensers and brine heater tubes.

The decision parameters (Tb0 , Mf) for the optimization 
are subject to constraints defining the lower and upper 
values. They are determined according to the operational 
considerations [16]. Indeed, based on the literature review, 
top brine temperature Tb0 is always maintained between 

90°C and 120°C in almost all commercial MSF plants. It is 
recommended that Tb0 does not exceed 120°C in order to 
reduce scale formation and corrosion, essentially inside the 
brine heater tubes. In addition, it is recommended to oper-
ate MSF plants at top brine temperature Tb0 more than 90°C 
in order to avoid the low terminal temperature difference, 
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Fig. 1. Schema of the MSF-OT/TVC desalination process.

Table 1
Characteristics of the MSF-OT/TVC installation [12,13]

Parameter Value

Number of stages 21
Stage width 17.660 m
Stage length 3.150 m
Stage height 4.521 m
Number of condenser tubes 1,410
Heat transfer area of condenser, Ac 3,380 m2

Condenser tubes outer diameter 0.0445 m
Condenser tubes inner diameter 0.04197 m
Material of the condenser tubes Cu/Ni 90/10
Density of the demister 80.317 kg/m3

Thickness of the demister 0.200 m
Area of the demister 19.426 m2

Number of brine heater tubes 3,800
Heat transfer area of brine heater, Ah 3,530 m2

Brine heater tubes outer diameter 0.0244 m
Brine heater tubes inner diameter 0.0220 m
Material of brine heater tubes Titanium
Range for the top brine temperature, Tb0 90°C–110°C
Temperature of reject brine, Tbn 40°C
Intake sea water temperature, Tf 37°C
The salinity of intake seawater, Xf 42,000 ppm
The motive steam pressure, Pm 1,500 kPa
Compression ratio for the steam jet ejector, Cr <5
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TTD (Tvi–Tfi) found mainly in the last stages. Designers of 
MSF plants recommend that TTD must be greater than three 
for stable and steady operation [15]. The limits of the feed 
seawater flow rate Mf are dictated by its velocity in the con-
densers and brine heater tubes, which should be between 1.5 
and 3 m/s. The lower limit is imposed in order to not degrade 
the heat transfer quality at the condensers and brine heater. 
The upper limit is imposed in order to avoid the erosion of 
the brine heater and condenser tubes and higher pumping 
costs [16]. Therefore, we get for the MSF-OT/TVC studied, 
(Mf)min equal to 2,900 kg/s, and (Mf)max equal to 5,800 kg/s.

The optimization problem is described mathe-
matically by:

min
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The resolution of the optimization problem required 
the determination previously the expressions of distillate 
produced flow rate Md , and motive steam flow rate Mm as 
a function of the decision variables Tb0 and Mf . For that, we 
used the solver ‘regstats’ of MATLAB software and the solver 
“fsolve” of MATLAB software for solving the system of 
equations resulting from the mathematical modeling of the 
MSF-OT/TVC process.

3.2. MSF-OT/TVC process model

Fig. 2 shows the steady-state model equations of the 
MSF-OT/TVC process considered in this study. The param-
eters used in these equations are shown in Figs. 1 and 3. 

The mathematical model is constituted of a set of mass and 
energy balances plus heat transfer equations of condensers 
and brine heater. Model equations were developed using the 
following assumptions:

• Salinity of distillate products is negligible.
• Condensate in the heat input section is in the saturated 

liquid state.
• There are no heat losses from the stages and the brine 

heater to the plant surroundings.
• Physical properties of the brine are variable and depend 

on temperature and salinity.
• Physical properties of distillate products, heating steam 

and flashed brine vapor are variable and depend on 
temperature.

• Overall heat transfer coefficients of the condensers (Uci) 
and the brine heater (Uh) depend on:

• Flow rate, temperature, and physical proprieties of the 
flashed brine vapor/heating steam.

• Flow rate, temperature, and physical proprieties of the 
feed seawater.

• Thermal conductivity of tube material, inner and out 
diameter, and fouling resistance.

• Thermodynamic losses include the boiling point eleva-
tion and the non-equilibrium allowance. They depend on 
temperature, salinity, and flow rate of the brine and its 
level in the stage.

3.3. Determination of the expressions of the objective 
functions f1 and f2

In this study, we used the MATLAB solver ‘regstats’, 
which uses the response surface methodology (RSM), for 
approximating the objective functions f1 and f2 , as a function 
of the decision variables (Tb0 , Mf).

RSM is a statistical analysis technique widely used in 
the field of engineering and manufacture for modeling 
and analyzing multifactor systems. It allows finding an 

Fig. 2. Steady-state MSF-OT/TVC process model.
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adequate relationship between several input variables and 
one or more responses. Most of the time, such a relation-
ship is unknown but can be approached by a polynomial 
model. In most cases, a second-degree polynomial model, 
with the following form, is used [17]:

Y X X X X
i i j i

k

i i

k

ii i
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ij i j= + + +
= = = =
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where Y is the response, α0 is the constant term, α1, …, αk 
are the coefficients of the linear terms, α11, …, αkk are the 
coefficients of the quadratic terms, α12, …, α(k–1)k are the 
coefficients of the interaction parameters, and X1, …, Xk 
are the coded values of the actual factors x1, …, xk. They 
are defined by the following equation:
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where xi
U and xi

L are the upper and lower values of factor 
xi. The regression coefficient values (αj , αjj , αij) of this 
mathematical model are estimated by using the method of 
least squares.

In our study two responses were considered, Y1 corre-
sponds to total distillate flow rate Md , and Y2 corresponds 
to heating steam flow rate Mm. The input factors were top 
brine temperature, Tb0 for X1, and feed seawater flow rate, 
Mf for X2. In addition to that, we used the central compos-
ite face-centered (CCF) design to generate the predictive 
models for the two responses. Thus, according to the CCF 
design for two factors (Fig. 4), 10 different simulations have 
been done. These 10 simulation points included 22 = 4 facto-
rial points, 2 × 2 = 4 axial points, and 2 center points. Each 
coded factor had three levels of −1, 0, and +1. Table 2 shows 
the values of the independent variables for these levels. The 
values of the responses for each simulation had obtained 
by using the solver fsolve of MATLAB software for solving 

the system of equations resulting from the modeling of the 
MSF-OT/TVC process. The CCF design used in this study 
is shown in Table 3. It was analyzed by using the multi-
linear regression function ‘regstats’ of MATLAB software. 
The results obtained are shown in Table 4.

The coefficients of the mathematical models and their 
probability values have been determined using least-square 
regression analysis. Coefficients with a probability value 
<0.05 are significant; others that are insignificant have 
been eliminated from the models. Therefore, we obtained 
the following coded second-order polynomial response 
surface models:

Y M X X
X X X

d1 1 2

1 2 1
2

467 840 101 315 155 707
33 765 1 955

= = + + +

−

. . .
. .  (4)

Y M X Xm2 1 228 6993 0 9300 1 2983= = + +. . .  (5)

The accuracy of the models was firstly verified using 
the adequacy graphs (Fig. 5) which compare the results 
calculated by the models with the values of the experi-
ment plan. For both models, the points are aligned on the 
line y = x, so the descriptive quality of the models was  
excellent.

Fig. 3. Scheme of the ith flash chamber of the MSF-OT/TVC process.

Fig. 4. Experimental points of a CCF design for two factors.
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The quality of the models has also been verified by the 
application of the analysis of variance. Calculated Fisher 
values Fvalue of the models was 8.79 × 104 for Y1 and 43.56 
for Y2. For both models, Fvalue was significantly higher than 
tabulated values F(0.05,5.4) which is equal to 6.26. Thus, the 
obtained models are considered statistically significant. The 
accuracy of the models was also verified using the deter-
mination coefficient (R2) and the adjusted determination 
coefficient (R2

adj). The values obtained by the analysis of the 
CCF design exceed 95%. It means that these models are fit 
well since they could explain more than 95% of the variation 
in responses Y1, and Y2. The normal probability plots of the 
residual displayed by Figs. 6 and 7 confirmed the good accu-
racy of the models. Indeed, for each response, the normal 

probability plot has the profile approximately a straight line; 
therefore, the residuals are normally distributed [18].

The objective functions f1 and f2 were thus obtained by 
replacing in Eqs. (4) and (5), the coded parameters X1 and X2, 
by their expressions given in Eq. (3). We obtained the follow-
ing expressions in the uncoded form:

f x x x x

x x
1 1 2 1

2
2

3
1 2

96 2205 1 8346 5 535 10

1 55 10 8 68

, . . .

. .
( ) = − + × −

× +

−

− ×× −10 3
1
2x  (6)

f x x x x2 1 2 1
4

218 2944 0 062 8 953 10, . . .( ) = + + × −  (7)

3.4. Resolution of the optimization problem

Using the results obtained in the previous section, the 
optimization problem was mathematically formulated as:
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The optimization problem to be solved involves three 
conflict objective functions, which must be optimized simul-
taneously. It is therefore considered as a multi-objective 
optimization problem with inequality constraints. In that 
case, it is not possible to obtain a single solution for the 
problem that would be optimal for the three objectives 
simultaneously, but it exists a set of solutions called Pareto 
optimal solutions, which are non-dominated with respect to 
each other. That means none of the three objective functions 
can be improved in value without degrading at least one 
of the other objective functions value.

Genetic algorithms (GA), which use Pareto optimality, 
have been widely used for solving multi-objective optimi-
zation problems in several fields [19–28]. These algorithms 
mimic the process of natural selection described by the 
concept of Darwin’s theory of evolution [29]. Fig. 8 shows 
the flowchart of a standard genetic algorithm in a witch, an 
initial population of candidate solutions (called individu-
als or phenotypes) is randomly generated in the optimized 
space converge to better solutions by applying in a repeti-
tive manner the following genetic operators: selection, cross-
over and mutation, until one of the stop criteria is reached. 
In general, the algorithm stops when a maximum number 
of generations is reached, or an acceptable value of the 
objective functions has been reached for the population of 
the current generation.

Several versions of genetic algorithms have been devel-
oped for solving many multi-objective optimization prob-
lems. Schaffer presented in 1984 the first GA called the 
Vector Evaluated Genetic Algorithms (VEGA) [25]. Goldberg 
and Richardson proposed in 1987 a version of GA that 
called the Niched Pareto Genetic Algorithm (NPGA) [30]. 
Srinivas and Deb developed the NSGA in 1994 [31]. Murata 

Table 2
Values and levels of the factors

Natural  
factors

Coded levels (X1, X2)

–1 0 1

Tb0 (°C):x1 90 105 120
Mf (Kg/s):x2 2,900 4,350 5,800

Table 3
Coded CCF design matrix and responses

Run Factors Responses

X1 Tb0 X2 Mf Y1 (Md) Y2 (Mm)

1 1 –1 379.02 28.28
2 –1 –1 243.64 26.54
3 0 0 468.25 28.85
4 0 1 624.24 30.14
5 1 1 757.65 30.76
6 0 0 468.25 28.85
7 0 –1 312.20 27.48
8 –1 1 487.21 29.19
9 1 0 566.51 29.34
10 –1 0 365.44 27.07

Table 4
Estimated effects for the responses Y1 and Y2

Responses

Y1:Md Y2:Mm

Effect Estimate P-Value Estimate P-Value

Average 467.840 0.0000 28.6993 0.0000
X1 101.315 0.0000 0.9300 0.0011
X2 155.707 0.0000 1.2983 0.0002
X1X2 33.765 0.0000 –0.0425 0.7673
X1X1 –1.955 0.0102 –0.3436 0.1220
X2X2 0.790 0.1384 0.2614 0.2110

R2 = 0.9999 R2
adj = 0.9999 R2 = 0.9820 R2

adj = 0.9594
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Fig. 5. Adequacy graphs of the responses Y1 and Y2.

Fig. 6. Normal probability plot of response Y1. Fig. 7. Normal probability plot of response Y2.
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and Ishibuchi [32] a Random Weighted Genetic Algorithm 
(RWGA) for solving a multi-objective optimization prob-
lem. Zitzler and Thiele [33] the Strength Pareto Evolutionary 
Algorithm (SPEA) as a new evolutionary algorithm for solv-
ing a multi-objective optimization problem. Knowles and 
Corne [34] developed three versions of a Pareto-Archived 
Evolution Strategy (PAES) that was used for solving multi-ob-
jective problems. Deb et al. [35] have developed a new ver-
sion of the NSGA algorithm called Fast Non-dominated 
Sorting Genetic Algorithm (NSGA-II).

In this study, we used genetic algorithm multi-objective 
solver, ‘gamultiobj’, of MATLAB software for solving the 
optimization problem defined in Eq. (8). The solver uses a 
controlled elitist genetic algorithm (a variant of NSGA-II) 
for finding a Pareto front of multiple objective functions 
[36]. As shown in Fig. 9, the algorithm starts by randomly 
generating a population of N individuals constituting the 
first population of parents, P1. The size of this population 
is defined by the parameter ‘PopulationSize’. Then the 
usual genetic operators (selection, crossover, mutation) are 
applied to this population to produce the population of 
children Q1 of size N. Afterwards, and at any generation i, 
the population Pi is combined with that Qi to form a new 
population of size 2N called Ri. This population is classified 
into fronts (F1, F2, …, Fk) using the Pareto dominance con-
cept. Therefore, N individuals of different non-dominance 
fronts fill the new population Pi , starting with the fronts 
with the best rank (F1, F2, …). In order to control the elit-
ism and ensure population diversity for convergence to an 
optimal Pareto front, ‘gamultiobj’ uses the option ‘Pareto 
Fraction’ for specifying the fraction of individuals to main-
tain on the first Pareto front (F1) in the current population 
Pi . The best individuals, which are less cumbersome, are 
chosen. The remaining individuals of the population Pi+1 are 
chosen from the other fronts in the order of their ranking. 
The individuals of the last front that have been chosen to 
belong to the population Pi+1 must also improve the popu-
lation diversity. They are chosen in the descending order of 
their crowding distance values, which are determined by 
the parameter ’DistanceMeasureFcn’. Thereafter, the genetic 
operators (selection, crossover, and mutation) are applied to 

the new population Pi in order to generate a new popula-
tion Qi. These steps are repeated until a stopping criterion is 
satisfied. The solver ‘gamultiobj’ stops when the maximum 
number of generations is reached. This value is defined by 
the parameter ‘Generations’. The algorithm also stops if the 
average change in the spread of the Pareto front over the 
parameter ‘MaxStallGenerations’ is less than the tolerance 
specified by the parameter ’FunctionTolerance’. Table 5 
shows the values and options used in this study by ‘gamul-
tiobj’ to solve the multi-objective optimization problem and 
thus find the optimal Pareto front.

4. Results and discussion

First, it is important to note that solving the optimi-
zation problem using ‘gamultiobj’ gives an optimal set of 
solutions for each running. This is due on the one hand 
to the random generation of the initial population and on 
the other hand to the nature of the action of genetic opera-
tors on individuals during each generation. Thus, we have 
as many optimal solutions as the running of the program 
using solver ‘gamultiobj’.

Table 6 shows the results obtained after running 
the ‘gamultiobj’ solver. The algorithm stopped before 
reaching the maximum generation number defined by 
‘MaxGenerations’ parameter. Fig. 10 shows the Pareto front 
graph, which includes the obtained Pareto-optimal solu-
tions. These solutions represent the optimum compromise 
between the three objectives. A large number of optimal and 
diversified solutions, as shown in Fig. 11 and Table 6, have 
been obtained. The average distance measure of the solu-
tions on the Pareto front was equal to 0.00784, therefore, 
the solutions on the Pareto front are evenly distributed.

Using the values obtained for each running (example 
those given in Table 6), steam cost, electricity cost, and 
chemical cost, plant managers can calculate the plant’s oper-
ating cost for the optimal points obtained, and thus set the 
operating variables (Tb0 , Mf) to the values that meet their 
needs economically.

The following observations are made from the results 
presented in Table 6:

Table 5
Values and functions used by ‘gamultiobj’ to solve the optimization problem

Parameter Description Value/function

PopulationType Define the type of population doubleVector
PopulationSize Define the population size 50
SelectionFcn Choose the function used to select parents for crossover and mutation operators Selectiontournament
CrossoverFcn Specify the function used to create crossover children Crossoverintermediate
CrossoverFraction Define the population fraction at the next generation obtained by crossover 

operator
0.8

MutationFcn Define the function used for producing mutation children Mutationadaptfeasible
ParetoFraction Specify the fraction of individuals to keep on the first Pareto front 0.35
Generations Define the maximum number of iterations before the algorithm stops 800
MaxStallGenerations Define the number of successive iterations with change inferior to the value 

defined by FunctionTolerance
100

FunctionTolerance Specify the geometric average of the relative change in the value of the spread 
generations use for stopping the running of the algorithm

10–6
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• For all the optimum points, the increase in production 
capacity is accompanied by a simultaneous increase 
in the motive steam flow rate and feed flow rate, and 
therefore an increase in thermal and electrical energy 
consumption.

• Maximum value of distillate flow rate Md (737.62 kg/s) 
is obtained at the point (Tb0 = 119.7°C, Mf = 5,670.2 kg/s) 
corresponding to the highest value of the performance 
ratio PR (PR = Md/Mm = 23.95). This parameter character-
izes thermal performance of the installation.

• Minimum value of distillate flow rate Md (242.62 kg/s) 
is obtained at the point (Tb0 = 90°C, Mf = 5,476.1 kg/s) 
which correspond to the lower values of the operating 
parameters.

Table 6
Optimal values of the operating variables and objective functions

Operating variables Objective functions Operating variables Objective functions

x1:Tb0 (°C) x2:Mf (kg/s) –f1:Md (kg/s) f2:Mm (kg/s) f3:Mf (kg/s) x1:Tb0 (°C) x2:Mf (kg/s) –f1:Md (kg/s) f2:Mm (kg/s) f3:Mf (kg/s)

90 2,900 242.62 26.47 2,900 115.1 5,264.5 647.79 30.14 5,264.5
93.7 3,642.8 326.94 27.36 3,642.8 106.9 3,937.7 435.60 28.45 3,937.7
119.7 5,670.2 737.62 30.79 5,670.2 116.9 4,598.9 578.40 29.66 4,598.9
110.8 3,102.3 361.55 27.94 3,102.3 101.9 4,961.0 509.99 29.05 4,961.0
105.6 5,051.3 548.26 29.36 5,051.3 116.4 5,743.6 717.85 30.65 5,743.6
102.7 3,026.9 315.06 27.37 3,026.9 97 4,454.3 423.18 28.29 4,454.3
92.4 4,064.6 356.47 27.66 4,064.6 114.5 4,178.2 510.59 29.13 4,178.2
108.7 4,396.0 498.40 28.97 4,396.0 99.3 4,230.4 417.73 28.24 4,230.4
117.3 5,366.8 678.20 30.37 5,366.8 102.7 3,804.6 395.84 28.07 3,804.6
112 5,427.1 642.00 30.09 5,427.1 113.8 4,572.7 554.06 29.44 4,572.7
112.7 3,438.5 410.72 28.36 3,438.5 118.9 4,897.2 630.75 30.05 4,897.2
109.9 4,749.8 546.75 29.36 4,749.8 101.1 3,891.3 394.96 28.04 3,891.3
120 4,989.2 650.78 30.20 4,989.2 101.4 4,286.0 435.25 28.40 4,286.0
95.9 2,901.2 270.64 26.84 2,901.2 92.2 3,344.8 291.87 27.00 3,344.8
97.6 4,699.6 450.79 28.55 4,699.6 98.2 3,135.1 304.01 27.19 3,135.1
113.2 4,128.7 495.85 29.00 4,128.7 96.3 3,385.4 317.74 27.29 3,385.4
108.9 3,614.2 410.54 28.28 3,614.2 102.9 3,039.8 317.08 27.39 3,039.8
111.1 4,865.0 568.83 29.54 4,865.0 92.9 3,663.5 323.99 27.33 3,663.5
99.9 3,313.0 330.26 27.45 3,313.0 102.8 5,622.0 585.34 29.70 5,622.0
104.5 4,505.7 481.33 28.81 4,505.7 107.8 5,297.2 592.75 29.72 5,297.2
117.7 5,106.2 648.18 30.16 5,106.2 115.8 5,744.1 713.55 30.62 5,744.1
103.7 4,666.6 492.44 28.90 4,666.6 90.6 3,235.4 273.82 26.80 3,235.4
119 4,802.2 619.46 29.97 4,802.2 100.9 5,498.0 556.40 29.47 5,498.0
110.5 4,076.5 473.27 28.79 4,076.5
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The above observations were valid for the results 
obtained during another running of the solver ‘gamultiobj’.

Table 7 gives a comparison between the current oper-
ating state of the desalting installation using the MSF-OT 
process, which is considered as a reference configuration, 
and two optimal states of operation of the installation using 
the MSF-OT/TVC process (giving in Table 6). The first opti-
mal state corresponds to a production capacity slightly 
lower than the reference configuration (reduction of 4.3%), 
and the second optimal state corresponds to a production 
capacity slightly higher than the reference configuration 
(an increase of 4.3%). For the first case, a significant reduction 
in the flow rate of feed water (23%), and on the motive steam 
flow rate (7.3%). This would significantly reduce the con-
sumption of electrical energy and chemicals used, in addi-
tion to a slight reduction of the thermal energy consumed 
by the steam ejector. On the other hand, these advantages 
are accompanied by a slight reduction in the production 
capacity of the installation. For the second optimal case, we 
have a simultaneous increase in the production capacity of 
the plant and a reduction in the consumption of electrical 
energy, heat, and chemicals with acceptable values. These 
improvements can come on the one hand from the improve-
ment of the procedure (use of thermal vapor compression), 
and on the other hand from the use of optimal values for the 
operating parameters.

5. Conclusion

In this paper, we present an approach of using solvers of 
MATLAB software for optimizing operating parameters of a 
novel configuration of MSF-OT desalting plant in order to 
have lower energy consumption and desalination costs. Two 
main operating parameters were chosen for optimization, 
that is, the top brine temperature Tb0 , and the feed seawater 
flow rate Mf . Three objectives, which control the operating 
cost of the plant, were considered. The first objective is to 
maximize the freshwater production capacity of the plant. 
The second is to minimize the flow rate of motive steam used 
by the TVC unit in order to reduce the thermal energy con-
sumption of the whole installation. The third objective is to 
minimize the feed seawater flow rate in order to reduce the 
electrical energy consumption of the plant’s main pump, and 
chemical additives consumption. Firstly, the solver ‘regstats’ 
using RSM was used for estimating the expressions of the 
first and the second objective of the optimization problem. 
Afterward, the solver ‘gamultiobj’ using a genetic algorithm 

was used for solving the multi-objective optimization prob-
lem. The result is the obtaining of a large set of Pareto optimal 
solutions, which is constituted by various combinations of 
the optimal operating variables of a MSF-OT/TVC desalting 
plant. These solutions represent a compromise between the 
three objective functions.

It is important to mention that the proposed approach 
leads to obtain many combinations of optimal values of Tb0 
and Mf each time the developed program using the solver 
‘gamultiobj’ is executed. The study concluded that design-
ing and optimization of new desalting installation, combin-
ing of TVC unit with conventional MSF-OT process, would 
result in choosing of best-operating conditions resulting in a 
lower freshwater production cost.

Symbols

A — Heat transfer area, m2

B — Brine mass flow rate, kg/s
Cp — Specific heat at constant pressure, kJ/kg K
Cr — Compression ratio
D — Flashing vapor flow rate, kg/s
F — Pareto front
LMTD — Logarithmic mean temperature difference, °C
M — Mass flow rate, kg/s
n — Number of stages
NEA — Non-equilibrium allowance, °C
PR — Thermal performance ratio
P — Pression, kPa
Q — Population of children
R — Combined population
Ra — Entrainment ratio
sMf — Specific feed seawater flow rate
T — Temperature, °C
TVC — Thermal vapor compression
Tb0 — Top brine temperature, °C
U — Overall heat transfer coefficient, W/m2 K
X — Water salinity, ppm

Greek

l — Latent heat of vaporization, kJ/kg

Subscripts

b — Brine
c — Condenser or condensate

Table 7
Comparison between a current operating state and optimal operating states

Current operating 
state of the MSF-OT 
installation [4]

First optimal operating state of the 
MSF-OT/TVC installation

Second optimal operating state of 
the MSF-OT/TVC installation

Values of 
parameters

Comparison Values of 
parameters

Comparison

Tb0 (°C) 91 110.8 – 101.1 –
Mf (kg/s) 4,027 3,102.3 Gain of 23% 3,891.3 Gain of 3.4%
Md (kg/s) 378 361.55 Reduction of 4.3% 394.96 Increase of 4.5%
Mhs or Mm (kg/s) 30.16 27.94 Gain of 7.3% 28.04 Gain of 7%
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d — Distillate product
ev — Entrained vapor
f — Feed
h — Brine heater
m — Motive steam
s — Steam
v — Vapor
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