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a b s t r a c t
In general, the saponification effluent result from rare earth metallurgical process is often char-
acterized by high chemical oxygen demand (COD) and high phosphorus and salt concentrations. 
This paper presents a method for simultaneously removing COD and phosphorus from saponification 
effluent via Fenton oxidation and chemical precipitation. A series of experiments were conducted to 
enhance the removal of COD and phosphorus from the effluent which contained 924 mg/L of COD 
and 15.5 mg/L of phosphorus. Experimental results showed that pH of the solution, reaction time, 
and H2O2 and Fe2+ concentrations exert significant effects on the removal of COD and phosphorus 
by Fenton oxidation and chemical precipitation, while a change of temperature makes no difference. 
Under optimal conditions with [H2O2] = 11.9 g/L, [FeSO4·7H2O] = 4.8 g/L, pH of the solution = 3.0, 
and reaction time = 360 min, 82.3% of COD, and 72.3% of phosphorus were removed and the efflu-
ent was decolorized completely. The X-ray diffraction pattern of the precipitation indicated that 
the organic phosphorus in the saponification effluent had been changed into inorganic phosphorus 
and precipitated by calcium chloride. An economic evaluation indicated that it is more economic to 
adjust the pH with calcium oxide prior to the chemical oxidation process.

Keywords:  Saponification effluent; Fenton oxidation; Chemical precipitation; COD and phosphorus 
removal

1. Introduction

Rare earth is widely used in military, chemistry, agri-
culture, and material areas [1]. In conventional rare earth 
metallurgical process, pure rare earth chloride solution 
is produced by solvent extraction, which holds a central 
position in the rare earth industry [2]. Nowadays, the most 
popular extraction agent used in rare earth metallurgi-
cal processes are phosphoric acid based alkyl phosphorus 
reagents such as di(2-ethylhexyl) phosphoric acid (P204) 
and 2-ethylhexyl-2-ethylhexylphosphonate (P507) [3,4]. But 
these extraction agents must be saponified first to avoid 
a large release of hydrogen ions in the extraction process, 

which would generate a large quantity of high-salinity 
organic effluent. In recent years, calcium oxide and mag-
nesium oxide have been widely used as the saponifier in 
many factories in order to lower costs and avoid the pro-
duction of ammonia–nitrogen wastewater [5]. However, 
this new saponification process often leads to an increase 
of chemical oxygen demand (COD) and phosphorus in 
the effluent because of the dissolution and entrainment of 
acidic phosphorus [6]. High COD and phosphorus concen-
trations in water would lead to excessive growth of algae 
and other microorganisms, resulting in dissolved oxygen 
depletion and fish toxicity [7]. Therefore, it is necessary to 
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remove COD and phosphorus from saponification effluent 
before it is discharged.

Commonly, biological treatment is accepted as an eco-
nomical and suitable process to remove phosphorus 
from some kinds of wastewater [8,9]. However, biolog-
ical processes are not feasible in the treatment of saponi-
fication effluent because of latter’s low biodegradability 
[10]. Although phosphorus may be efficiently removed 
from aqueous solutions by adsorption [11], it is difficult to 
remove phosphorus from the saponification effluent due to 
the complicated form of phosphorus that exists in the efflu-
ent. As an alternative, precipitation is often used to remove 
phosphorus from effluent [12–14]. Unfortunately, this pro-
cess cannot remove phosphorus from the saponification 
effluent easily, because the phosphorus in the effluent is 
mainly in the form of organic phosphorus, which cannot 
be precipitated by calcium or magnesium salts. Therefore, 
before the chemical precipitation process, the organic phos-
phorus in the saponification effluent must be transformed 
into inorganic phosphorus, which is associated with the 
process of COD removal. So far, many methods have been 
used to remove COD from wastewater. Frequently used 
methods include flocculation precipitation [15], advanced 
oxidation [16–19], microorganism treatment [20,21], and 
absorption [22]. The COD in saponification effluent mainly 
originates from dissolution and entrainment of acidic phos-
phorus-containing extractant and kerosene, which is diffi-
cult to be decomposed by biological and physical/chemical 
processes. Fenton oxidation may be a good choice for many 
refractory organics [23]. Li et al. [24] studied the treatment 
of refractory organic matters in municipal solid waste 
landfill leachate. The results showed that 90% of COD and 
total organic carbon were removed by Fenton oxidative–
coagulation and photo-Fenton. Park et al. [25] used Fenton 
oxidation to remove non-biodegradable organics and color 
in pigment wastewater. The results from their work reported 
that 58.9% of COD and 45.7% of color were removed for the 
final effluent. Thus, Fenton oxidation may be an effective 
technique for the removal of these recalcitrant organics in 
saponification effluent.

In many Chinese factories, the saponification effluent 
is conventionally treated by adding milk of lime to remove 
needless acids and salts [26], which produces a lot of waste 
and leave the acidic phosphorus and organic compound 
still in the effluent. This mishandled saponification efflu-
ent has led to water pollution in rivers near these factories. 
Thus, the feasibility of simultaneously removing COD and 
phosphorus from the saponification effluent by Fenton 
oxidation and chemical precipitation was investigated in 
this study. Laboratory-scale experiments were performed 
to investigate the effects of parameters such as pH, tem-
perature, reaction time, ferric salt, and hydrogen peroxide 
dosage on the removal of COD and phosphorus, which will 
provide a guide for the harmless treatment of the saponifi-
cation effluent.

2. Experimental

2.1. Materials and analysis

All the chemical reagents used in this study were ana-
lytical grade and de-ionized water was also used in the 

corresponding procedures during the experiments. The 
saponification effluent containing 2-ethylhexyl-2-ethylhex-
ylphosphonate (P507) was obtained from Jiangsu Guosheng 
Rare Earth Co., Ltd., (Guangling Town, Taixing City, Jiangsu 
Province, China), and its main chemical composition is listed 
in Table 1. The most noticeable attribute of the effluent is 
the high content of calcium and chloride ions. This is due 
to a change of the saponification process where the tradi-
tional saponifier of ammonium hydroxide was replaced by 
calcium oxide [27]:

CaO H O Ca OH+ → ( )2 2
 (1)

2 28 17 2 3 2 8 17 2 3 2 2C H HPO Ca OH Ca C H PO H O( ) + ( ) → ( )  +  (2)

Ca OH HCl CaCl H O( ) + → +
2 2 22 2  (3)

The total phosphorus concentration (PT) of all sam-
ples, including aqueous solution, was analyzed by a 
bismuth-phosphomolybdenum blue spectrophotomet-
ric method (Model TU-1810, Beijing Puxi Science and 
Technology Instrument Co, Ltd., China) at λmax of 700 nm 
with the blank sample containing only deionized water. 
Before being delivered for analysis, adequate nitric acid and 
hydrochloric acid were added to the water sample. Also, 
organic phosphorus was changed into inorganic phospho-
rus when the sample was boiled for about 30 min. COD 
was determined by the potassium iodide–alkaline potas-
sium permanganate method, which was suitable for high- 
chlorine wastewater. Phase analysis of the precipitation 
was conducted by X-ray diffraction (XRD; Model D/max 
2500 PC, Rigaku, Japan) with Cu K α radiation.

2.2. Experimental fundamental

In Fenton’s reaction, hydroxyl radicals (•OH) are pro-
duced by interaction of hydrogen peroxide with ferrous 
salts according to Eq. (4) [28]. The hydroxyl radicals can 
attack and initiate the oxidation of organic pollutant mole-
cule (R) by several degradation mechanisms as shown below 
[Eqs. (5)–(7)] [29,30]:

Fe H O H Fe OH H O2
2 2

3
2

+ + + •+ + → + +  (4)

• •+ → +OH RH R H O2  (5)

Fe R R Fe3 2+ • + ++ → +  (6)

H O R ROH OH2 2 + → +• •  (7)

After Fenton’s reaction, the dissolved or entrained P507 
in the effluent could be decomposed:

(C H ) HPO 49H O 16CO H PO 65H O H8 17 2 3 2 2 2 2 4 2+ → + + +− +  (8)

According to Table 1, there is a lot of soluble calcium in 
the effluent. Therefore, the phosphorus would be precipitated 
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by calcium ion as soon as the organic phosphorus was trans-
ferred into dissociative phosphate anion, and the reactions 
were expressed as follows:

Ca H PO 2H O CaHPO 2H O H2
2 4 2 4 2

+ − ++ + → × ↓ +  (9)

Ca H PO CaHPO H2
2 4 4

+ − ++ → ↓ +  (10)

3Ca 2H PO Ca (PO ) 4H2
2 4 3 4 2

+ − ++ → ↓ +  (11)

5Ca 3H PO H O Ca (PO ) OH 7H2
2 4 2 5 4 3

+ − ++ + → ↓ +  (12)

The degradation of organics and transformation of 
organic phosphorus would take place simultaneously when 
Fenton’s reagent was added into the saponification effluent. 
The inorganic phosphorus would be precipitated by soluble 
calcium in the effluent. Therefore, simultaneous removal 
of COD and phosphorus from the saponification effluent 
would be realized in one step.

2.3. Experimental procedure

Fenton’s reaction mainly depends on four factors: reac-
tion time, pH of the solution, hydrogen peroxide concentra-
tion, and Fe2+ concentration [31]. Therefore, the four factors 
were investigated. The pH of the saponification effluent was 
adjusted to a predetermined value (1.0, 2.0, 3.0, 4.0, and 5.0, 
respectively) by a sodium hydroxide solution before the 
chemical oxidation process. A 100 mL sample was placed 
in a 300 mL conical flask, submerged in a temperature con-
trolled water bath, and allowed to attain the preset experi-
mental temperature. Then, FeSO4·7H2O was added to reach 
the desired Fe2+ concentration (the addition of FeSO4·7H2O 
was 0.29, 0.35, 0.38, 0.48, and 5.9 g, respectively). Finally, 
desired H2O2 (30% (w/v)) was carefully added to start the 
Fenton’s reaction (the addition of H2O2 was 2.4, 2.6, 2.9, 3.1, 
3.3, 3.5, 3.7, 4.0, 4.2, and 4.4 mL, respectively). The aqueous 
solution of Fenton’s reagent and wastewater were magneti-
cally stirred with the speed of 550 rpm during the reaction 
period. After the required time (60, 120, 180, 240, 300, and 
360 min, respectively), the effluent was vacuum filtered 
immediately. The filtrate was collected and analyzed for 
COD and PT. The residue was washed with deionized water 
before it was dried and sent for phase analysis. The removal 
efficiency of COD or PT was defined as follows:

Removal efficiency   % %( ) 







= − ×1 100

0

C
C

 (13)

where C0 is the initial concentration of COD or PT in the 
saponification effluent, and C is the concentration of COD or 
PT after Fenton’s reaction.

3. Results and discussion

3.1. Effect of temperature and pH

The effect of temperature on COD and phosphorus 
removal efficiency was tested at room temperature (25°C) 
and 60°C, and the results are shown in Table 2. There was no 
significant difference in the COD and phosphorus removal 
efficiency for the tested temperatures. Some research results 
indicate that the temperature of the effluent hardly affects the 
efficiency of COD removal in Fenton’s oxidation [32]. In addi-
tion, high temperatures would enhance the decomposition 
of hydrogen peroxide. Thus, all further experiments were 
carried out at room temperature for practical and economic 
reasons.

The pH of the effluent is an important parameter for 
Fenton’s oxidation process, which controls the production 
rate of the hydroxyl radical and the concentration of Fe2+. In 
order to find the optimal pH for the COD and phosphorus 
removal from the effluent in Fenton’s oxidation process, a 
series of experiments were conducted at different pH values 
of 1.0, 2.0, 3.0, 4.0, and 5.0. The results are illustrated in Fig. 1. 
The results indicate that the maximum removal efficiency 
in COD (79.6%) and phosphorus (61.3%) was achieved 
in Fenton’s oxidation of saponification effluent at pH 3.0. 
Many studies have revealed that the degradation of organ-
ics in water by Fenton’s oxidation was strongly affected by 
the solution pH and the optimal solution pH values were 
close to 3.0 [33]. Lower values of pH result in a decline of 
Fe(OH)2+ and hydroxyl radicals concentration, while higher 
pH values results in the hydrolysis of ferric ion and slow 
formation of hydroxyl radicals [34,35], both negatively influ-
encing the degradation of organics. Meanwhile, the rate of 
undesirable H2O2 decomposition shows the lowest value at 
pH 3.0 [36]. Therefore, the experimental results are in accord 
with previous research findings [33] and pH of 3.0 was 
chosen as the optimal solution pH in Fenton’s oxidation of 
saponification effluent.

Table 1
Main composition of saponification effluent

Parameter H+ (mol/L) Ca2+ (g/L) Cl– (g/L) PT (mg/L) COD (mg/L) Absorption value*

Value 0.56 39.5 94.39 15.5 924 0.23

*Absorption value was obtained at 460 nm.

Table 2
Effect of temperature on COD and phosphorus removal 
efficiency

Temperature COD Phosphorus

25°C 60°C 25°C 60°C

Removal efficiency (%) 73.5 72.8 61.3 63.1
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We also find from Fig. 1 that the removal efficiency of 
phosphorus is very low at pH 1.0 and 2.0, which is incon-
sistent with the higher removal efficiency of COD. This may 
be attributed to the dissolution of calcium phosphate at low 
pH levels. According to the thermodynamic calculation 
[37] results of Eqs. (6)–(9), the effect of pH on phosphorus 
concentration in the effluent is shown in Fig. 2. As can be 
seen, phosphorus concentration in the effluent is obviously 
influenced by the solution pH, and the phosphorus con-
centration decreases quickly as the solution pH increases. 
The residual phosphorus concentration in the effluent is 
higher at low solution pH, which means that the phospho-
rus in the effluent could not be precipitated by calcium ion 
even if the organic phosphorus is transformed into inor-
ganic phosphorus. So, it is not difficult to illuminate why 
the removal efficiency of phosphorus is very low at pH 
1.0 and 2.0.

Therefore, further experiments were conducted at an 
initial pH of 3.0 by adding NaOH solution for pH adjust-
ments before the progress of the Fenton’s oxidation.

3.2. Effect of H2O2 concentration

In order to elucidate the role of the concentration of 
H2O2 on the removal of COD and phosphorus from the 
saponification effluent by Fenton’s oxidation, a series of 
experiments were conducted with different [H2O2] rang-
ing from 7.3 to 13.2 g/L. Fig. 3 shows the effect of [H2O2] 
on the removal of COD and phosphorus by Fenton’s oxi-
dation. The results in Fig. 3 indicate that higher [H2O2] 
generated more hydroxyl radicals, which improved the 
COD and phosphorus removal efficiency. With an increase 
of [H2O2] from 7.3 to 11.9 g/L, the COD removal efficiency 
increased from 31.4% to 81.5% and the phosphorus removal 
efficiency increased from 16.8% to 64.5%. However, with a 
further increase of the [H2O2] to 12.5 and 13.2 g/L, the phos-
phorus removal efficiency remained nearly unchanged and 
the COD removal efficiency reduced slightly. This may be 
explained by the fact that the reactive •OH radical could 
be consumed by excess H2O2 and results in the generation 

of less reactive •OOH [38]. In addition, high [H2O2] would 
also result in increase of treatment cost. Hence, 11.9 g/L 
was considered as appropriate concentration of H2O2 in 
Fenton’s oxidation of saponification effluent.

3.3. Effect of Fe2+ concentration and H2O2/Fe2+ ratio

Ferric ion is the catalyst which plays an important role 
in Fenton’s oxidation process. The effect of [FeSO4·7H2O] 
on the removal of COD and phosphorus by Fenton’s oxi-
dation is shown in Fig. 4. As can be seen, the removal of 
COD and phosphorus are remarkably dependent on the 
[FeSO4·7H2O] at fixed [H2O2] and solution pH. The removal 
efficiency of COD and phosphorus were 47.9% and 35.5%, 
respectively at a low [FeSO4·7H2O] (2.9 g/L). Both COD 
and phosphorus removal efficiency were increased with 
the increase of [FeSO4·7H2O], and the removal efficiency of 
COD and phosphorus were 81.5% and 64.5%, respectively, 
when the [FeSO4·7H2O] was increased to 3.8 g/L. This is 
because more •OH radicals are produced with an increase 
of [FeSO4·7H2O] according to Eq. (1). When we continue 
increasing the [FeSO4·7H2O], the removal efficiency of COD 
was mostly the same, while there was a small increase in 
phosphorus removal efficiency. The increase in phosphorus 
removal may be attributed to the absorption of phosphorus 
by flocculent ferric hydroxide [39,40].

Actually, the H2O2/Fe2+ ratio changes when varies the 
addition of H2O2 and FeSO4·7H2O in the saponification 
effluent. There exists optimal H2O2/Fe2+ ratio when Fenton’s 
oxidation process is employed for organics degradation 
[41]. While, the optimal H2O2/Fe2+ ratio is significantly var-
ied when different type of organics are decomposed. And 
the optimal H2O2/Fe2+ ratio can vary from 1.5 to 329 when 
different wastewater was mineralized [42,43]. Fig. 5 shows 
the different removal efficiency of COD and phosphorus 
when the H2O2/Fe2+ ratio changes in oxidation of saponifi-
cation effluent. It can be seen that the removal efficiency of 
COD and phosphorus reaches a maximum when the H2O2/
Fe2+ ratio is 12.3. Thus, the optimal H2O2/Fe2+ ratio for Fenton 
oxidation of saponification effluent is 12–13.
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Fig. 1. Effect of pH on COD and phosphorus removal (reaction 
conditions: [FeSO4·7H2O] = 3.8 g/L, [H2O2] = 10.6 g/L, T = 25°C, 
and reaction time = 360 min).
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[Ca2+] = 39.5 g/L).
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Considering the above-indicated results, the optimal 
[FeSO4·7H2O] and H2O2/Fe2+ ratio were selected as 4.8 g/L 
and 12.3, respectively for the Fenton’s oxidation of saponi-
fication effluent.

3.4. Effect of reaction time

Fig. 6 shows the results of the Fenton’s oxidation test 
obtained by varying the reaction time from 60 to 360 min. 
During the experiment, it was found that once the hydro-
gen peroxide was added into the saponification effluent 
under stirring, the pale yellow solution was turned into 
claybank quickly with lots of bubbles and some precipita-
tion. This indicated that the hydrogen peroxide was first 
decomposed by Fe2+ to form •OH and Fe3+ according to Eq. 
(1). Then, the organics in the effluent would be attacked and 
degraded by •OH to produce CO2 which is the source of 
bubbles. Meanwhile, it can be observed from the experi-
ments that the bubbles were not reduced until 180 min. This 

phenomenon was in accord with the experiment results. As 
can be seen from Fig. 6, only 38.7% of COD and 23.5% of 
phosphorus was removed within 60 min. As reaction time 
increased, the removal efficiency of COD and phosphorus 
increased quickly. When the reaction time was 240 min, 
the removal efficiency of COD and phosphorus increased 
to 79.6% and 65.6%, respectively. Further increase of reac-
tion time did not increase the removal efficiency of COD 
but gave a slow increase in the removal efficiency of phos-
phorus. This is because the precipitation of phosphorus 
lags behind the decomposition of organics. Therefore, the 
reaction time of 360 min was advisable for the Fenton’s 
oxidation of saponification effluent.

3.5. Experiment results obtained at optimum conditions

According to the results of previous experiments, the 
optimum conditions for removing COD and phosphorus 
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Fig. 3. Removal efficiency of COD and phosphorus with varying 
H2O2 concentration (reaction conditions: [FeSO4·7H2O] = 3.8 g/L, 
pH = 3, T = 25°C, and reaction time = 360 min).
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Fig. 5. Effect of H2O2/Fe2+ ratio on COD and phosphorus 
removal (reaction conditions: pH = 3, T = 25°C, and reaction 
time = 360 min).
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Fig. 6. Effect of time on COD and phosphorus removal (reaction 
conditions: [FeSO4·7H2O] = 4.8 g/L, [H2O2] = 11.9 g/L, pH = 3, 
and T = 25°C).
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Fig. 4. Removal efficiency of COD and phosphorus with 
varying FeSO4·7H2O concentration (reaction conditions: 
[H2O2] = 11.9 g/L, pH = 3, T = 25°C, and reaction time = 360 min).
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from saponification effluent were confirmed. A confirma-
tory experiment under the optimum conditions was repeated 
and the results are shown in Table 3. The results show that 
82.3% of COD and 72.3% of phosphorus is removed under 
optimum conditions. Meanwhile, the residual concentra-
tion of COD and phosphorus in treated effluent are 164 and 
4.3 mg/L, respectively, which means a good performance for 
COD and phosphorus removal.

The picture of saponification effluent before and after 
Fenton’s oxidation is shown in Fig. 7. It can be seen clearly 
from the picture that the effluent was decolorized completely 
after Fenton’s oxidation and the treated effluent was a clean 
and transparent solution without peculiar smell. This would 
benefit from the complete decomposition of P507 and ker-
osene contained in the saponification effluent. Fig. 8 shows 
the XRD pattern of the precipitation obtained under the 
optimum conditions. It can be seen from Fig. 8 that there 
are two main crystal phases in the precipitation, namely, cal-
cium sulfate (CaSO4), and tricalcium phosphate [Ca3(PO4)2]. 
The calcium sulfate resulted from the precipitation reaction 
between calcium chloride in the saponification effluent and 
ferrous sulfate added into the saponification effluent (CaCl2 
+ FeSO4 = CaSO4↓ + FeCl2). The emersion of tricalcium phos-
phate indicated that the organic phosphorus in the saponifi-
cation effluent had been changed into inorganic phosphorus 
and was precipitated by calcium chloride in the saponifica-
tion effluent according to Eq. (9). This is also in accord with 
the decrease of phosphorus concentration in the effluent 
during the Fenton oxidation process.

3.6. Operational costs and economic evaluation of the Fenton 
oxidation and chemical precipitation process

In the scope of this study, the operational costs of remov-
ing COD and phosphorus from saponification effluent 
through rare-earth separating process by Fenton oxidation 
and chemical precipitation was estimated. To simplify the 
calculation, the manpower costs were not taken into con-
sideration and only the costs of chemicals were included 
in the calculation. The requirements and market prices of 
the chemicals are listed in Table 4. As shown in Table 4, 
the highest costs come from the consumption of sodium 
hydroxide which is the most expensive chemical in this 
process. The treatment cost would decrease from 12.26 to 
3.44 $/m3 if the sodium hydroxide was replaced by calcium 
oxide to change the pH value. Therefore, it is more eco-
nomic to change the pH with calcium oxide before chemical 
oxidation process.

After Fenton oxidation and chemical precipitation 
process, the phosphorus concentration in the effluent 
decreased to 4.3 mg/L which is lower than the require-
ments of Chinese emission standard of pollutants for rare 
earths industry (P: 5 mg/L, GB 26451-2011). But the COD 
still exceed the limit of the standard (COD: 100 mg/L, GB 
26451-2011). Therefore, the effluent needs further treatment 
to decrease the COD. Generally, the biodegradability of the 
organics in effluent improved significantly after the Fenton 
oxidation process [43]. Thus, the biological treatment will be 
a good choice for further decreasing the COD of the effluent 

Table 3
Results of confirmatory experiment under the optimum conditions (reaction conditions: [FeSO4·7H2O] = 4.8 g/L, [H2O2] = 11.9 g/L, 
pH = 3, T = 25°C, and time = 360 min)

Experimental  
index

Removal efficiency (%) Residual concentration in effluent (mg/L) Absorption 
value*COD Phosphorus COD Phosphorus

Results 82.3 72.3 164 4.3 0.04

*Absorption value was obtained at 460 nm.

Fig. 7. Saponification effluent before and after Fenton’s 
oxidation.
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Fig. 8. XRD pattern of the precipitation obtained under the 
optimum conditions.
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to meet the criterion [18]. While, the cost of the biological 
treatment is often very low and the total cost of the whole 
process is acceptable for the manufacturer of rare earth.

4. Conclusions

Fenton oxidation and chemical precipitation were used 
to remove COD and phosphorus from saponification 
effluent produced in rare metals metallurgical processes. 
The removal of phosphorus was closely linked with the 
degradation of organics because the phosphorus would be 
precipitated by calcium ion in the effluent after the organic 
phosphorus was transferred into dissociative phosphate 
anion. The experimental results showed that degradation 
of organics and precipitation of phosphorus were strongly 
influenced by the pH of the solution. The Fe(OH)2+ and 
hydroxyl radicals concentration would reach the peak at 
pH 3.0, which was beneficial for the degradation of organ-
ics and precipitation of phosphorus. The reaction time, H2O2 
and Fe2+ concentration were also important for the removal 
of COD and phosphorus. Under the optimal reacting con-
ditions with [FeSO4·7H2O] = 4.8 g/L, [H2O2] = 11.9 g/L, pH 
of the solution = 3.0, and reaction time = 360 min, 82.3% 
of COD, and 72.3% of phosphorus were removed and the 
effluent was decolorized completely. Meanwhile, the COD 
and phosphorus concentration was reduced from 924 and 
15.5 mg/L in saponification effluent to 164 and 4.3 mg/L in 
treated effluent. This means that the acidic phosphorus-con-
taining extractant in the saponification effluent has been 
degradated and the organic phosphorus has been changed 
into inorganic phosphorus and precipitated by calcium 
chloride.
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