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a b s t r a c t
This study investigates the performance of an integrated petroleum refinery wastewater treatment 
system. The proposed system attempts to improve the performance of an activated sludge sys-
tem by using immersed vertical rotating biological contactors in the aeration basin of the system. 
This system is an innovative method of biological petroleum refinery wastewater treatment with 
a hybrid growth process. A sand filter column was used in the last part of the treatment process. 
Also, a multi-layer perceptron neural network (MLPNN) was applied to predict pollutants in the 
effluent. Overall treatment efficiencies of chemical oxygen demand (COD), total suspended solids 
(TSS), oil, ammonia (NH3), and turbidity were 94%, 90%, 88%, 93%, and 92%, respectively. According 
to the findings, the removal efficiencies of pollutants in our integrated system were superior to 
conventional activated sludge systems. Training procedures of all effluent quality parameters were 
successful for the MLPNN model. The training model showed an almost acceptable match between 
the experimental and predicted values. For all models predicting effluent COD, TSS, oil, NH3, 
and turbidity, the correlation coefficient was higher than 0.90, and the mean squared error varied 
from 0.0001 to 0.234 for the measured parameters. The results confirmed the effectiveness of the 
integrated system in achieving high removal efficiencies.

Keywords: �Petroleum refinery wastewater treatment; Activated sludge process; Rotating biological 
contactors; Sand filter; Multi-layer perceptron neural networks; Prediction

1. Introduction

In recent years, the amount of produced wastewater 
by different industries, especially oil refineries, has dras-
tically increased. Petroleum refineries and petrochemical 
industries generate and release a lot of hazardous materi-
als, including sewage into the environment [1]. Therefore, 
it is crucial to collect and treat wastewater to achieve a 
healthy environment. Also, the reuse and reclamation of 
wastewater are needed, especially in the oil-producing arid 
regions, which are plagued with water scarcity. Wastewater 
treatment systems are usually the combination of physical, 
chemical, and biological processes. In biological wastewater 

treatment systems, microorganisms, which are suspended 
in the reactors or attached to different media, are responsi-
ble for the removal of pollutants [2]. The hybrid treatment 
processes commonly use attached and suspended growth 
within a reactor; hence, they are more advantageous than 
single processes [3].

Activated sludge systems are suspended growth bio
logical wastewater treatment systems. In other words, a 
bacterial biomass suspension is responsible for the treat-
ment process [4]. Activated sludge systems have been 
successfully applied to treat various wastewaters with 
promising removal efficiencies. Recently, several types of 
research have been conducted to improve performance 
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and decrease the cost of activated sludge systems for treat-
ing different wastewaters. As an example, Pala and Tokat 
[5] used an activated sludge pilot for the treatment of the 
cotton textile industry wastewater. That study indicated 
that the performance of activated sludge systems can be 
improved by adding some materials, including powdered 
activated carbon, into the system. Martínez-Alcalá et al. 
[6] investigated biological degradation, sorption, and mass 
balance determination in a conventional activated-sludge 
wastewater treatment plant. In another study, Jung et al. 
[7] used batch activated sludge systems for treating dairy 
wastewater. They could improve the performance of the 
activated sludge system by using the enzymatic pool pro-
duced by fungus for the biological treatment of wastewa-
ters with high oil and grease contents. Tellez et al. [8] used a 
field continuous-flow activated sludge system for removing 
petroleum hydrocarbons from produced water. Field-scale 
test results showed that the activated sludge system can 
successfully remove total petroleum hydrocarbon from pro-
duced water. In a study, Raper et al. [9] applied a pilot-scale 
activated sludge process to treat coke-making wastewater. 
According to the findings, the addition of powdered acti-
vated carbon to the activated sludge process can effectively 
improve the removal efficiencies. In another study, Cardete 
et al. [10] used a pilot-scale activated sludge process under 
different conditions for treating petrochemical wastewater.

The performance of suspended growth processes in 
wastewater treatment can be improved by using differ-
ent kinds of packing materials in the wastewater treat-
ment reactors [11]. In other words, packing materials are 
apt for improving overloaded suspended growth systems 
such as sequencing batch reactors and activated sludge 
systems because they can convert unused volumes into 
biofilm reactors [12]. The application of biofilm media, 
for instance, rotating biodisks in the aeration basin of acti-
vated sludge systems, might improve the performance of 
these suspended growth systems. In a study, Zaoyan et al. 
[13] combined rotating biological contactors (RBCs) with 
the activated sludge system for treating dye wastewater. 
The results stated that the combined system could effec-
tively remove color. In another study, You et al. [14] used 
the combination of RBCs with an activated sludge system 
for increasing the performance of the wastewater treatment 
system. According to the results, RBCs as biofilms could 
promote nitrifying activity, which contributed to the nitri-
fication performance. Di Trapani et al. [15] also used an 
integrated biofilm/activated sludge pilot to investigate the 
organic removal efficiency of the pilot in different values of 
the mixed liquor sludge retention time and temperatures. 
The results showed that the integrated system could suc-
cessfully treat municipal wastewater in low mixed liquor 
sludge retention time values and with low temperatures. 
Park and Lee [16] utilized an activated sludge system 
with a polyurethane fluidized bed biofilm to treat dyeing 
wastewater. The chemical oxygen demand (COD) removal 
in the pilot was efficient in different organic loading rates. 
In a study, the COD removal for the edible oil wastewaters 
by an activated sludge system was investigated. Based on 
the results, the system could remove approximately 80% 
of COD in 5  d [17]. In another study, Gebara [18] used 
plastic nets as biofilm media inside the aeration tank of a 

conventional activated sludge system. The results displayed 
that the nets could improve biochemical oxygen demand 
(BOD5) removal efficiency for treating synthetic waste-
water. Su and Ouyang [19] investigated nutrient removal 
using a combined process with activated sludge and fixed 
biofilms. According to the results, the integration of pack-
ing materials and activated sludge systems can be effec-
tively used for upgrading conventional activated sludge 
systems. Tang et al. [20] combined an activated sludge pilot 
with biofilm carriers for municipal wastewater treatment. 
In addition to the significant removal of organic matter and 
nutrients from municipal wastewater, the system displayed 
removal capacity for pharmaceuticals. Hassan et al. [21] 
monitored an upgraded hybrid moving bed biofilm reac-
tor-conventional activated sludge wastewater treatment 
plant at low high retention time (HRT) and high C/N ratio 
for 12 months. The hybrid reactor showed high removal 
efficiency for BOD5 and COD. Dang et al. [22] employed 
loofah sponges in a pilot-scale integrated fixed-film acti-
vated sludge system for municipal wastewater treatment. 
The activated sludge system with modified loofah sponges 
was effective in organic removal and total nitrogen removal.

Generally, mathematical solutions are capable of solv-
ing every problem with hardware available at the moment, 
but some problems need significantly high computational 
capacities. Consequently, several algorithms, such as genetic 
algorithms, ant colony optimization algorithms, neural net-
works algorithms, and so forth, have been developed to 
offer a sufficiently promising solution [23]. Recently, arti-
ficial neural networks (ANNs) have become popular for 
prediction in different areas, including medicine, water 
resources, and environmental engineering [24]. Also, neu-
ral networks have been effectively used for monitoring and 
predicting diverse parameters in water and wastewater 
treatment systems [25–27]. In a study, Mokhtari et al. [28] 
applied a neural network model to predict effluent COD, 
TP, and total suspended solids (TSS) in a hybrid municipal 
wastewater treatment system. Based on the findings, the 
training procedure of the NN model was successful, and 
almost a perfect match was achieved between experimen-
tal values and predicted values. In another study, Shokri 
Dariyan et al. [29] employed an ANN model to predict 
optimum retention time for dairy wastewater treatment in a 
hybrid activated sludge system. The results showed that the 
neural network model could provide an acceptable predic-
tion for the retention time in biological wastewater treatment 
processes. In addition to the neural networks model, 
Noroozi et al. [30] used the modified Stover–Kincannon and 
Grau models to predict the bio kinetic coefficients of COD 
removal in a hybrid activated sludge process. According to 
the results, the bioreactor follows the models with 98%–99% 
correlation coefficients. Neural networks generally predict 
output values from input values by some internal calcula-
tions [31]. Thus, a multi-layer perceptron neural network 
(MLP-NN) was applied to predict wastewater characteristics 
at the effluent of the system in our study.

This study attempts to assess the removal efficiency of 
organic pollutants in petroleum refinery wastewater via 
the integration of attached and suspended growth by using 
RBCs in the aeration basin of an activated sludge system. 
In other words, an activated sludge system was combined 
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with four fully immersed vertical RBCs in the aeration basin 
of the system. Additionally, a sand filter column was used 
as a tertiary treatment system to meet the improved stan-
dards for the effluent of the system. According to our knowl-
edge, this integrated system for the treatment of petroleum 
refinery wastewater has not been previously studied or 
reported in the literature.

2. Materials and methods

2.1. Wastewater characteristics

The pilot plant was located in the Tehran Oil Refining 
Company in the city of Tehran, Iran, which has been 
operating since 1968. The actual petroleum refinery waste-
water from the Tehran refinery wastewater treatment 
plant was used as the influent of our integrated wastewa-
ter treatment system. Influent wastewater analysis for the 
refinery wastewater treatment plant was carried out for 
4 months before designing the pilot. We used the efflu-
ent of the dissolved air flotation (DAF) unit in the refin-
ery wastewater treatment plant as raw wastewater in this 
study. Table 1 shows the minimum, average, and maximum 
values of the influent characteristics.

2.2. Pilot plant

The integrated activated sludge system consisted of a 
feeding tank, an aeration basin, which was composed of four 
fully immersed vertical RBCs, a settling tank, and a sand fil-
ter column for tertiary treatment (Fig. 1). The configuration 
of the pilot plant is given in Table 2. The feeding tank was 
made of plastic and was 1.7  m above the ground level in 
order to establish a continuous flow. The RBCs were con-
structed of Plexiglas acrylic sheets. To facilitate both micro-
organism’s growth and organic matter biodegradation, a 
layer of polyurethane foam (PUF) was attached to both sides 
of each biodisk. The PUF serves as suitable media due to 
having high porosity and specific surface area [32]. Table 3 
presents the characteristics of RBCs used in this study. The 
disks were placed in the aeration basin with a volume of 

50  L. The disks were connected via a stainless steel shaft. 
An induction motor was utilized for rotating the shaft and 
disks. While biofilm media can improve the efficacy of 
biological wastewater treatment systems, the detachment 
of biomass from biofilm media is a crucial issue among 
these attached growth systems [33]. High rotational speed 
might result in biofilm detachment, which can decrease 
biomass concentration in RBCs [34]. For this purpose, the 
rotational speed of 4 rotations per minute (rpm) was chosen 
for the rotating disks in the aeration basin. Fig. 2 shows the 
photos of RBCs before and after usage in the wastewater 
treatment system. An air compressor supplied airflow with 
a 30  L/min flow rate to the wastewater treatment system 
through diffusers installed in the aeration basin to provide 
oxygen for the aeration basin and also ensure mixing in the 
reactor. In order to maintain the temperature at 30°C, two 
aquarium heaters were used with temperature variations 
of 25°C–35°C. The Plexiglas settling tank had a trapezoidal 
shape part as this can help sludge and suspended solids set-
tle swiftly. To return settled sludge to the aeration basin with 
a specific flow, a pump was installed at the bottom of the 
settling tank. A cylindrical tank was used for building the 
sand filter column. A 20 cm layer of gravel with two parts 

Table 1
Petroleum refinery wastewater characteristics

DO (mg/L)pHTurbidity (NTU)NH3 (mg/L)Oil (mg/L)TSS (mg/L)TDS (mg/L)BOD5 (mg/L)COD (mg/L)Parameter

1.58.229.91587672,10083330Maximum
0.857.623.895547.51,70256.5226Average
0.27.117.7323281,30530122Minimum

Fig. 1. Configuration of the pilot plant and the process used in 
this study.

Table 2
Configuration of pilot plant

Length (cm) Width (cm) Height (cm) Radius (cm) Volume (L)

Feeding tank – – 96 32 300
Aeration basin 35 35 40 – 50
Settling tank 30 16 25 – 12
Sand filter column – – 90 16 18
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was placed at the bottom of the sand filter to allow drainage. 
To support the filtrating sand and prevent it from escaping 
through the drainage layer, a layer of sand was added above 
the gravel layer. The main layer of the sand filter was com-
posed of 98% pure silica sand with a uniformity coefficient 
of 1.7 and an effective size of 0.18 mm.

2.3. Operating conditions

After installing rotating contactors in the aeration 
basin, half of the effective volume of the aeration basin was 
filled with return activated sludge of the aeration basin 
unit of the petroleum refinery wastewater treatment plant. 
Temperature, COD, mixed liquor volatile suspended solids 
(MLVSS), mixed liquor suspended solids (MLSS), and pH 
for return activated sludge were 34°C, 259; 240; 1,142 mg/L, 
and 7, respectively. The remaining volume was filled 
with wastewater passed through the dissolved air flota-
tion unit of the petroleum wastewater treatment plant. To 
provide organics and nutrients required for the growth of 

microorganisms, wastewater, and activated sludge were 
daily added to the aeration basin. This process had been 
done 25 times before we started pilot testing. That is, 25 
cycles of treatment had been performed during the oper-
ational period. The temperature varied from 25°C to 30°C 
during the adaptation phase. pH generally affects the treat-
ability of wastewater in biological wastewater treatment 
processes [35]. Because of this, pH was measured, and it 
was between 6.5 and 8.5. It was observed that after 7.5 h aer-
ation in the aeration basin, the COD removal rate decreases 
because of the decline in the concentration of MLVSS. 
This decline can be attributed to the decrease in the food 
to microorganism ratio, and the death of microorganisms 
in the aeration basin, which normally increase COD con-
centration. Moreover, based on the inlet wastewater flow 
rate and the dimensions of the settling tank, settling time in 
the activated sludge system was 2.5 h. As a result, 10 h was 
chosen for the whole hybrid activated sludge system as the 
optimum hydraulic retention time. The settling tank and 
the sand filter column were added to the system after the 
adaptation phase. Raw wastewater was added to the feed-
ing tank by a pump. Afterward, wastewater samples were 
collected to measure the influent wastewater characteristics. 
Raw wastewater with approximately 100 mL/min flow rate 
was discharged into the aeration basin. Finally, the treated 
wastewater from the settling tank passed through the sand 
filter column for tertiary treatment. In addition to the mass 
of microorganisms to aerobically contaminants removal, 
the attached growth biomass resulted in contaminates 
removal in our hybrid reactor. In other words, the sus-
pended growth process and the attached growth process 
work together for contaminates removal in hybrid reactors 
[36]. Predation, mechanical trapping, natural death, and 
adsorption typically occur in sand filtration for contami-
nants removal. The particulate contaminants are physically 
removed by filtration on the surface of the sand filter’s 

Table 3
Characteristics of rotating biological contactors used in this study

ValueParameter

4Number of disks
25Diameter of disks (cm)
4.5Thickness of disks (cm)
PUFSurface material
5Spacing between disks (cm)
0.4Total surface area of disks (m2)
85Porosity of disks (%)
100Disk submergence (%)

 

a  b  

Fig. 2. Rotating biological contactors before biofilm formation (a) and after biofilm formation in the aeration basin (b).
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bed. Dissolved contaminants are removed by biological 
or physical-chemical processes in sand filtration [37].

2.4. Analytical method

COD, BOD5, dissolved oxygen (DO), TSS, MLSS, MLVSS, 
ammonia (NH3), total dissolved solids (TDS), tempera-
ture, turbidity, pH, and oil were measured in this study. 
The pH and the temperature were measured by a digital 
pH meter. TDS was measured by AZ8371, and turbidity was 
measured by PC CECKIT Loviband. A spectrophotometer 
(Loviband laboratory spectrophotometer) was used to mea-
sure NH3 and COD at the petroleum refinery wastewater 
treatment plant laboratory. TSS, MLVSS, MLSS, BOD5, DO, 
and oil were measured according to standard methods [38].

2.5. NN-based model development

ANNs are inspired by how the animals’ brain works 
[39]. Artificial neurons are connected with synapses, which 
can transmit signals to the next neuron, in neural network 
systems [40]. The NNs are typically composed of a lot of 
artificial neurons; thus, the connections among these neu-
rons determine the network’s function [41]. In other words, 
the NNs attempt to project a relationship between inputs 
and outputs without any specific rule by assessing exam-
ples from the training data set, and this the most advantages 
of neural networks [42]. A layer neuron cannot effectively 

detect the relationships between many inputs and outputs 
in the network; because of this, a multi-layer perceptron 
(MLP) is employed for building the NN models [43]. In this 
research, we used an MLP-NN with three layers, includ-
ing an input layer, a hidden layer with ten neurons, and an 
output layer. The single-output MLP-NN, executed in this 
research with M neurons in the hidden layer, can be indi-
cated by Eq. (1):

y w x x bW
i

i

M

ih, ,( ) = ×( ) +





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=
∑φout out out
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where bout is the bias of output neuron, φout is the transfer 
function of the output layer, Wi,out is the weight between the 
ith neuron in the hidden layer and the output neuron, and xih 
is the output of each neuron in the hidden layer, and this is 
determined by Eq. (2):

x W x bih h

N

n
i

i n i= ×( ) +









=
∑φ

1
, 	 (2)

where bn is the bias of nth neuron in the hidden layer, xi is 
the ith input, Wi,n is the weight between the nth neuron and 
the ith input in the hidden layer, N is the number of inputs, 
and φh is the transfer function of the hidden layer.

Fig. 3 shows the architecture of the MLP-NN used 
in the study for the prediction of effluent wastewater 
characteristics. Nine parameters, including influent COD, 

Fig. 3. Architecture of MLP-NN model for the prediction of effluent COD, TSS, oil, NH3, and turbidity.
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BOD5, TDS, TSS, oil, NH3, turbidity, pH, and DO, were used 
as inputs of the MLP-NN to predict effluent COD, TSS, oil, 
NH3, and turbidity. The characteristics of input and output 
variables in the NN modeling process are given in Table 4. 
Via a random data division, the data set was divided into 
three sets, 80% for training, 10% for testing, and 10% for 
validation of the MLP-NN model. Indeed, ten data points 
were used in the MLP-NN model, and the model allo-
cated eight data points for training, one data point for test-
ing, and one data point for validation. In this research, the 
Levenberg–Marquardt algorithm (which is a robust algo-
rithm) were used for training the MLP-NN model. The 
performance of the MLP-NN model in predicting effluent 
COD, TSS, oil, NH3, and turbidity was measured using mean 
squared error (MSE) and correlation coefficient (R).

3. Results and discussion

3.1. COD removal efficiency

Fig. 4 shows the changes of COD concentration in the 
petroleum refinery wastewater and also the removal effi-
ciencies after the activated sludge system with immersed 
RBCs and the sand filter column. The average COD con-
centration was about 234  mg/L in the influent of the raw 
wastewater, which decreased to 14.4  mg/L in the effluent 
(lower than the standard limit of 60 mg/L by U.S. EPA) [44]. 
In Fig. 4, the standard deviation for raw wastewater, efflu-
ent after the hybrid activated sludge system, and effluent 
after the sand filter column are 57.82, 9.57, and 5.69, respec-
tively. The average COD removal efficiency after the acti-
vated sludge system with immersed rotating biodisks was 
87.6%, and the removal efficiency increased to 94% after the 
sand filter column. The results of this study state that the 
activated sludge system with immersed rotating biodisks 
in the biological reactor, and the sand filter column is effec-
tive in terms of COD removal. The microorganisms in our 
hybrid system (attached/suspended growth), have a higher 
ability to remove organic carbon than an activated sludge 
system with the single suspended growth process [45]. 
Besides, our integrated system performed better, in terms of 
COD removal, than an aerated baffled reactor, which was 
coupled with an aerated biological filter [46]. In a study, 

Tong et al. [47] used a conventional activated sludge pro-
cess coupled with an immobilized biological filter [47]. Our 
integrated system displayed higher COD removal efficiency 
as compared with the removal efficiency of around 64% in 
the treatment of heavy oil wastewater in that system. Also, 
the COD removal in our integrated system is higher than 
a hybrid oil refinery wastewater treatment system, which 
was composed of a moving bed biofilm reactor and a slow-
rate sand filter [48]. Shokrollahzadeh et al. [49] employed 
an activated sludge system for treating petrochemical 
wastewater; the COD removal efficiency in that system was 
lower than the COD removal in our integrated system.

3.2. TSS removal efficiency

Fig. 5 shows the changes of TSS concentration and TSS 
removal efficiencies after the activated sludge system with 
immersed RBCs and the sand filter column. The settling 
tank and the sand filter column are the two prime steps of 
TSS removal in the integrated wastewater treatment sys-
tem. The average TSS concentration in the influent of the 
raw wastewater was about 43.8  mg/L, which decreased 
to 31.3  mg/L after the settling tank and then decreased to 
4.4  mg/L in the effluent. The results show TSS removal 
efficiency of 90% for the integrated wastewater treatment 
system. In Fig. 5, the standard deviation for raw waste-
water, effluent after the hybrid activated sludge system, 

Table 4
Characteristics of the measured variables in the NN modelling process

ValueOutput variableValueInput variable

Effluent concentrationInfluent concentration

7–25COD (mg/L)140–320COD (mg/L)
2.6–14BOD5 (mg/L)35–75BOD5 (mg/L)
801–1,230TDS (mg/L)1,173–2,000TDS (mg/L)
3–7TSS (mg/L)35–60TSS (mg/L)
1–10Oil (mg/L)32–57Oil (mg/L)
0.07–0.43NH3 (mg/L)3.1–4.6NH3 (mg/L)
0.3–3.5Turbidity (NTU)18.2–28.3Turbidity (NTU)
7–7.9pH7.4–8pH
2.5–3.8DO (mg/L)0.4–1.2DO (mg/L)
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Fig. 4. COD concentration and removal efficiencies in the 
integrated system.
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and effluent after the sand filter column are 7.23, 8.46, and 
1.23, respectively. According to the results, the integrated 
system is efficient for TSS removal in petroleum refinery 
wastewater. Our integrated system showed a higher TSS 
removal efficiency in comparison to conventional acti-
vated sludge systems. As an example, 90% TSS removal 
in our integrated system is higher than the maximum 71% 
TSS removal in an extended aeration activated sludge sys-
tem for petroleum refinery wastewater treatment used by 
Gasim et al. [50]. In a study, Xie et al. [51] used an aerated 
biological filter process for the treatment of slightly polluted 
wastewater in an oil refinery. Ninety percent of TSS removal 
in our integrated system is higher than 83% TSS removal 
in that system. In another study, Ahmed et al. [52] used a 
system, which consisted of three different configurations of 
sequencing batch reactors; the maximum TSS removal was 
65%, which is lower than the average TSS removal in our 
integrated system. Comparing our results with Perez et al. 
[53], who used an anaerobic thermophilic fluidized bed for 
treating cutting-oil wastewater, our integrated system is 
more effective than that system in terms of TSS removal.

3.3. Oil removal efficiency

The average oil concentration in the influent of the 
raw wastewater was about 46  mg/L, which decreased to 
the average concentration of 5.7  mg/L in the effluent. The 
oil removal efficiency was approximately 88% at the end 
of the integrated petroleum refinery wastewater treat-
ment system. The standard deviation for raw wastewater 
and effluent after the sand filter column are 7.51 and 2.68, 
respectively. Based on the results, the integrated system is 
effective in oil removal from petroleum refinery wastewater. 
In a study, Otadi et al. [54] used an oil refinery wastewa-
ter treatment system. That system was composed of a dis-
solved air flotation system, an activated sludge system, and 
a clarifier. The oil removal efficiency of our integrated system 
is higher than that system. In another study, Sekman et al. 
[55] utilized electrocoagulation to treat oily wastewater. Oil 
removal in that system is lower than oil removal in our inte-
grated system. Also, oil removal in our integrated system is 
higher than oil removal in a system, which was employed by 
Dumore and Mukhopadhyay [56]. Comparing the results of 
our integrated system with the findings of Wang et al. [57], 

who used an up-flow anaerobic sludge bed (UASB) reactor 
to treat heavy oil refinery wastewater and achieved the oil 
removal efficiency of up to 72%, our system is more efficient.

3.4. NH3 removal efficiency

The changes of NH3 concentration and NH3 removal 
efficiencies after various steps in the integrated system 
are shown in Fig. 6. The average NH3 concentration in the 
influent of the raw wastewater was about 4.02 mg/L, which 
decreased to the average concentration of 0.26 mg/L in the 
effluent. The average ammonia removal efficiency after the 
activated sludge system with immersed RBCs was about 
84.3%, and the removal efficiency increased to about 93% 
after the sand filter column. In Fig. 6, the standard devia-
tion for raw wastewater, effluent after the hybrid activated 
sludge system, and effluent after the sand filter column are 
0.53, 0.43, and 0.12, respectively. According to the results of 
this study, the integrated system with immersed RBCs in 
the aeration basin, and the sand filter column is efficient in 
terms of NH3 removal. In a study, Cao and Zhao [58] used 
a moving bed biofilm reactor (MBBR) to treat petrochem-
ical wastewater. The 93% NH3 removal efficiency of our 
integrated system is higher than the approximately 80% 
NH3 removal efficiency of that system. In another study, 
Mirbagheri et al. [59] employed an activated sludge con-
tact stabilization process for treating petroleum refinery 
wastewater; NH3 removal efficiency in our integrated sys-
tem is higher than that system. Hamoda and Al-Haddad 
[60] evaluated the performance of a fixed-film reactor to 
treat petroleum refinery wastewater. NH3 removal in that 
wastewater system was lower than our integrated system. 
Also, Zhidong et al. [61] applied a submerged membrane 
bioreactor to treat oil refinery wastewater. NH3 removal 
in that study was approximately analogous to our sys-
tem, but they used membranes, and they confronted the 
membrane fouling problem, which is a severe obstacle in 
these kinds of treatment systems [62].

3.5. Turbidity removal efficiency

The changes of turbidity concentration and turbidity 
removal efficiencies after various steps in the integrated 
system are shown in Fig. 7. The integrated system showed 
high performance in terms of turbidity removal, chiefly 
due to the settling tank and the sand filter column. The 
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average turbidity concentration of the influent of the raw 
wastewater was 23.8  NTU, which decreased to 10.7 and 
1.7  NTU after the settling tank and the sand filter col-
umn, respectively. In Fig. 7, the standard deviation for 
raw wastewater, effluent after the hybrid activated sludge 
system, and effluent after the sand filter column are 3.90, 
2.36, and 1.09, respectively. The turbidity removal efficiency 

was approximately 92% at the end of the integrated petro-
leum refinery wastewater treatment system. The results of 
this study indicated that the integrated system is efficient 
for the removal of turbidity in wastewater with higher 
efficiencies than other kinds of integrated wastewater 
treatment systems [63]. Additionally, the average turbidity 
removal in our integrated system is higher than the average 
turbidity removal of a batch electrochemical reactor, which 
was used by Körbahti and Artut [64] to treat bilge water. 
In a study, Velioĝlu et al. [65] used an activated sludge 
system to treat olive oil-bearing wastewater. Turbidity 
removal in that system was lower than our integrated sys-
tem. In another study, Pendashteh et al. [66] employed a 
sequencing batch reactor to treat produced water. The aver-
age turbidity concentration of the effluent in that wastewa-
ter treatment system was higher than the average turbidity 
concentration of the effluent in our integrated system.

3.6. NN-based prediction of effluent characteristics

In this research, several network architectures with 
neurons at the hidden layer were tested to predict COD, 
TSS, oil, NH3, and turbidity. To maintain the network as 
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simple as possible after a lot of preliminary experiments 
for each output, the three-layer MLP-NN was selected. 
Although employing more hidden neurons in the neural 
networks may improve the performance of the network, 
using too many neurons may result in over-fitting, which 
typically undermines the generalization capacity of the 
model [67]. Accordingly, the MLP-NN with three layers 
and ten neurons in the hidden layer resulted in higher 
accuracies for most of the tested architectures and the 
effluent characteristics. Optimal architecture is crucial for 
training the algorithm with suitable speed and short sim-
ulation time for determined network performance [68]. In 
this study, the training procedure of the MLP-NN model 

was successful for the prediction of effluent COD, TSS, oil, 
NH3, and turbidity. Fig. 8 shows the results of the predic-
tion for the six effluent characteristics using the MLP-NN 
algorithm. According to the results of the different data, 
there is a perfect match between predicted values and 
experimental values for the effluent COD, TSS, oil, NH3, 
and turbidity. The results also confirm the high general-
ization capability of the MLP-NN algorithm, and this has 
been reported in some other studies [69,70].

The regression lines for the MLP-NN model predicting 
effluent COD, TSS, oil, NH3, and turbidity based on all data 
sets are shown in Fig. 9. In this study, the results confirm 
the high correlation of experimental values with predicted 
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values. Table 5 presents R and MSE values for each of the 
measured parameters. The results of our modeling for the 
prediction of effluent characteristics using the MLP-NN 
model display higher accuracies in comparison to some pre-
viously developed models [71,72]. In this study, the optimal 
architecture of the MLP-NN model was discovered to be 
acceptable since the error based on all data sets was satis-
factory for the effluent COD, TSS, oil, NH3, and turbidity.

4. Conclusion

This study examined the novel application of an inte-
grated system for the treatment of petroleum refinery 
wastewater. The integrated system was composed of an 
activated sludge system, which was coupled with immersed 
vertical RBCs, and a sand filter column at the end of the 
treatment process to improve the performance of the sys-
tem. In order to make a tradeoff between attached growth 
and suspended growth, the aeration basin of the activated 
sludge system was filled with four fully immersed RBCs. 
With the HRT of ten hours, COD, TSS, oil, NH3, and tur-
bidity removal efficiencies were 94%, 90%, 88%, 93%, and 
92%, respectively. In our integrated system, the removal 
efficiencies were higher than as compared to conventional 
activated sludge systems or biofilm reactors. In other words, 
the integrated system obtained a successful result in petro-
leum refinery wastewater treatment. The application of a 
sand filter column as a post-treatment step after the bio-
logical wastewater treatment is a promising technology for 
wastewater reclamation and reuse in countries, which are 
suffering from the water crisis. Additionally, the findings 
showed that using the MLPNN model had high prediction 
accuracies, and high correlation coefficients (R) between the 
measured and predicted output variables were achieved. 
Therefore, the MLPNN model is suggested for designing 
and estimating the performance of integrated wastewater 
treatment systems since the MLPNN model could success-
fully predict the performance of our integrated system.
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