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a b s t r a c t
Currently, various water quality parameters (WQPs) are monitored for real-time contamination 
warning (CW) in the water supply system (WSS) of South Korea. If the measured values of WQP 
exceed the threshold value, CWs are issued. However, the U.S. Environmental Protection Agency 
(EPA) reported the following limitations of the CW system based on these thresholds. First, irregular 
and sudden hydraulic changes in WSS caused by pump or valve malfunction may cause measure-
ment error of the WQP sensors, which may cause nuisance and unnecessary false-positive alarms. 
Second, in the case of long-term outflow of micropollutants, WQPs change is slightly within the 
thresholds, which causes a serious monitoring error of false-negatives that cannot be detected even 
in actual contamination. Therefore, the U.S. EPA applied a linear prediction–correction filter (LPCF) 
model for real-time CW, which is based on the autoregressive (AR) model. The main purpose of this 
study is to develop a CW technique to be applied to WSSs in South Korea. For the development of 
a real-time CW technique, the LPCF model was applied with reference to previous research of the 
U.S. EPA. However, the time series of the WQP observed in WSSs often does not satisfy stationarity 
even though they are important fundamental assumptions of the AR model. Therefore, in this study, 
we developed an LPCF model by applying the autoregressive integrated moving average model 
considering nonstationary WQPs.

Keywords: �Contamination warning; Linear prediction–correction filter model; Autoregressive model; 
Autoregressive integrated moving average model

1. Introduction

The water supply system (WSS) is a public facility that 
continuously supplies tap water of good quality whereby 
each component, such a reservoir or water treatment plant 
(WTP), is connected through a pipe. Therefore, if exter-
nal contaminants are introduced through joints or cracks 
where the pipe integrity is relatively weak or if internal con-
tamination occurs owing to corrosion in the pipe, the stabil-
ity of the entire WSS and water quality management will 

be negatively affected [1,2]. In addition, changes in various 
hydraulic conditions owing to temporal changes in the use 
of tap water, the use of fire-fighting water, and the sudden 
operation of fittings (e.g., valves, and pumps) in the pipe 
network make real-time contamination warning (CW) in 
WSSs more difficult.

Currently, most of the WSSs in South Korea use the set-
point method, in which CWs are issued when changes in 
water quality parameters (WQPs) observed in real-time, 
such as pH and turbidity, exceed the threshold value [3,4]. 
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However, the U.S. Environmental Protection Agency (EPA) 
reported that a false alarm could be raised when using 
the set-point method. First, irregular and sudden hydrau-
lic changes in WSSs caused by pump or valve malfunction 
may cause a measurement error of the water quality sen-
sors, which may cause nuisance and unnecessary false-
positive alarms. Second, in the case of long-term outflow 
of micropollutants, the WQPs changes are slightly within 
the thresholds values, which causes a serious monitoring 
error of false-negative that cannot be detected even in actual 
contamination. As a result, these false alarms are a major 
cause of lowered operational efficiency and reliability of 
CW in WSSs [5,6].

In this regard, the U.S. EPA has developed a CW system 
that can detect all possible contamination events, including 
intentional water pollution accidents by terrorist acts, at 
an early stage in the entire WSS. In order to build a reli-
able CW system, the U.S. EPA referred to the successful 
development of the event detection system (EDS) based 
on on-line WQPs monitoring as an essential element and 
conducted an EDS challenge in 2007–2014 for six isolated 
WSSs in Cincinnati, Ohio [7–13].

Here, the basic algorithm of the EDS is briefly described. 
The EDS predicts the WQPs states in real-time based on a sta-
tistical estimation model and defines the difference between 
the predicted value and the actual observation value as the 
residual. On the basis of the probabilistic analysis of the 
residuals, an analytical result is derived that minimizes the 
false alarms pointed out as a disadvantage of the set-point 
method. The time series increments (TSI) model, the linear 
prediction–correction filter (LPCF) model, and the multi-
variate nearest neighbor (MVNN) approach are applied 
to the EDS; the LPCF model and the MVNN approach are 
known to be more effective than the TSI model. The MVNN 
approach returns only similarities between the past and 
current values of WQP; it does not provide predictive val-
ues. The LPCF model provides estimates for the near future 
based on the statistical time series model. That is, it predicts 
real-time WQPs changes in the WSS by repeating the gen-
eration and updating process of the autoregressive (AR) 
model. The AR model assumes stationarity for the observed 
time series, which means that the mean and covariance 
of the observed data are not affected by changes in time. 
In reality, however, most of the WQP observed in a WSS 
often does not satisfy the assumptions of stationarity such 
as changes in mean and covariance over time in addition 
to trend and seasonality. In general, if the observed time 
series indicate nonstationarity, transformations are required 
such as variance stabilizing transformations or differenc-
ing transformations. In particular, a random trend such as 
a seasonal factor can be transformed into a stationary time 
series through continuous differencing. In such a case, 
the autoregressive integrated moving average (ARIMA) 
model, which is an extension of the AR model, is applied 
as a tentative estimation model for time series [14,15].

As demonstrated in the 2016 water contamination acci-
dent in Flint, Michigan, the USA owing to lead leakage, 
suspension of the WSS as a result of water pollution causes 
enormous social and economic damages and has a negative 
impact on the reliability and consumption rate of tap water. 
In this study, we analyze the precedent research of the EDS, 

which is being studied and developed by the EPA in order 
to develop real-time CW and rapid response capability in 
the WSS of South Korea. In order to develop the WQP esti-
mation model, which is the essential technology of EDS, 
the LPCF model is applied to the G_WTP in South Korea, 
and its performance is verified. However, unlike previ-
ous studies of the EPA based on the AR model, the ARIMA 
model as a fundamental estimation model is applied here 
considering possible nonstationarity in the observed WQP.

2. Theoretical background

The LPCF model is a method that predicts the cur-
rent value of WQP in real-time through a linear combi-
nation of the weighted sum of past values. It is a process 
in which the AR model is continuously generated and 
updated at the same time as the WQP observation period. 
The AR model of order p, which is denoted as AR (p), is:

z z z z at t p t p t� + − − + +− = ∅ −( ) +∅ −( ) +…+∅ −( ) +1 1 2 1 1 1µ µ µ µt 	 (1)

where zt with mean μ is the value of WQP at the current 
time, z�t+1 is the estimate of the value of WQP at the next time 
step, Øp is the coefficient for the AR model, p is the order 
of the estimation filter polynomial (number of previous 
measurements), and at+1 is the estimation error or residual.

The residual calculated by this estimate is:

a z zt t t+ += −1 1 	 (2)

where at+1 is referred to as a zero-mean Gaussian white noise 
process.

By introducing the backshift operator Bjzt  =  zt–j and 
Zt = zt – μ, Eq. (1) can be rewritten as Eq. (3) in the following 
compact form:

1 1 2
2

1 1−∅ −∅ −∅( ) =+ +B B B Z ap
p

t t... 	 (3)

For the real-time LPCF model, Øp is updated at every 
time step and uses only the most recent p observations.

The time series of the WQP observed in WSSs often 
does not satisfy the stationarity even though it is an import-
ant fundamental assumption of the AR model. For exam-
ple, the nonstationary time series of the WQP could have 
non-constant mean μ time-varying second moments such as 
nonconstant variance σ2, or it has both of these properties. 
Although many time series are nonstationary, a homoge-
neous nonstationary series can be reduced to a stationary 
series by taking the appropriate difference of the general 
series [16]. Thus, the times series Zt is nonstationary, but 
the dth differenced series, wt =  (1 – B)dZt for integers d ≥ 1, 
is stationary.

Obviously, a stationary process resulting from 
differences in a homogeneous nonstationary series is not 
necessarily white noise. Generally, the difference in time 
series wt follows the general stationary autoregressive mov-
ing average (ARMA) process, which is:

∅ ( ) −( ) = + ( )p

d

t o q tB B Z B a1 θ θ 	 (4)
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where Øp is the stationary AR operator, θq(B) is the invertible 
MA operator, and θq and θo are parameters of the MA model, 
respectively.

The resulting homogeneous nonstationarity model in 
Eq. (4) is referred to as the ARIMA model of order (p,d,q) 
and is denoted as the ARIMA (p,d,q) model.

3. Study area and procedure

The G_WTP in South Korea, with a capacity of 207,000 
m3/d, was selected for this study. The target water quality 
of G_WTP is pH 5.8–8.5, 0.1–4.0  mg/L free residual chlo-
rine (F–Cl), and turbidity less than 0.5 NTU; each WQP has 
measured automatically in 1  min intervals. In this study, 
we used F–Cl and pH data from January 1 to December 31, 
2013, observed at G_WTP for development and verification 
of the LPCF model.

Fig. 1 illustrates the monthly average and standard 
deviation of the WQP dataset observed at the G_WTP. The 
standard error of each observation value increased slightly 
during the summer season of June to September. The annual 
average value of the F–Cl was 0.59 mg/L (σ = 0.078 mg/L), 
and the annual average pH was 7.19 (σ = 0.56), which sat-
isfies the target water quality of G_WTP. The LPCF model 
developed by the U.S. EPA is a process in which the AR 
model is continuously generated and updated during the 
observation period of the WQPs. Therefore, in order to 
develop the LPCF model, the size of the analysis window, 
and the model identification process of the appropriate 
AR (p) model needs to be first determined. Here, the analysis 

window can be defined as the sample space for estimating 
the parameters of the AR (p) model that moves continuously 
according to the observation period, as shown in Fig. 2.

The optimal AR  (p) model is identified when deter-
mining the proper pth order. However, the ARIMA model, 
which is an extension of the AR model, is applied when non-
stationarity such as trends or seasonal components appear 
in the time series of WQP. Therefore, identification of the 
optimal ARIMA (p,d,q) model can be summarized by deter-
mining the proper order of (p,d,q). In this study, to develop 
and test the LPCF model based on the ARIMA model, a 
simple random sampling of 20,160 sets of WQP data for 
2 weeks was performed; the detailed characteristics of all 
data are summarized in Table 1.

A time series from April 1 to April 7, 2013 (10,080 sets), 
was used as training data to develop the LPCF model, 
and the optimal size of the analysis window and optimal 
ARIMA (p,d,q) model for the building the LPCF model were 
then derived. A time series from May 6 to May 12, 2013 
(10,080  sets), was applied as test data to verify the perfor-
mance of the LPCF model.

4. Results

4.1. Development of LPCF model

Fig. 3 presents the time series plot and the sample auto-
correlation function (SACF) for Data No. C-1. As shown in 
Fig. 3a, Data No. C-1 did not indicate a deterministic trend, 
although it showed strong autocorrelation between adjacent 

(a) (b)
Fig. 1. Monthly changes in the WQP dataset: (a) F–Cl and (b) pH. The bar plot indicates the average, and the error bar indicates the 
standard error.

Table 1
Description of sampling data from G_WTP

Variable Data No. Data period Mean Std.

F–Cl
No. C-1 2013/04/01–2013/04/07 (Training) 0.596 0.056
No. C-2 2013/05/06–2013/05/12 (Test) 0.575 0.03

pH
No. P-1 2013/04/01–2013/04/07 (Training) 7.727 0.478
No. P-2 2013/05/06–2013/05/12 (Test) 7.199 0.151
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Fig. 2. Concept of the analysis window.

Fig. 3. Time series plot and SACF of the Data No.  C-1: (a) the time series plot, (b) SACF of raw time series, and 
(c) SACF of first-order differencing time series.
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data. The SACF of Data No.  C-1, shown in Fig. 3b, gradu-
ally decreased, whereas the SACF of the first-order dif-
ferencing data (Fig. 3c) showed a relatively large spike at 
lag 1. Therefore, Data No. C-1 indicates that the times series 
is nonstationary and has a probabilistic trend.

Fig. 4 presents a plot of time series and the SACF for 
Data No. P-1. As shown in Fig. 4a, Data No. P-1 indicates 
that the times series was clearly nonstationary with an 
increasing trend. The SACF of Data No. P-1 (Fig. 4b) grad-
ually decreased, whereas that of the first-order differenc-
ing data (Fig. 4c) showed a relatively large spike at lag 
1, 2, and 3.

To quantitatively analyze the nonstationarity in Data 
No. C-1 and Data No. P-1, the order of the ARIMA (p,d,q) 
model was set at p  ≤  2, d  ≤  1, and q  ≤  2 according to the 
principle of parsimony in model building recommended 
by Box and Jenkins [15]. Schwartz’s Bayesian Criterion 
(SBC) was calculated to compare the raw time series group 
(d = 0) and the differenced time series data groups (d = 1). 

Here, SBC is an information criterion used to assess the 
quality of the model fitting and is defined as:

SBC ln lnM n M n( ) = +σ
2 	 (5)

where M is the number of parameters in the model, σ
2 is the 

maximum likelihood estimation of σ
2, and n is the effective 

number of observations.
Table 2 summarizes the SBC calculation results for Data 

No. C-1 and Data No. P-1. In the case of Data No. C-1, the 
average of SBC for the models with the raw time series 
group was –6.145, whereas the average of SBC for the 
models with the differenced time series groups was –7.571 
(SBCmax  =  –7.590, ARIMA (2,1,1)), which is about 23% 
lower. In the case of Data No. P-1, the average of the SBC 
for the models with the raw time series group was –1.447, 
whereas that for the models with the differenced time 
series groups was –2.357 (SBCmax = –2.393, ARIMA (2,1,2)), 

Fig. 4. Time series plot and SACF of the Data No.  P-1: (a) time series plot, (b) SACF of raw time series, 
and (c) SACF of first-order differencing time series.
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which is about 39% lower. Therefore, in this study, the LPCF 
model based on the ARIMA model with differencing trans-
formation was developed considering the nonstationarity 
in the WQPs. The detailed results are given below.

In order to develop the LPCF model, it is necessary 
to identify the appropriate ARIMA (p,d,a) model and the 
size of the analysis window. As previously mentioned, 
the analysis window is a sampling space for estimating 
the parameters of the LPCF model and should be shifted 
to the same WQP observation period. In a previous study 
of the U.S. EPA for pipe networks, the optimal size of the 
analysis window was 2,880 min [7,8]. In this study, the size 
of the analysis window was set to 2,880 min, and the ten-
tative LPCF model based on the ARIMA model for each 
WQP was identified. In addition, the size of the analysis 
window was reanalyzed because the WTP was selected for 
the study area, unlike the previous study of the U.S. EPA 
for pipe networks. To identify the optimal model, seven 
ARIMA models (p  ≤  2, d  ≤  1, and q  ≤  2) were built, and 
the mean squared prediction error (MSE), mean absolute 
prediction error (MAE), and correlation coefficient (CC) 
were selected for statistical evaluation of each model. 
The MSE, MAE, and CC are expressed as:

MSE =
−( )

=
∑ Z Z

n

i i
i

n
� 2

1 	 (6)

MAE =
−

=
∑ Z Z

n

i i
i

n

�
1 	 (7)
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Z Z

Z Z

i i

i i

=
( )

( ) ( )
Cov

Var Var

, �

�
	 (8)

where Zi is the value of observed WQPs at time i, Z�i is the 
value of estimated WQPs at time i, and n is the number of 
data.

Table 3 summarizes the MSE, MAE, and CC calculation 
results for Data No.  C-1 and Data No.  P-1. In the case of 
Data No. C-1, the CC of all models was more than 0.90 and 
showed a strong positive correlation with the observations. 
The MSE showed the same results in the seven models, 
and the difference of MAEs in each model was small but 
showed the minimum value in the ARIMA (1,1,0) model. 
In the case of Data No.  P-1, the ARIMA (2,1,0), ARIMA 
(2,1,1), and ARIMA (2,1,2) models were excluded from this 
analysis because of the parameters of the ARIMA model 
were not converged in some points. The CC of the ARIMA 
(1,1,0), ARIMA (1,1,1), and ARIMA (0,1,1) models satisfy-
ing the parameter estimation showed a good fit with the 
observations. The MSE showed the same result in the three 
models, and the MAE showed the minimum value in the 
ARIMA (1,1,0) model. Considering the results of the test 
criterion, the difference in prediction performance between 
models was small when the order of the ARIMA model 
was p  ≤  2, d  ≤  1, and q  ≤  2. However, the ARIMA (1,1,0) 
model is expected to be the best time series model for 
building the LPCF model considering the parsimony and 
the efficiency of parameter estimation in the identification 
of the ARIMA model.

To estimate a reasonable analysis window size for WTP, 
the analysis window was set from 180 to 2,880  min, and 
the ARIMA (1,1,0) model was applied as a fundamental 
prediction model of the LPCF model.

Fig. 5a illustrates the CC and MAE results according to 
the analysis window for Data No. C-1. In all of the analy-
sis windows, the CC showed a positive correlation of 0.8 
or more. The MAE decreased gradually with an increase 
in the analysis window; a relatively large decrease was 
found at 1,080 min of the analysis window. Fig. 5b shows 
the CC and MAE results according to the analysis window 
for Data No.  P-1. In the entire analysis window, the CC 
showed strong fitness of 0.99 or more. The MAE increased 
gradually with an increase in the analysis window, which 
is different from that of Data No.  C-1, and a relatively 
large increase appeared after 720 min of the analysis win-
dow. Therefore, considering the results of this study, it is 
expected that the analysis window of a shorter interval than 
that for the pipe network can be applied when developing 
an LPCF model for WTP.

4.2. Validation of LPCF model

The ARIMA (1, 1, 0) model was selected as an opti-
mal prediction model for F–Cl and pH through analysis of 
the training dataset. To test the LPCF model based on this 
ARIMA model, Data No.  C-2 and Data No.  P-2, shown 
in Table 1, were adopted as test data. In the development 
of the LPCF model, the analysis window was applied for 
1,440  min equally; the predicted value of the LPCF model 
was substituted when the observation data were missing.

Fig. 6 illustrates the time series plot of Data No.  C-2, 
the simulation results of the LPCF model, and the residual. 
Except for partial missing points, Data No.  C-2 oscil-
lated up and down around the mean value without rapid 

Table 2
SBC calculation results of Data No. C-1 and Data No. P-1

Data No. ARMA (p,q) SBC

d = 0 d = 1

No. C-1

1,0 –7.303 –7.523
1,1 –7.519 –7.586
0,1 –2.329 –7.582
2,0 –7.464 –7.545
2,1 –7.521 –7.590
2,2 –7.518 –7.590
0,2 –3.363 –7.584

No. P-1

1,0 –2.001 –2.335
1,1 –2.281 –2.351
0,1 –2.812 –2.341
2,0 –2.275 –2.344
2,1 –2.290 –2.392
2,2 –2.297 –2.393
0,2 –1.799 –2.346
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fluctuation (Fig. 6a). As shown in Fig. 6b, the estimates of 
the LPCF model were distributed in a similar manner as 
that of the observations; the distribution of the residuals is 
typical of white noise.

Fig. 7 illustrates the time series plot of Data No.  P-2, 
the simulation results of the LPCF model, and the residual. 
As shown in Fig. 7a, the time series of Data No. P-2 had a 
partial missing value and a base change in the middle part 
of the observation. Moreover, the time series was more 
static than that of Data No. C-2. The LPCF model for Data 

Table 3
MSE, MAE, and CC calculation results of Data No.  C-1 
and Data No. P-1

Data No. ARIMA (p,d,q) MSE MAE CC

No. C-1

1,1,0 0.0021 0.0030 0.908
1,1,1 0.0021 0.0039 0.907
0,1,1 0.0021 0.0038 0.907
2,1,0 0.0021 0.0036 0.908
2,1,1 0.0021 0.0038 0.907
0,1,2 0.0021 0.0039 0.907

No. P-1

1,1,0 0.0001 0.0042 0.996
1,1,1 0.0001 0.0054 0.995
0,1,1 0.0001 0.0054 0.995
2,1,0 – – –
2,1,1 – – –
2,1,2 – – –

 
 

 

(a)

(b)

Fig. 5. Results of CC and MAE according to the analysis 
window: (a) Data No. C-1 and (b) Data No. P-1.

Fig. 6. Simulation results of Data No. C-2 using the LPCF model (ARIMA (1,1,0)) and a window analysis size of 1,440 min.
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No.  P-2 simulated the overall variation of pH including 
the base fluctuations shown in Fig. 7b. The distribution of 
the residuals also showed typical white noise type except 
for the missing and base fluctuation points. The CC, MSE, 
and MAE were calculated to quantitatively analyze the 
performance of both LPCF models.

Table 4 summarizes the estimation results of the test 
criterion for Data No.  C-2 and Data No.  P-2. The correla-
tion between observation and estimates was higher than 
0.95 for both models. The MSEs of Data No.  C-2 and Data 
No. P-2 were 0.0001 and 0.0000, respectively, and the MAEs 
were 0.0014 and 0.015, respectively. The CC, MSE, and MAE 
indicate that the LPCF model based on the ARIMA (1,1,0) 
model developed in this study can accurately simulate 
the changes in time series of WQPs observed at the WTP.

5. Conclusion

The purpose of this study was to develop real-time CW 
technology in the WSS of South Korea. For this purpose, 
an LPCF model, a real-time CW model developed by U.S. 

EPA, was applied to G_WTP in South Korea. However, in 
this study, the ARIMA model was applied as a fundamen-
tal prediction model of the LPCF model considering the 
nonstationarity of the time series of WQPs. This appli-
cation is different from that of the previous study by the  
U.S. EPA. The results are summarized in the following points.

•	 Analysis of the time series plot and SACF of the collected 
WQP dataset in the G_WTP of South Korea, includ-
ing F–Cl and pH, revealed that both times series were 
nonstationary and showed a probabilistic trend.

•	 Considering the nonstationary of the time series of 
WQPs, an LPCF model based on the ARIMA model 
was developed. As a result, the prediction performance 
of the models including the first-order differencing 
transformation indicated more accurate estimation 
results. Moreover, the ARIMA (1,1,0) model was iden-
tified as the optimal time series model for both the time 
series of the WQPs. Therefore, it is considered that 
the ARIMA model including first-order differencing 
transformation is a more suitable fundamental predic-
tion model for building the LPCF model for real-time  
CW of WSS.

•	 In order to estimate a reasonable size for the analysis 
window for the LPCF model, the analysis window was 
set from 180 to 2,880 min, and the ARIMA (1,1,0) model 
was applied as the fundamental prediction model of the 
LPCF model. In a previous study by the U.S. EPA on 
pipe networks, the size of the analysis window was sug-
gested as more than 2,440 min. However, in this study 

Table 4
MSE, MAE, and CC calculation results of Data No. C-2 and Data 
No. P-2

Data No. Data period MSE MAE CC

No. C-2 2013/05/06–2013/05/12 0.0001 0.0014 0.950
No. P-2 2013/05/06–2013/05/12 0.0000 0.0015 0.998

Fig. 7. Simulation results of Data No. P-2 using the LPCF model (ARIMA (1,1,0)) and a window analysis size of 1,440 min.
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on WTPs, an analysis window shorter than 2,440  min 
was applicable.

Further, compared with the U.S. EPA, which conducts 
leading research on the development of CW and surveil-
lance systems, South Korea’s research environment and per-
formance are relatively inadequate. Therefore, it is expected 
that the results of this study can be used as a useful basic 
tool for developing CW and surveillance systems in the 
WSSs that are newly established or undergoing expansion.
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