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a b s t r a c t
Refractory and non-biodegraded pollutants such as antibiotics are the major threat to humans and 
the environment. Integrating several kinds of advanced oxidation processes into one system such 
as UV/ZnO/PMS (PMS – peroxymonosulfate) process has been proposed to be an efficient strat-
egy for removing pollutants from the environment at a low-cost. In this study, zinc oxide (ZnO) 
nanoparticles were, firstly, synthesized and showed super reactivity as well as good reusability for 
tetracycline degradation in the integrated UV/PMS process from the aqueous system. To describe 
the structure and morphology of the nanoparticles, UV-Visible spectroscopy, X-ray diffraction, 
and transmission electron microscopy were used. The results demonstrated 95.6% degradation 
occurred under the condition of pH = 7.0, PMS = 2 mM, 2 g L–1 ZnO, and 90 min reaction time. 
First-order kinetics was fitted for UV/ZnO/PMS with the rate constant of 0.018 min–1. PMS exhibited 
superiority to other electron acceptors (persulfate and hydrogen peroxide). Scavenger’s experi-
ments confirmed the presence of both sulfate and hydroxyl radicals in the degradation process. 
The systematic condition experiments further verified the dual functionality of the biogenic ZnO 
nanoparticles system, in which PMS activator for tetracycline molecule oxidation under ultraviolet 
irradiation and actively played the role of a photocatalyst.
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1. Introduction

Antibiotics are widely used as human and animal 
drugs to treat microbial infections [1]. About 30%–80% 
of antibiotics are not metabolized in the human and ani-
mal body and rather are excreted in the urine and feces 
as active compounds [2,3]. Pharmaceutical compounds 
enter the aquatic environment from sources such as the 

pharmaceutical industry, hospital effluents, human and 
livestock feces, wastewater treatment effluents, and labora-
tory and research activities [4]. Some of the adverse effects 
of antibiotics entering the human body include increased 
bacterial resistance, genotoxicity, and gastrointestinal dis-
orders [5]. Conventional wastewater treatment, on the other 
hand, removes only 60%–90% of antibiotics [6]. Therefore, 
these agents are found in surface water, groundwater, 
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wastewater, soil, and sediment [7,8]. Tetracycline (TC) 
antibiotics are the second most commonly used antibiotics 
worldwide for the production and use of antibiotics that are 
frequently used today to treat a variety of infectious dis-
eases [9]. The presence of this antibiotic in the environment 
poses a threat to human health and ecosystem function 
[10]. Therefore, an efficient system for eliminating these 
compounds is essential.

Methods used to remove antibiotics from aqueous and 
wastewater environments include membrane processes 
[11], adsorption [12], physical [13], biological processes [14], 
advanced oxidation including UV [15], ultrasound [16], 
ozonation [17], and synthetic methods such as MWCNT/
TiO2 [18]. Among the above methods, advanced oxidation 
processes (AOPs) provide an effective way of decompos-
ing hazardous and biodegradable pollutants in aquatic 
environments [19]. Removal of pollutants in the advanced 
oxidation process is based on some chemical oxidants 
(e.g., H2O2, PMS, and O3) by free radicals such as hydroxyl 
and sulfate radicals. These radicals have a high oxidation 
potential that is capable of mineralizing many organic and 
toxic compounds [20,21].

In addition, the advanced oxidation processes have 
advantages such as process simplicity, low-cost, high 
efficiency, and complete degradation of pollutants [22,23].

Recently, peroxymonosulfate as a new oxidant has been 
the subject of intense research because of advantages such 
as the stability, safety, the higher redox potential of corre-
sponding intermediate sulfate radicals (SO4

•–: 2.5–3.1 V, •OH: 
1.8–2.7 V) with a longer lifetime, and strong oxidation abil-
ity [24,25]. In addition, this oxidant is easily activated by 
heat [26], ultraviolet light [27], alkaline [28], ultrasound [29], 
and proper transitional metal ions (Fe2+, Zn2+, Mn2+) [30–32].

Semiconductor + hv → eCB– + h+ (1)

HSO5
– + eCB– → OH– + SO4

•– or •OH + SO4
2– (2)

Zn2+ + HSO5
− → Zn3+ + SO4

•– + OH− (3)

HSO5
− + hv → SO4

•– + •OH (4)

The use of catalysts in photocatalytic processes increases 
the rate of radical production [33–40], reaction rate, and 
efficiency [41]. Using various semiconductor materials 
(e.g., TiO2, ZnO, CuO, and MgO) [42,43], metallic or metal-
lic oxides reinforced (e.g., CuO/SnO2, TiO2/Al2O3, and CuO/
ZnO) [44], and some porous materials (e.g., activated car-
bon granules and zeolites) [45] have been widely used to 
eliminate contaminants in water and wastewater treat-
ment. Among the advanced oxidation methods, semicon-
ductor-based photocatalytic processes such as ZnO have 
received much attention because of their high efficiency 
and easy application [46,47].

Zinc oxide (ZnO) is known as an excellent semicon-
ductor material with a wide-direct bandgap (3.37eV), large 
exciton binding energy (60 MeV), non-toxic and stable 
photochemical properties [48].

The photocatalytic activity of ZnO has two major fea-
tures: (i) its bandwidth of ZnO is wide, which leads to only 

absorbing ultraviolet light but not completing using the 
visible light, and (ii) ZnO material has a high recombination 
rate of electron-hole pairs [38,49].

The activation of peroxymonosulfate by ultraviolet and 
ZnO catalysts and the production of hydroxyl and sul-
fate radicals for the decomposition of TC are explained by 
Eqs. (1)–(4).

In this study, the biogenic ZnO NPs synthesized using 
an extract of palm kernel, then we aimed to report the 
performance of UV/biogenic ZnO NPs in the presence of 
peroxymonosulfate (PMS) for TC removal with a focus on 
the main operating parameters such as pH, PMS, TC con-
centration and catalyst dosages. Also, the photo-degraded 
samples were analyzed by the chemical oxygen demand 
(COD) analysis. Finally, the quenching experiments were 
conducted for determining the mechanism of TC degrada-
tion in the photocatalysis process.

2. Material and methods

2.1. Materials

TC powder with 98% purity was prepared from Sigma-
Aldrich Co., (USA) to perform photocatalytic decom-
position. The antibiotic characteristics are presented in 
Table 1 [2]. Hydrogen peroxide (30%), sodium hydroxide 
(NaOH), and sulfuric acid (96%) (H2SO4) were obtained 
from Merck Company. (Germany) Peroxymonosulfate 
(2KHSO5·KHSO4·K2SO4; OXONE) and zinc nitrate (99% pure) 
were provided by Sigma-Aldrich (USA). All the applied 
chemical reagents were of analytical grade and without being 
further purified before use. All used solutions were prepared 
with highly pure DI-water.

2.2. Preparation of extract and biosynthesis of zinc oxide

The pits of date palm were collected from the City of 
Bam in Kerman Province in Southeastern Iran in 2020.

First, 20 g of pits were disinfected by 3% sodium hypo-
chlorite for 3 min and then washed with distilled water 
3 times and each time was 2 min. Then the seeds were 
disinfected with 70% alcohol for 2 min and then washed 
3 times with distilled water and each time was 2 min. 
Then sterile water was added with the ratio of 10:1 (10 mL 
of water per 1 g of seed), they were placed in the dark for 
2 d at 25°C. After 2 d, the liquid phase was filtered with 
Whatman No. 1 and the obtained filtered extract was used 
for the synthesized nanoparticles. Zinc nitrate were used 
at concentrations of 0.1, 0.25, 0.5, 0.75, and 1 mM for bio-
synthesis of zinc oxide nanoparticles. Thus, 10 mL of the 
extract was added to 90 mL of nitrate-zinc solution with 
mentioned concentrations separately (while zinc nitrate 
was not added to the control sample). The treated extracts 
were incubated at 70°C for 2 h. Lastly, the solution was 
calcinated for 4 h at 400°C to obtained white powder.

2.3. Characterization techniques

The absorption spectra of ZnO NPs were recorded by a 
Shimadzu UV 2600 spectrophotometer (Japan).

The surface morphology of the samples (ZnO NPs) was 
observed employing a transmission electron microscopy 
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(TEM) field. In addition, X-ray diffraction (XRD) analysis 
with Cu Kα radiation (λ = 0.154 nm) was also performed 
to show the crystallinity and phase composition of the 
samples (Philips XRD, Model: PW1730, Holland).

2.4. Analytical methods

The TC concentration in the solutions was measured 
using a high-performance liquid chromatography (HPLC) 
(Model KNAUER) device equipped with the ultimate 
variable wavelength UV detector. The calibration curve 
was produced at five levels (ranging from 1 to 50 mg L–1) 
for the TC quantification.

The mineralization of TC was evaluated by measuring 
the COD using the dichromatic closed reflux method.

The TC removal efficiency under both adsorption 
and oxidation systems was determined via Eq. (5):

R t%( ) = − ×TC
TC
TC0

0

100  (5)

where TC0 and TCt (mg L–1) are the TC concentrations 
in aqueous media at time 0 and t (min), respectively [3].

2.5. Photocatalytic activity of ZnO NPs

All photocatalysis experiments were conducted in a 
quartz cylindrical reactor (500 mL) containing 200 mL of 
TC solution under ambient laboratory conditions. Initially, 
by dissolving TC hydrochloride salt of more than 98% 
purity (C22H24N2O8·HCl) in distilled water, TC stock solu-
tion (200 mg L–1) was prepared weekly and kept in the 
dark at 4°C. The pH of the solution was adjusted by H2SO4 
and NaOH (0.1 N).

In the next step, a certain amount of ZnO was added to 
the solution and then a certain amount of PMS as an elec-
tron acceptor was introduced to the solution. A mechanical 
stirrer was applied for mixing the solution. The temperature 
of the solution was kept in a range of 22°C–24°C.

One low-pressure UVC lamp (6 W, Philips, 254–258 nm) 
was used as a UV source for light irradiation, which was 
placed above the reactor with a distance of 2 cm. Photocatalytic 
process experiments were carried out for a period of 
90 min. About 2 mL of the sample from the solution was 
extracted at selected time intervals and during the reaction. 
The samples were finally filtered using a 0.22 μm syringe filter 
before injection to HPLC for measuring the residue of TC.

All experiments were conducted in triplicate and aver-
age values were used in the results. The efficiency of the 
photocatalytic process was studied as a function of pH and 
various concentrations of catalyst, PMS, and TC. The kinet-
ics of TC degradation by UV/ZnO/PMS was studied in the 
next step.

3. Results and discussion

3.1. UV-Vis, TEM, and XRD analysis on ZnO NPs

The UV-Vis spectrum of the prepared biogenic ZnO 
NPs is described in Fig. 1a. The sharp absorption peak 
observed at 360–380 nm confirms the formation of ZnO 

NPs by the auto combustion method [49]. In addition, 
there was no other peak observed in the spectrum except 
for the characteristic peak, which indicates that ZnO NPs 
prepared using palm kernel possess high purity.

A transmission electron microscopy (TEM) was used to 
identify the shape and size of ZnO nanoparticles [50]. The 
average particle size of synthesized nanoparticles was 50 nm. 
Fig. 1b shows that particle size was 50 nm; hence, the par-
ticle size distribution was appropriate. The as-prepared 
precursor ZnO was approximately spherical and oval as 
TEM patterns are shown in Fig. 1b.

XRD analysis was used to approve the crystal structure 
and purity of ZnO nanoparticles [51]. XRD patterns were 
drawn to represent the crystallinity of the nanoparticles 
as well as phase identification (Fig. 1c).

XRD spectrum of ZnO nanoparticles (Fig. 2) showed 
the absorption peaks at angles of 31.4°, 35.2°, 57.8°, 63.4°, 
72.1°, and 76.4° degrees which are linked to surfaces at 
levels of (100), (102), (103), (200), (004), and (202), respec-
tively. Thus the spectrum clearly shows that the ZnO 
nanoparticles are biosynthesized by a natural source.

3.2. Effect of operating parameters on the photocatalytic 
degradation of TC

3.2.1. Effect of pH

The photocatalytic activity is greatly influenced by 
the surface charge properties of the materials, the molec-
ular charge, the adsorption of organic molecules onto the 
photocatalyst surfaces, and the number of hydroxyl and 
sulfate radicals produced [52]. The effect of changing pH 
from 5 to 11 for the initial solution under the initial anti-
biotic concentration of 10 mg L–1, 4 mM peroxymonosul-
fate dose, and ZnO 3 g L–1 catalyst dose under UV irradi-
ation at room temperature (25°C) is shown in Fig. 2a. The 
results showed that photocatalytic decomposition and 
constant decomposition rate increased with increasing pH. 
This result can be explained by the different properties of 
TCs and ZnO at different pH values.

The zero-point charge of ZnO is 9.0 ± 0.3. Therefore, 
ZnO levels are positive at pH < 9 and negative at pH > 9. 
Here, TC showed different species at different pHs [53]. 
It was obvious that a larger number of negative TCH- 
species would form instead of zwitterion TCH±2 when 
pH varies from 5.0 to 9.0. On the other hand, a positively 
charged ZnO surface would attract more TCH− molecules, 
leading to a faster trend of TCs photodegradation rate. 
Both TC species (TC2−) and ZnO were negatively charged 
when pH was increased to 11.0, followed by a declined 
degradation rate due to the repulsive force between TC2− 
and ZnO. However, the reason for the maximum rate at 
this pH was likely the large quantities of OH− ions on the 
ZnO surface, which favored the formation of •OH radicals 
and subsequently the hydrolysis of TCs [16,29].

The TC removal reached 86.7% and 81.4% at pH val-
ues of 11.0 and 7.0, respectively. Considering the low-ef-
ficiency distinction and the amount of alkali dosage, 7.0 
was chosen as the appropriate pH because of the similar-
ity to the neutral environment, which makes it suitable in 
a real degradation process without pre-adjustment of pH.
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Fig. 1. UV-Vis absorption spectra (a), transmission electron microscopy (TEM) image (b), X-ray diffraction (XRD) pattern (c) of the 
synthesized biogenic ZnO nanoparticles (NPs).

Table 1
Chemical properties of tetracycline hydrochloride (TC)

Properties Tetracycline hydrochloride
Structure

Chemical formula C22H24O8N2

Molecular weight (g mol–1) 444.435
λmax 261 nm
Solubility (mg/mL) 10

During the use of PMS as an oxidant, in addition to 
the radical production of sulfate, it plays an important role 
in producing organic compounds due to the higher oxida-
tion potential of organic compounds [54]. This reagent, as 
expressed by Eq. (6), can affect the hydroxyl water mol-
ecules and convert them to hydroxyl radicals [55]. These 
radicals, in turn, can play a role in the acidic conditions of 
sulfate ions, which are converted into free radicals of sul-
fate. Therefore, in neutral and basic pH values, the SO4

•− is 
converted to •OH according to Eqs. (7) and (8), leading to 
an increase in oxidation and removal efficiency [56].

The initial pH of the antibiotic solution also affects 
the adsorption of organic compounds on the photocata-
lyst surface [57]. Accordingly, pH = 7 was selected as the 
optimum pH.

SO4
•– + OH → SO4

2– + •OH (6)

SO4
•– + OH– → HSO4

– + 0.5O2 (7)

SO4
•– + H2O → SO4

2– + •OH + H+ (8)

3.2.2. Effect of photocatalyst dosage

The effect of the initial concentration of the catalyst on 
the efficiency of the photocatalytic process (concentration 
range of 0.5–3 g L–1) was investigated under the following 
conditions: initial concentration of TC 10 mg L–1, 4 mM 
PMS dose, and optimum pH 7. The rate of photocatalytic 
degradation of TC antibiotics increased with increas-
ing catalyst dose (up to 2 g L–1) and then decreased. The 
higher the photocatalyst dose, the more active sites are 
found on the surface of the photocatalyst, which promotes 
hydroxyl radical production [58].
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In the photocatalytic oxidation process, the photo-
excited ZnO and an electron-hole pair form as follows 
(Eqs. (9)–(11)) [59]:

ZnO + hυ → ZnO (eCB−) + ZnO (hCB+) (9)

ZnO (eCB−) + O2 → ZnO + O2
•– (10)

ZnO (hCB+) + OH– → ZnO + •OH (11)

O2
•– + •OH + TC → Degradation product (12)

Hydroxyl and O2
•– radicals substituted radicals react 

with antibiotics to form the final products [Eq. (12)]. 
However, increasing the catalyst dose more than the opti-
mum value reduces the process efficiency because the 
excess amount of catalyst reduces the penetration of light 
through the protective effect of the suspended particles [60].

The deactivation of all initiated molecules by a crash 
with molecules in the ground state controls the reac-
tion and thus reduces the rate of reaction. In addition, the 
screening effect of the aggregation of catalyst particles can 
prevent photons from reaching the inner surface of the 
catalyst. In other words, the decrease in TC transported 
to the ZnO surface lowers the removal rate between •OH  
and TC [61].

3.2.3. Effect of PMS concentration

To investigate different oxidant concentrations, PMS 
experiments with different initial oxidant concentrations of 
0.1 to 4 mM were performed. Peroxomonosulfate was used 
to produce hydroxyl and sulfate radicals and thereby aid-
ing in the oxidation of TC [Eq. (13)] [59]. Furthermore, per-
oxomonosulfate was converted by transition metals such as 
ZnO to hydroxyl and sulfate radicals, which can cause anti-
biotic degradation [Eq. (14)] [62]. The production of sulfate, 
hydroxyl, and electron-hole pair radicals increased with 
increasing peroxymonosulfate from 0.1 to 2 mM, leading to 
an increase in the TC removal efficiency from 40.1% to 95.6%.

HSO5
− + hυ → •OH + SO4

•− (13)

ZnO + HSO5
− → Zn2+ + •OH + SO5

•− (14)

However, increasing the PMS concentration above 2 mM 
significantly decreased the removal efficiency, which can 
be attributed to several factors. The observed decrease in 
the removal efficiency beyond the optimum peroxymono-
sulfate concentration (2 mM) can be caused by the recom-
bination of excess hydroxyl radicals, resulting in hydrogen 
peroxide molecule productions because these molecules 
are less reactive compared with hydroxyl radicals and 
act as a radical scavenger [62].
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Fig. 2. Effects of pH (a), biogenic ZnO dosage (b), PMS concentration (c), and TC concentration (d) on the removal efficiency of 
tetracycline.
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Another reason for this role of scavenger radical sulfate 
at high doses is that additional amounts of PMS compete 
with TC to react with radical sulfate, which reduces the 
available radicals [Eq. (15)] [63]. In addition, excess sul-
fate radicals are known to obstruct ZnOsurf e− of the cata-
lyst, which could induce consumption of SO4

•− at a higher 
concentration of the oxidant [Eq. (16)] [64].

SO4
•− + S2O8

2− → SO4
2− + S2O8

−0 (15)

SO4
•− + ZnOsurf e− → SO4

2− + ZnOsurf (16)

3.2.4. Effect of initial TC concentration

The effect of initial antibiotic concentration on its 
degradation was investigated with different concentrations 
of TC from 10 to 50 mg L–1. The ZnO dosage, PMS concen-
tration, and initial pH values were 2 g L–1, 2 mM, and 7, 
respectively.

As shown in Fig. 2d the rate of photocatalytic degra-
dation at low initial concentrations is higher than that of 
high initial concentrations [65].

The TC degradation efficiencies were 41% and 95% 
for the initial concentrations of 10 and 50 mg L–1, respec-
tively. At high concentrations of TC, high adsorption of 
organic molecules on the surface of the catalyst prevents 
the absorption of heat and energy produced by ultravio-
let waves. Therefore, low concentrations of TC should be 
used to enhance the efficiency of the photocatalytic process 
for antibiotic degradation. The amount of TC degradation 
depends on the probability of hydroxyl radical formation 
on the catalyst surfaces and the probability of the hydroxyl 
radical reaction with TC [16]. In the photocatalytic pro-
cesses, the active surface of the catalyst available for the 
reaction plays a significant role. As the antibiotic concen-
tration increases, the active surfaces of the catalyst and 
the length of the photon pathway to the solution decrease. 
Therefore, when the ZnO surface is coated with TC, the 
production of hydroxyl radicals is not sufficient. As a 
result, the amount of photocatalytic degradation decreases 
with increasing the TC concentration [66].

3.3. Estimation of COD

COD is used as an efficient method to measure organic 
wastewater. In this experiment, the oxygen required for the 
oxidation of organic materials to carbon dioxide and water 
was measured (Fig. 3). In chemical oxidation processes, 
organic contaminants may be converted to smaller molecules 
with less toxicity than the primary molecule. COD parameter 
is used to determine the level of degradation of antibiotics. 
COD was measured at 0, 30, 60 and 90 min following the 
photocatalytic process and reached 180, 96, 71 and 60 mg L–1, 
respectively. A decrease in the COD over time indicates the 
mineralization of antibiotics to non-toxic compounds [18,67].

3.4. Stability of photocatalyst ZnO

The practical applications for the photocatalysts require 
excellent properties such as the maintaining of recyclability 
and high photocatalytic activity.

Therefore, the stability of ZnO photocatalysts with TC 
photocatalytic degradation recovery experiments in the pres-
ence of peroxymonosulfate and UV irradiation was exam-
ined at pH 7, 2 g L–1 catalysts, 2 mM PMS, and 10 mg L–1 
TC. In this experiment, the photocatalyst was removed by 
centrifugation after each cycle and then washed with dis-
tilled water and ethanol and dried in an oven at 100°C. The 
sample was then reused for subsequent decomposition. 
As observed, the degradation efficiency of TC decreased 
from 95.6% to 91.7% after 90 min of reuse (Fig. 4).

Also, the photocatalytic activity of the samples only 
minimally decreased due to the unavoidable loss of photo-
catalysts during the cycle processes [68,69]. The decrease in 
removal efficiency is due to the retention of TC-mediated 
byproducts on the catalyst surface and the reduction of 
the interaction between peroxymonosulfate with ZnO and 
ultimately the reduction of radical production [70].

The reasons for the reduction in removal efficiency can 
be due to (1) the loss of the ZnO species mass on the cat-
alyst surface during consecutive runs; (2) the intermedi-
ate products of TC degradation remaining in the catalyst 
hindered the degradation reaction; and (3) the residual 
(unreacted) TC adsorbed on the catalyst surface inhib-
ited the interaction of ZnO and PMS, which decreased the 
production of reactive radicals [60].

3.5. Mechanism of photodegradation

In this work, quenching tests were carried out to deter-
mine the reactive species that formed and contributed to 
TC degradation over UV/PMS/ZnO process.

The factors such as bandgap energy, the oxidation state 
of the dopant, and the recombination of the photo-generated 
electron-hole pairs may be taken into the consideration for 
the improved photocatalytic properties of doped ZnO [71].

Generally, the mechanism of photocatalytic degrada-
tion occurs in two main stages: (1) the adsorption of pol-
lutant molecules onto the surfaces of the photocatalysts 
and (2) the degradation of pollutants. For this reason, 
TC is first adsorbed onto the catalyst layer to form a rela-
tively stable complex. When photocatalytic nanoparticles 
are illuminated under UV stimulation, ZnO nanoparticles 
can absorb light and produce electron/hole pairs [72].

The mechanism of photocatalytic degradation requires 
the identification of reactive species in the process. 
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Fig. 3. Mineralization of tetracycline investigated using mea-
suring the COD in UV/PMS/ZnO systems: ZnO NPs = 2 g L–1; 
PMS = 2 mM; TC = 10 mg L–1; initial pH = 7.
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Photocatalytic degradation of TC by zinc oxide was exam-
ined using ethanol (EtOH) and tert-butanol (TBA) under 
optimum conditions (pH 7, 2 g L–1 catalyst, 2 mM PMS, and 
10 mg L–1 TC). TBA is an effective compound for scaveng-
ing the hydroxyl radical with a second-order rate constant 
of 3.8–7.6 × 108 M–1 s–1 while its second-order rate constant 
for sulfate radical is approximately 1,000 folds less compared 
to hydroxyl radical. Besides, EtOH has proved as a strong 
scavenger for both the radicals with second-order rate con-
stants of 1.6–7.7 × 107 and 1.2–2.8 × 109 M–1 s–1 for sulfate 
radical and hydroxyl radical, respectively [73,74].

The results of photocatalysis experiments conducted 
in the presence of these scavengers (with a concentration 
of 0.1 N) in the UVC/ZnO/PMS process are presented in 
Fig. 5. As can be seen, in the presence of EtOH, the deg-
radation efficiency was significantly reduced (66.4%) such 
that in the presence of TBA, the removal efficiency was 
84.19%. These results indicate that the sulfate radical has 
a higher contribution to the degradation of TC than the 
hydroxyl radical.

3.6. Removal efficiency of antibiotic in different systems

A comparison of different processes helps to under-
stand the mechanism and function of the photocatalytic 
process and to determine the role of each parameter for 
TC decomposition. Table 2 shows the TC decomposition in 
different processes. The results indicate that UV and PMS 
alone have no significant effect on TC degradation; on the 
other hand, TC is very stable against oxidant and UV radia-
tion alone. Furthermore, UV radiation alone cannot activate 
PMS for TC degradation; the PMS is not easily decomposed 
under UV radiation [75].

The removal efficiency of photolysis alone was found to 
be only 8.3% because only a few amounts of •OH radicals 
are formed in the presence of UV alone.

Almost no TC removal efficiency was observed by ZnO 
alone, reflecting that the adsorption effect of the catalyst 
is negligible in the performed condition. The high adsorp-
tion efficiency is attributed to the large ZnO surface area 
[76]. Also, PMS alone and UV/PMS processes cannot pro-
duce significant free radicals. The UV/ZnO process, how-
ever, significantly increased the degradation efficiency 
because the photocatalysts produce a significant amount of 

hydroxyl free radicals for antibiotic decomposition in the 
presence of UV irradiation [77]. ZnO/PMS showed high 
activity for PMS activation. UV/ZnO in the presence of PMS 
increased the decomposition rate from 50.14% to 95.6%. PMS 
has two essential roles in increasing the degradation rate:

First, the SO4
•− produced on the ZnO surface from PMS 

under ultraviolet waves directly degrades TC molecules in 
the solution. Second, HSO5

– acts as an electron acceptor and 
inhibits electron-hole pair recombination, allowing more 
•OH to be produced [78].

3.7. Effect of other electron acceptors on the UVC/ZnO system

The performance of ZnO photocatalytic activity in the 
presence of other electron receptors was examined under 
optimal conditions (pH 7, 2 g L–1 catalyst, and 10 mg L–1 TC). 
Hydrogen peroxide, persulfate (PS), like PMS, was used 
in the UVC/ZnO process (Fig. 6). After 90 min, the removal 
rates TC for PMS, PS, and H2O2 oxidants in combination 
with UV and ZnO were found to be 95.6%, 92%, and 81.5%, 
respectively. From these results, it can be concluded that 
the synthesized catalyst has a very good catalytic activity 
for the decomposition of the three oxidants, but hydrogen 
peroxide has less degradation efficiency for the TC antibiotic.

Besides, persulfate and PMS had a similar trend in the 
degradation of TC. According to Eqs. (17) and (18), persul-
fate and hydrogen peroxide produced radical sulfate and 
hydroxyl, respectively [79]. The results showed that electron 
acceptor catalysis based on sulfate (such as PMS, PS) was 
more effective than hydrogen peroxide.
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Fig. 4. Recyclability of ZnO nanoparticles for tetracycline 
removal in the UV/PMS/ZnO systems: ZnO NPs = 2 g L–1; 
PMS = 2 mM; TC = 10 mg L–1; initial pH = 7.
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Fig. 5. Effects of radical scavengers (TBA and EtOH) tetracy-
cline removal in the UV/PMS/ZnO systems: ZnO NPs = 2 g L–1; 
PMS = 2 mM; TC = 10 mg L–1; initial pH = 7.

Table 2
Removal efficiency of antibiotic in different systems: ZnO 
NPs = 2 g L–1; PMS = 2 mM; TC = 10 mg L–1; initial pH = 7

Process Removal efficiency %

UV 8.3
PMS 12.8
ZnO 45.8
UV/PMS 20.19
PMS/ZnO 68.9
UV/ZnO 50.14
UV/PMS/ZnO 95.6
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H2O2 + e– → •OH + OH– (17)

S2O8
2– + e– → SO4

2– + SO4
•– (18)

The generation of free radical species is intensified in 
the presence of PMS under an ultraviolet wave as shown in 
the following equation [74].

HSO5
− + UV→ SO4

•− + •OH (19)

Sulfate radical (SO4
•−) with high oxidation capability 

(up to 3.1 eV) and long half-life (up to 40 μs) can be consid-
ered as an effective alternative to •OH for the decomposition 
of most refractory organic compounds [74]. The results of 
Duan’s studies showed that in the photocatalytic processes 
based on radical sulfate, PMS was an effective oxidant for the 
decomposition of various pollutants [80].

3.8. Degradation kinetics

Kinetics of TC decomposition was examined using UV/
ZnO/PMS process under optimum conditions (pH: 7, PMS 
concentration: 2 mM, TC concentration: 10 mg L–1, and ZnO 
NPs dose: 2 g L–1).

The pseudo-first-order and pseudo-second-order model 
equations are given as Eqs. (20) and (21), respectively [81].

ln C
C

k t
0

1







= −  (20)

1 1

0
2C C
k t− = −  (21)

where C0 represents the initial concentration and Ct the 
final concentration at time = t (mg L–1).

The correlation coefficients (R2) for pseudo-first-order 
and pseudo-second-order kinetic models were obtained 
at 0.928 and 0.731, respectively. As can be seen, the kinetic 
model follows the pseudo-first-order model (Table 3).

The rate of TC decomposition was observed to be a 
function of time (x). The results are similar to those of 

a study by Wan et al., who analyzed the degradation of 
TC in water using the US process [82].

4. Conclusion

In this study, the degradation of TC using the AOPs 
(UV/ZnO/PMS) process was studied. The effects of pH, PMS 
concentration, ZnO NPs dose, and initial TC concentration 
were examined on the degradation of TC. ZnO nanoparti-
cles were successfully synthesized. The structural prop-
erties and particle size of ZnO nanoparticles were studied 
using XRD, TEM, and UV-Vis spectroscopy. The particle size 
average of ZnO nanoparticles was 50 nm.

The ZnO catalyst, in addition to its high reusability, 
showed excellent catalytic activity for the decomposition 
of PMS and the production of sulfate-free radicals.

Scavenger experiments showed that hydroxyl and sul-
fate radical had an effective role in the degradation of TC. 
Based on the results, it was found that the advanced oxida-
tion using the UV/ZnO/PMS process could be considered 
as a suitable method for TC decomposition. The addition of 
ZnO NPs and PMS significantly increased the removal effi-
ciency. Furthermore, the experimental data were in good 
agreement with a pseudo-first-order kinetic model.
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