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a b s t r a c t
The aim of this study was to use non-modified nano titanium dioxide (TiO2) material to develop the 
sonocatalytic decolorization of Methylene blue (MB) and Reactive Red 198 (RR198) in aqueous solu-
tions. The study is highlighted by the pHpzc value of nano TiO2. Electrostatic attraction or repulsion 
can occur due to anionic (RR198) and cationic (MB) dyes. The maximum sonocatalytic decoloriza-
tion efficiency (%) of 95% for MB and 81% for RR198 were achieved with an initial dye concen-
tration of 100 mg L–1, a sonocatalyst dosage 0.25 g L–1 (MB) and 0.1 g L–1 (RR198), an initial pH of 
6.55, ultrasonic power of 90 W and ultrasonic frequency of 53 kHz. The thermodynamic parameters 
showed that the process was feasible and exothermic. In addition, the usage of non-modified TiO2 
particles was found to be a feasible choice and give satisfactory results for the removal of aniline 
(cationic) and azo (anionic) dyes without the requirement of highly expensive modified methods.
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1. Introduction

The usage of dyes in different industries, such as 
the cosmetic, textile, chemical processing, food and dye 
industries, causes water pollution, particularly aesthetic 
pollution [1]. Dyes have a complex composition and are 
toxic and non-biodegradable [2]. A small amount of dye 
(<1 mg L–1) is the leading visible color and pollution in 
water bodies instead of other colorless organic pollutants 
[3]. Therefore, the removal of dyes from aqueous environ-
ments is crucial. Various methods are used to remove dyes 
such as conventional treatment methods, physicochemical 
methods and biological methods. Despite physicochemical 
systems decolorization success, it has a number of prob-
lems with organic matter (carbon) removal. Studies have 
shown that biological systems are good for the removal of 

organic matter. However, questions have been raised about 
the biological systems such as colors are resistant to the 
microbial system.

In recent years, the usage of advanced oxidation pro-
cesses (AOPs) for the removal of pollutants has sparked 
great interest. The reactive radicals (OH•, O2

•) can rapidly 
decolorize the dye molecules as a result of the production 
of these radicals by AOPs. The most commonly used AOPs 
are sonocatalysis, photocatalysis, sonolysis, ozonation and 
Fenton [4–9].

In the last decades, sonocatalysis has been widely taken 
great attention from AOPs, which can be used under mild 
operative conditions. With the sonocatalysis process, as a 
result of cavitation, microbubbles collapse, grow and pro-
duce free radicals, that is, OH• and OH• [10,11]. These rad-
icals can transform less harmful pollutants and mineralize 
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carbon dioxide and water [12]. In sonocatalysis, the pres-
ence of a solid catalyst provides more sites for cavitation 
and accelerates the reactions. Many sonocatalysts have 
been investigated in order to improve the catalytic activity 
by increasing the formation rate of cavitation bubbles [13]. 
Owing to its morphology and structure, titanium diox-
ide (TiO2) is the most widely used as a sonocatalyst and 
it was found that its sonocatalytic activity is influenced [9].

In this study, TiO2 nanoparticles were used for the sono-
catalytic degradation of an azo dye, namely Reactive Red 
198 (RR198), and a basic aniline dye, namely Methylene 
blue (MB). Factors influencing the performance of the deg-
radation process, such as nano TiO2 dose, solution pH, 
power density and ultrasonic frequency were investigated. 
The thermodynamic study has been also investigated.

2. Materials and methods

2.1. Materials and catalyst specifications

The TiO2 anatase (anatase >99%, crystalline size 10 nm) 
was purchased from Ege Nanotek Kimya Sanayi (Turkey). 
The physical and chemical properties of the TiO2 are 
shown in Table 1. The MB (C16H18ClN3S), NaOH, H2SO4 and 
H2O2 were purchased from Merck (Germany). The RR198 
(C27H18ClN7Na4O16S5) was procured from Eksoy Kimya 
Sanayi ve Tic. A.Ş. (Turkey). All of the chemicals were 
used as received without any further purification. All solu-
tions were prepared using ultrapure water from a Milli-Q 
synthesis unit (Millipore, Germany).

2.2. Analysis and experimental procedure

A stock solution of dye was prepared using 1 g of dye 
dissolved in 1 L of distilled water. Dye solution of known 
concentration was prepared in distilled water, mixed appro-
priate amount of TiO2 and dispersed in the ultrasonic reac-
tor. The pH of the dye solution was adjusted using either 
H2SO4 or NaOH. The experimental procedure is given in 
detail in the previous study of Basturk and Karatas [14,15]. 
The residual dye concentrations were measured using a 
UV-Vis spectrophotometer (UV-1280, Shimadzu, Japan). 
During the course of a reaction, 1 mL of the dye samples 
was withdrawn using a micropipette, centrifuged and fil-
tered to ensure the catalyst removal from the dye solu-
tion. The absorbance measurements were conducted with 
a maximum dye absorbance wavelength (λmax) of 520 nm 
for RR198 and 664 nm for MB. The model solution was  

sonicated indirectly ultrasonic bath at a frequency of 35 and 
53 kHz and 90 W ultrasonic power (KUDOS SK2210LHC 
Model). The characteristics of the selected dyes are 
shown in Table 2.

3. Results and discussion

3.1. Effect of catalyst dosage

The effect of sonocatalyst dosage on color removal (%) 
was evaluated in order to avoid an excessive amount of 
sonocatalyst application. The other operational parameters 
were set to constant values and the catalyst dosages were 
0.05, 0.1 and 0.25 g L–1. The removal efficiencies were 39%, 
81% and 96% for RR198 and 21%, 75% and 95% for MB at 
the different catalyst dosages, respectively (Fig. 1). As can 
be seen from Fig. 1, the optimum catalyst dosages for RR198 
and MB were 0.1 and 0.25 g L–1, respectively. Increasing the 
catalyst dose increases the active sites on the catalyst sur-
face [16,17], forms more microbubbles [18,19] and increases 
the OH• and O2

• radicals. Consequently, dye removal is 
increased [20,21].

As indicated in the literature, an excessive amount of 
sonocatalyst in the solution can result in the scattering of 
ultrasound and blocking the transmission of ultrasound 
waves and energy near to the surface of the sonocatalyst 
[17,22], which in turn decreases the active sites [23–25] and 
the removal rate of the sonocatalytic degradation reactions 
[26]. The increase in catalyst dose (i) causes an increase in 
the radicals, (ii) the more radicals act as a radical scavenger, 
(iii) the decrease intensity of the ultrasound waves [27].

Table 1
Physical and chemical properties of nano titanium dioxide (TiO2)

Purity %99
Particle size 10 nm
Surface area 200 m2 g–1

Color White
Morphology Spherical
Density 4.23 g cm–3

Density (bulk) 0.06–0.10 g cm–3

Table 2
Characteristic of selected dyes

Methylene blue Reactive Red 198

CAS No. 122965-43-9 145017-98-7
Dye type Basic aniline Azo
Molecular weight 319.860 984.183
Molecular formula C16H18ClN3S C27H18ClN7Na4O16S5

λmax 664 520
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Fig. 1. Effect of catalyst dosage on the selected dyes 
([RR198] = 100 mg L–1; [MB] = 100 mg L–1; pH = 6.55 (RR198); 
pH = 6 (MB); US frequency = 53 kHz; US power = 90 W).
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3.2. pH effect

The solution pH value, which plays an important role 
in the sonocatalytic removal of the dye, is one of the most 
important parameters. The pH effect is related to the solu-
tion of the pH and the pHpzc of the nano TiO2 particles. In 
the literature, when the pH value was lower than the pHpzc 
value, the surface charging of the nanoparticles was posi-
tive [28–30]. The TiO2 was at the point of zero charge (pHpzc) 
at pH 7.41. Thus, the TiO2 surface was positively charged 
in acidic media (pH < 7.41) and negatively charged under 
alkaline conditions (pH > 7.41). Electrostatic attraction or 
repulsion can occur due to anionic (RR198) and cationic (MB) 
[31] pollutants [21]. The charge of the nano TiO2 particles 
according to the pHpzc value is shown Eqs. (1) and (2).

TiIV–OH + H+ → TiIV–OH2
+ (pH < pHpzc) (1)

TiIV–OH + OH– → TiIV–O– + H2O (pH > pHpzc) (2)

Under acidic conditions, the removal rate is higher at 
RR198 like as anionic dyes, in contrast, MB (Figs. 2 and 3). 
The electrostatic repulsion between hydroxide ions and 
negatively charged catalyst surface at the pH > pHpzc. As 
a result, the removal rate of cationic dyes is higher [17,32]. 
On the contrary, when the pH value is higher than 7.43 
(the pHpzc value of the catalyst) the surface becomes nega-
tively charged and there is an attraction between MB and 
catalyst surface [19]. Extremely high pH values have been 
found to be favorable even when anionic dyes hamper 
adsorption on the negatively charged surface [33].

3.3. Effect of power density and ultrasonic frequency on 
the decolorization of the selected dyes

In ultrasonic applications, the ultrasonic power dis-
sipation is an important parameter as it affects the cavi-
tational activity and the economic cost of the process is 
strongly associated with this parameter [34,35]. In addi-
tion, the increasing frequency of ultrasonic equipment 
reduces dye degradation [14]. Increasing the power den-
sity increases and the free radicals which accelerate the 
sonochemical reactions and enhances the removal of 

dye molecules [36,37]. This is in concordance with that 
observed in previous results [35,38–41]. The bubble for-
mation increases with an increase in the power dissipation 
rate, which may lead to the turbulence generated by cavi-
tational bubble collapse as well as micro jetting, in addition 
to yielding higher numbers of cavitation bubbles and hence 
higher yields of hydroxyl radicals [39,42,43]. The sonolytic 
degradation of the selected dyes increased with an increase 
in the power density of the system. The degradation of 
RR198 and MB was 21% at a power density of 30 W L–1, 77% 
at 45 W L–1 and 84% at 90 W L–1, respectively. Figs. 4 and 
5 illustrate the decolorization of RR198 and MB at differ-
ent power densities and frequencies. It can be seen that the 
increase in power density and frequency led to an increase 
in decolorization rate.

3.4. Effect of initial dye concentration

The influence of initial dye concentration on the removal 
of RR198 and MB was another important factor inves-
tigated in this study. Fig. 6 presents the decolorization of 
the selected dyes at different initial dye concentrations. 
It can be observed that higher initial dye concentrations 
led to lower decolorization rates. This behavior is typical 

Fig. 2. pH effect on the removal of RR198 ([RR198] = 100 mg L–1; 
US frequency = 53 kHz; catalyst dosage = 0.1 g L–1; 
US power = 90 W).

Fig. 3. pH effect on the removal of MB ([MB] = 100 mg L–1; 
US frequency = 53 kHz; catalyst dosage = 0.25 g L–1; US 
power = 90 W).
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Fig. 4. Ultrasonic power effect ([MB-RR198] = 100 mg L–1; 
US frequency = 53 kHz; catalyst dosage = 0.25 g L–1 (MB); catalyst 
dosage = 0.1 g L–1 (RR198); pH = 6.55 (MB); pH = 6.5 (RR198); 
time = 15 min).
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of such sonochemical reactions [39]. The reason for this 
is that when the initial concentration of the selected dyes 
is increased, the hydroxyl radical is not increased corre-
spondingly and the higher pollutant loading decreases the 
cavitational effects, thus, it is insufficient to completely 
destruct the organics [34,44]. Similar results have been 
reported in the literature [41,45]. Decolorization rate com-
pared among only ultrasonic role, only TiO2, and together 
ultrasonic role and TiO2 and was shown at Figs. 7 and 8.

3.5. Thermodynamic study

Three thermodynamic parameters, namely entropy 
(ΔS°), free energy change (ΔG°) and enthalpy change 
(ΔH°), were prescribed by the resulting equations [15,46,47] 
[Eqs. (3)–(5)]:

∆G RT k= − ln  (3)
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∆ ∆  (5)

where R is the universal gas constant (8.314 J mol−1 K−1), 
T is the absolute temperature (K), and kL is the Langmuir 
constant (mol L−1). ΔS° and ΔH° can be obtained from the 
slope and intercept lnkL vs. 1/T according to Eqs. (3)–(5). 
The data regarding ΔS°, ΔH° and ΔG° are given in Table 3. 
The negative values of ΔS° is a decrease in entropy in regard 
to the system. The process was thought to be exothermic 
due to the negative ΔH° values (Table 3). The positive value 
for the Gibbs free energy showed that the process was not 
spontaneous in nature. According to the results in Fig. 7, 
the removal rates of RR198 were 77% and 84% for sole TiO2 
and US, respectively. However, the removal rate of RR198 
was 96% at US/TiO2, due to the synergetic effect of both 
US and TiO2. As can be seen from the results presented 
in Fig. 8, the removal rates for MB were 70% and 80% for 
sole TiO2 and US. However, the removal rate was 95% at 
US/TiO2, due to the synergetic effect of both US and TiO2. 
According to the results, we cannot say certain expressions, 
also, the reaction pathway involved in the dye degrada-
tion is complex, with many unknown reactions occurring.

Fig. 5. Ultrasonic frequency effect ([MB-RR198] = 100 mg L–1; 
US power = 90 W; catalyst dosage = 0.25 g L–1 (MB); catalyst 
dosage = 0.1 g L–1 (RR198); pH = 6.55 (MB); pH = 6.5 (RR198); 
time = 15 min).
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Fig. 6. Effect of initial dye concentration on the removal of the 
selected dyes (catalyst dosage = 0.25 g L–1 (MB); catalyst dos-
age = 0.1 g L–1 (RR198); pH = 6.5 (RR198); pH = 6.55 (MB); US 
power = 90 W; US frequency = 53 kHz; time = 10 min).

Fig. 7. Decolourization rate comparison among only ultrasonic 
role, only TiO2, and together ultrasonic role and TiO2 for 
RR198 (catalyst dosage = 0.1 g L–1 (RR198); pH = 6.5 (RR198); 
US power = 90 W; US frequency = 53 kHz; time = 10 min).

Fig. 8. Decolourization rate comparison among only ultrasonic 
role, only TiO2, and together ultrasonic role and TiO2 for MB (cat-
alyst dosage = 0.25 g L–1 (MB); pH = 6.55 (MB); US power = 90 W; 
US frequency = 53 kHz; time = 10 min).
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4. Conclusions

In a brief, the nano TiO2 particles also proclaimed the 
enhanced catalytic activity towards the removal of MB 
and RR198 dyes when excited by ultrasonic irradiation. 
The difference in the performance of the catalysts under 
ultrasound was attributed to different operational con-
ditions with different dye types (cationic and anionic). 
This study showed that the maximum dye decolorization 
was achieved at 15 min, a neutral pH of 6.5 and a cata-
lyst dosage of 0.25 g L–1 for MB, 0.1 g L–1 for RR198, US 
power 90 W and US frequency 53 kHz. High decolorization 
was obtained with high surface area, which enhanced the 
sonocatalytic reactions.

Hence, this study showed that nano TiO2 can be used 
as an efficient sonocatalyst for the degradation of MB and 
RR198 dyes for treatment.
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