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a b s t r a c t
Given the importance of assessing water quality in arid and semi-arid regions, the purpose of 
this study is to investigate water quality in Kohgiluyeh and Boyer-Ahmad Province, Iran, using 
fuzzy-analytic hierarchical procedure (FAHP) and the geographic information system. To this end, 
various parameters counting on potassium, sodium, magnesium, calcium, chloride, and sulfate con-
tent as well as PH levels, total dissolved solids in water, sodium absorption ratio, and alkalinity 
levels were extracted for 35 wells in the study region. These parameters were fed as input data for 
assessing the quality of water in regards to different usages. Through geostatistic methods (inverse 
distance weighted), water quality zoning maps were procured for each respective parameter affect-
ing water quality. Upon generation of the respective zoning maps, fuzzy membership functions 
were used to homogenize each layer so as to obtain fuzzy maps for different parameters. The AHP 
technique was ultimately employed to overlay the fuzzy maps and generate the final water quality 
zoning map of the study area. The Langelier saturation index (LSI), the metal index (MI), and the 
Ryznar stability index (RSI) were also incidentally used as the prime indicators for assessing water 
quality for both industrial and agricultural purposes. The results of the LSI index showed that most 
of the studied areas are in the sedimentation class that indicates high pollution. RSI values were 
obtained between 6 and 8 where the eastern regions had an RSI of less than 6, the southern regions 
had an RSI of 6 to 7 and the northern regions had an RSI of more than 7. The results also showed 
that LSI in the northern regions is greater than zero, which indicates a corrosive state, and in the 
eastern part it is equal to zero which is indicative of the neutral state. The MI zonation map showed 
that the areas in the south have values greater than 1 which shows the low quality of water in these 
areas in terms of drinking. Residual sodium carbonate levels in the southern regions with values 
higher than 2 meq/L indicate low water quality in these regions. Finally, the results of the fuzzy 
method showed that the areas located in the eastern parts of the region have a better quality than 
the northern and western regions. According to the results, it is clear that in areas where there is 
agriculture or urban lands, pollution is high.

Keywords:  Water quality; Fuzzy method; Analytic hierarchical procedure method; Langelier saturation 
index; Metal index; Ryznar stability index.
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1. Introduction

The earth has indeed an abundance of water; however, 
only a small percentage can be virtually used as a source 
of drinking water. In light of this fact, water quality assess-
ment has emerged as one of the most challenging tasks in 
various regions throughout the globe, particularly Iran. 
Fortunately, methods relying on geographic information 
systems (GIS) have succeeded in ameliorating the situation 
by means of providing tools for the discernment of spatial 
changes in water quality. Put differently, GIS is potentially 
among the most robust and efficient tools for spatial analy-
sis of various sorts of data, with numerous features includ-
ing analysis and representation of different data among 
other components. Studies show that incorporating GIS into 
readily available as well as newly emerged models could 
in fact open up new doors to assessment and evaluation of 
different phenomena, including water quality assessment. 
One of the highlights of GIS is the ability to employ geo-
statistical models, such as fuzzy and analytic hierarchical 
procedure (AHP), to generate zoning maps. Along these 
lines, a certain study on groundwater quality zoning in 
the Yazd-Ardakan plain, Iran, using geostatistical models 
(kriging, cokriging, and inverse distance weighted (IDW)) 
was indicative of the superiority of kriging and cokriging 
for obtaining groundwater quality zoning maps [1].

Numerous studies have recently been conducted on 
the topic of water quality [2] as well as a qualitative assess-
ment of water resources for various agricultural purposes 
using fuzzy logic [3–5].

Ahmad [6] used the kriging method to investigate 
groundwater quality. The results showed that the kriging 
approach does indeed attain a rather acceptable accuracy 
in estimating different variables of water quality including 
TDS.

Gauss et al. [7] attempted to assess the arsenic content 
in groundwater resources of Bangladesh. They used dis-
crete kriging as the primary method for estimating arse-
nic content and obtaining zoning maps. The results were 
speculative of significantly high arsenic content in the 
groundwater resources of the area which, if not attended 
to, would expose millions of individuals to mortal dangers.

Mehrjerdi et al. [1] used IDW, kriging, and cokriging 
to obtain groundwater quality maps for the Yazd-Arsanjan 
plain. The results indicated the high accuracy of the kring-
ing approach in obtaining zoning maps for different 
water quality parameters.

Kholghi and Hosseini [8] sought to investigate the 
potency of simple kriging and ANFIS-based networks in 
the interpolation of groundwater levels in a free water 
table located to the north of Iran. Their results showed that 
the ANFIS model outperformed simple kriging in regards 
to estimating groundwater levels. Among other studies 
in the literature of water quality assessment and zoning 
are works by Sanches [9], Fetouani et al. [10], Alver [11], 
Thoradeniya et al. [12], Camacho-Cruz et al. [13].

One of the gravest and most suitable methods for water 
quality assessment in the GIS environment, among the vast 
body of proposed methods, is the fuzzy approach. Fuzzy 
logic was pioneered by Zadeh [14] as a novel and acceptable 
approach to developing complex and unknown systems in 

artificial intelligence, such as environmental indices [15]. 
Fuzzy logic seeks to extrapolate indices in such a fashion as 
to simulate human behavior and thought patterns. By this 
token, fuzzy information could be introduced as a means for 
preventing potential errors, ambiguities, and other probable 
complications [16].

Given the gravity of the impacts of water quality assess-
ment, fuzzy logic, and analytic hierarchical processes could 
well be used to estimate water quality in the designated 
study region. A flowchart of the proposed methodology is 
depicted below. 

2. Case study

The study area consists of the northern part of 
Kohgiluyeh and Boyer-Ahmad Province, Iran. The area is 
situated at 30°36′ – 30°54′ N and 50°25′ – 50°54′ E, as illus-
trated in Fig. 1. Taking into account the fact that the study 
region is primarily comprised of agricultural, industrial, 
and residential lands, water quality assessment would 
capably prove most significant in terms of locating suit-
able regions for supplying drinking water as well as water 
for industrial uses. The study region extends to approx-
imately 823.55 km2 in area, with elevation ranging from 
a minimum of 598 m to a peak of 2,465 m.

The prime parameters for drinking water quality include 
potassium, sodium, magnesium, calcium, chloride, and sul-
fate concentrations as well as PH level, total dissolved sol-
ids (TDS), sodium absorption ratio (SAR), and alkalinity. 
For assessment purposes, 35 sample points were randomly 
selected from the study area and the intended parameters 
were assessed. Table 1 lists the statistical figures for the 
respective parameters.

3. Materials and methods

Topographic maps with varying scales (1:25,000 and 
1:50,000) were used to select the designated study area within 
the northern parts of Kohgiluyeh Boyer-Ahmad province. 
Field surveys were conducted for obtaining water samples, 
upon which concentrations of potassium, sodium, mag-
nesium, calcium, chloride, and sulfate were measured for 
each sample as well as PH level, TDS, SAR, and alkalinity.

Chlorine was measured through standard AgNO3 titra-
tion (Mohr method). The pH measurements of water sam-
ples were carried out in-situ, using a portable pH meter 
(model PCD650). Calcium was measured titrimetrically, 
using standard ethylenediaminetetraacetic acid. The con-
centration of other heavy metals was measured by induc-
tively coupled plasma-mass-spectrometry. The accuracy 
and precision of the measurements were checked by the 
use of reference materials and appropriate replicates.

The proposed methodology consisted of five stages as 
following:

• Procuring water samples and further laboratory analysis
• Using IDW to obtain zoning maps for different parameters
• Water quality assessment for industrial use considering 

Langelier saturation index (LSI), metal index (MI), and 
Ryznar stability index (RSI) indices
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• Water quality assessment for agricultural use using 
the RSC index

• Drinking water quality assessment using fuzzy and 
AHP approach

A detailed explanation of each stage is presented below.

3.1. IDW method

The IDW technique was used to obtain zoning maps 
for each parameter affecting water quality. IDW is a con-
ventional geostatistical model used to generate zoning 
maps and interpolate different coordinates extracted from 
a specific region. Stated differently, during the course of 
generating the zoning map based on the obtained coor-
dinate points, it is assumed that the effects of one point 
on its counterpart varies for each point, such that when 
attempting to estimate unknown points (unmeasured coor-
dinates), those closest to the target have a more significant 
effect compared to points situated farther away. In other 
words, the shorter the distance from the origin, the lower 

the effects of the corresponding parameter. The following 
equation can be used in ArcGIS to obtain zoning maps of 
different parameters using the sample points obtained  
a priori [17].
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In this equation, ẑ(x0) is the estimated amount of variable 
z, z(xi) is the value for the measured sample at point xi, dij 
is the distance between points i and j, and r is a regulatory 
coefficient for obtaining weight based on distance [17].

3.2. Industry quality water

Environmental Protection Agency (EPA) standards, in 
conjunction with other globally accredited standards, state 
that any source of drinking water must not be corrosive. 
Accordingly, the most common factors used to assess the 
drinkability of water resources, hinging on corrosivity and 
sedimentation, include LSI, MI, and RSI. Corrosivity is a 
measure of how aggressive the water is. It measures how 
much metal content (materials inside corrosive pipelines) 
enters the water as a result of dissolution. High rates of 
corrosivity can cause cavities within the pipes and at times 
increase the negative pressure potential of pollutants enter-
ing the pipeline. Sedimentation, on the other hand, is the 
process by which residues gradually form within a pipe, 
increasing the inner diameter of pipes and thereby reduc-
ing flow. The LSI and the RSI indices measure the corro-
sivity and sedimentation of water by virtually measuring 
the difference in real water pH levels and the pHs levels of 
carbonate calcium satiated water. By this token, in order to 
assess the quality of groundwater in the study area, pHs 
and pHeg values for each parameter were calculated and 
sedimentation and corrosivity were measured accordingly. 

Fig. 1. Location of the study area.

Table 1
Statistical characteristics of each of the parameters affecting the 
determination of drinking water quality

Parameter Minimum Maximum Average STDVE

Ca, mg/L 64.87 84.42 72.85 5.9
Cl, mg/L 10.13 25 19.34 5.8
Na, mg/L 23.55 39.69 31.4 5.41
pH 7.18 8.1 7.57 0.21
Alkalinity,  
 mg/L

38.24 95.72 57.90 22.33

Mg, mg/L 2.27 25.14 16.17 7.11
SO4, mg/L 1.13 106.9 47.11 39.38
K, mg/L 0.731 1.21 0.94 0.16
TDS, mg/L 35.15 772 537.39 233.57
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Mean and standard deviation were also obtained for each 
value. The calculations are as follows:

LSI pH pHs= −  (2)

RSI pHs pH= −2  (3)

pHs = + + − +9 3. A B C D  (4)

A =
−log10 1

10
TDS

 (5)

B = − × ° + +13 12 10 273 34 55. log .C  (6)

C � �� �� �log .10 0 42
3Ca as CaCO+  (7)

D = alkalinity as CaCOlog10 3   (8)

SI values lower than zero indicate corrosive waters, 
while values above zero show sedimentation. An SI value of 
zero indicates a zero (none) tendency toward sedimentation 
or corrosiveness.

The MI index was also used to evaluate water qual-
ity. This index can be calculated using the following 
equation based on the WHO standard [18]:

MI
MCA

� � ��
� Ci

ii

N

1

 (9)

where Ci is the target density, i is the ith target element in 
the sample, and (MAC)i is the maximum density allowed 
for the target element.

MI values of lower than one are an indication of drink-
ing quality water, while values above one show that the 
water is not drinkable. MI = 0 indicates the threshold value.

3.3. Agricultural water quality

Sodium (Na) concentrations and electroconductivity 
are commonly used to assess the quality of water for agri-
cultural use. Sodium is the most abundant alkaline metal, 
primarily found in ignite (porphyry) and evaporate stones. 
Similar to other cations, sodium binds with and reacts to 
clay found in soil and substitutes for the calcium and mag-
nesium ions in clay, reducing the permeability of the soil. 
The sodium absorption ratio (SAR), which is a measure 
of the rate calcium and magnesium ions are substituted 
with sodium ions, is the chief index for estimating sodium 
risk. SAR can be obtained as follows (density values are 
expressed in milliequivalents per liter):

SAR Na

Ca Mg /
=

+( )
+

+ +2 2 2
 (10)

Sodium percentage (Na%) is another parameter for esti-
mating the sodium content in water, which is commonly 

used alongside electro-conductivity to assess the quality of 
water for agricultural use. Na% can be obtained using the 
equation below:

%
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100
2 2

 (11)

In addition to SAR and Na%, residual sodium car-
bonate (RSC) – both carbonates and bicarbonates – also 
affect the appropriateness of water for irrigation purposes. 
Excess carbonate and bicarbonate sodium alter the charac-
teristics of soil, such as dissolved organic matter in soils. 
RSC can be calculated as follows:

RSC � �� � � �� �� � � �Co HCO Ca Mg3
2

3
2 2  (12)

The corresponding RSC values for samples used in 
this study are listed in the Table. RSC values lower than 
1.25 meq/L indicate good water quality; values between 
1.25 and 2 meq/L signal suspicious water; and values higher 
than 2 meq/L show inappropriateness of water for irrigation.

3.4. Drinking water quality using the fuzzy method 
and AHP method

Ultimately, AHP and fuzzy methods were utilized to 
obtain the final zoning maps for each parameter. A detailed 
explanation of the application follows:

3.4.1. Fuzzy method

Lotfizadeh defines fuzzy as a class of objects with a con-
tinuous membership degree obtained from the membership 
function. This function assigns a value between 0 and 1 
to each object. The concept of the membership function is 
crucial to the fuzzy set theory, where all information on a 
fuzzy set is defined through its membership function. All 
applications and issues related to the fuzzy set theory are 
also solved and analyzed in terms of the corresponding 
membership function for that set. The membership func-
tion shows the fuzziness of a fuzzy set. Virtually, any func-
tion which defines the degree of membership of an element 
in a specific set can be called a membership function.

Membership functions in fuzzy models are defined 
as shown in Eq. (13) [19]:

A x x x XA= { }, ( ) ...µ εfor each  (13)

where μA is the membership function that shows the 
membership degree of element x in set A, and ranges 
between values 0 and 1.

3.4.2. AHP method

AHP is amongst the most popular techniques in multi-
criteria decision making, introduced by Saaty in the 1970s. 
AHP proves most helpful in situations where the number 
of criteria and options are multiple. The criteria could be 
either qualitative or quantitative. AHP basically hinges on 
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hidden pairwise comparisons. The method works by ini-
tially prompting the decision-maker to procure a hierarchi-
cal decision tree, which consists of the indices and decision 
items. A series of pairwise comparisons are then performed 
and weights are assigned to different factors relative to the 
target item (option). Finally, AHP combines the different 
pairwise comparison matrices obtained during the course of 
running the method and outputs the most optimal decision.

AHP was used in this study to obtain water quality zon-
ing maps for identifying suitable locations for drinking water 
supply. The weight parameter is central to relating different 
factors affecting water quality. As the effects of the param-
eters used tend to differ, a weighted version of the AHP 
method was used. AHP facilitates the process of allocating 
weights to different parameters and is primarily based on 
pairwise comparisons between the involved parameters. Each 
parameter is assigned a value between 1 and 9 based on 
the significance it has on water quality and supply (Table 2).

Put differently, the significance of each parameter 
relative to other parameters can be obtained using the 
pairwise comparison matrix and Eqs. (14) and (15).

a a aij kjik= ⋅  (14)

a
aij
ji

= 1
 (15)

where i, j, and k are the indices of the matrix.
Eqs. (14) and (15) assign a value of 1–9 to each parameter 

affecting water quality. These values are then incorporated 
into the pairwise comparison matrix and a value between 0 
and 1 is allotted to each parameter.

Ultimately, the following equation is used to prepare 
a water quality map of the target region. According to 
this equation, the weights assigned to each parameter are 
multiplied by the corresponding values in the fuzzy map 
in order to obtain the final water quality zoning map.

� � �A j A x
j

k

W x X� � � �
�
�

1
 (16)

W Wj
j

k

j= >
=
∑ 1 0

1
 (17)

A close inspection of the equation above shows that 
the weights assigned to each parameter range between 0 
and 1, with the total sum of weights equal to 1. Fig. 2 illus-
trates the different steps for estimating drinking water 
quality using the fuzzy approach. 

4. Results

4.1. LSI, RSI, and MI indices to determine water 
pollution by industry

Based on the LSI values obtained for the study region, 
the sample wells can be classified into three catego-
ries of corrosive, sedimentation, and moderate, with the 

Table 2
Fundamental scale for paired comparison

DescriptionDescriptive valueNumerical value

Equal importancePoor1
–Poor2
One factor is slightly more preferable than the otherAlmost average3
–Medium4
One factor is preferable to anotherHigher importance than another5
–Strong6
One element is more important than anotherVery strong7
–Very very strong8
One element is much more important than anotherQuite preferable9

When parameter i is compared to j and has one of the above values, parameter j has a reciprocal value of iInteraction (two-way)

Fig. 2. Model implementation steps to determine water quality 
from a drinking and industrial point of view.
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majority of wells falling within the sedimentation category. 
The corresponding LSI values are shown in Table 3.

Water quality zoning maps for industrial use were also 
obtained for different parameters (pH, TDS, pHs, alkalin-
ity, and Ca) using IDW in GIS environment. The spatial 
maps for each parameter are depicted in Fig. 3. Based on 
the final results, pH values tend to vary within the ranges 
of 7.25–8.09, with the lowest values occurring toward the 
northwestern sectors and the highest values observed in the 
southern as well as central regions. The highest TDS value 
was observed in the eastern sections of the study area while 
the lowest were seen towards the northern parts as well as 
a small segment of the western regions. The results also 
indicated a higher alkalinity and concentration of calcium 
within the central areas compared to the remaining regions. 
Finally, Eq. (4) was employed to measure the pHs levels 
and obtain pHs zoning maps. The results are indicative of a 

higher pHs value in the southern, western, and northwest-
ern regions, respectively.

The various zoning map layers were eventually over-
laid in order to obtain maps for the three parameters of 
LSI, RSI, and MI. The maps are shown in Fig. 4.

As is evident from Fig. 4, RSI values range from 6 to 
8, with values lower than 6 indicating a state of sedimen-
tation in the eastern regions of the study area. RSI values 
between 6 and 7 exhibit a neutral state, found in the south-
ern regions and RSI values above 7 convey a state of cor-
rosion, primarily found in the northern and northwestern 
parts as well as certain western regions of the study area.

Based on the quantities shown in Fig. 4, LSI values lower 
than zero indicate a state of sedimentation, mostly found in 
the central regions, while LSI values higher than zero exhibit 
a state of corrosion, primarily in the northern, northwestern, 
and certain western regions of the area. LSI = 0, which shows a 

Table 3
Langelier index (LSI) and RSC values

Code Ca (mg/L) Alkalinity pH PHs PH–PHs LSI TDS RSC LST MI

1 70.85 40.63 7.64 7.54 0.1 Sedimentation 746.3542 4.031473 –1.9 2.44
2 76.82 87.11 7.37 6.73 0.64 Sedimentation 605.15 0.08281 –1.6 0.02
3 64.87 41.53 7.35 7.54 –0.19 Corrosive 423.4496 0.647743 –1.49 0.02
4 65.25 43.47 7.41 7.41 0 Moderate 35.15 0.646 –1.51 1.58
5 79.35 89.98 7.61 6.96 0.66 Sedimentation 625.1 0.08554 –1.61 0.02
6 84.42 95.72 8.1 7.4 0.7 Sedimentation 665 0.091 –1.68 0.02
7 69.52 39.87 7.49 7.4 0.09 Sedimentation 732.3501 3.955829 –1.8 2.40
8 75.7 51.47 7.43 7.62 –0.2 Corrosive 534.6 0.6039 –1.47 0.01
9 78.51 89.02 7.53 6.88 0.65 Sedimentation 618.45 0.08463 –1.61 0.02
10 65.42 41.89 7.41 7.61 –0.2 Corrosive 433.62 0.6633 –1.5 0.02
11 82.31 93.33 7.9 7.22 0.68 Sedimentation 35.77086 0.65741 –1.53 1.61
12 68.15 39.09 7.35 7.25 0.09 Sedimentation 717.96 3.8781 –1.7 2.35
13 80.08 90.8 7.68 7.02 0.66 Sedimentation 630.8456 0.086326 –1.62 0.02
14 74.55 50.69 7.31 7.51 –0.2 Corrosive 526.5 0.59475 –1.32 0.01
15 66.96 44.62 7.61 7.61 0 Moderate 36.075 0.663 –1.56 1.62
16 68.68 45.76 7.8 7.8 0 Moderate 37 0.68 –1.59 1.66
17 68.88 39.51 7.43 7.33 0.09 Sedimentation 725.68 3.9198 –1.76 2.38
18 72.55 41.61 7.82 7.72 0.1 Sedimentation 764.28 4.1283 –1.95 2.50
19 71.45 40.98 7.7 7.61 0.1 Sedimentation 617.785 0.084539 –1.61 0.02
20 66.4 44.24 7.54 7.54 0 Moderate 648.375 0.088725 –1.65 0.02
21 68.08 39.05 7.34 7.25 0.09 Sedimentation 717.188 3.87393 –1.7 2.35
22 78.43 88.92 7.52 6.87 0.65 Sedimentation 752.7 4.06575 –1.95 2.46
23 67.1 42.96 7.6 7.8 –0.2 Corrosive 438 0.67 –1.51 0.02
24 73.28 42.03 7.9 7.8 0.1 Sedimentation 772 4.17 –2.1 2.53
25 66.43 42.53 7.52 7.72 –0.2 Corrosive 427.05 0.65325 –1.5 0.02
26 67.99 45.3 7.72 7.72 0 Moderate 36.63 0.6732 –1.58 1.65
27 73.92 50.26 7.25 7.44 –0.19 Corrosive 522.0612 0.589736 –1.3 0.01
28 76.46 51.99 7.5 7.7 –0.2 Corrosive 540 0.61 –1.49 0.01
29 81.62 92.54 7.83 7.15 0.68 Sedimentation 631.75 0.08645 –1.63 0.02
30 83.58 94.76 8.02 7.33 0.69 Sedimentation 658.35 0.09009 –1.68 0.02
31 69.62 39.93 7.51 7.41 0.1 Sedimentation 702.52 3.7947 –1.7 2.30
32 80.2 90.93 7.7 7.03 0.67 Sedimentation 642.9087 0.087977 –1.65 0.02
33 66.68 38.25 7.19 7.1 0.09 Sedimentation 733.4 3.9615 –1.83 2.40
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Fig. 3. Interpolation maps of each element using the IDW method.
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neutral state, was observed in the eastern regions of the study 
area.

The MI zoning map indicates that areas located to the 
south of the study region have an MI value of higher than 1, 
indicating low drinking water quality.

4.2. Agricultural water quality using RSC index

Water quality assessment for agricultural use was car-
ried out using the Na%, SAR, and RSC indices. Table 4 
lists the measured values for 33 water samples. According 
to Ravi Kumar and Somashekar [20], RSC values less 
than 1.25 meq/L indicate good water quality while values 
above 2 meq/L show inappropriateness of water for irri-
gation purposes. The majority of samples (more than 23) 
had an RSC value of less than 1.25 meq/L and are therefore 
suitable for irrigation.

RSC zoning maps were then procured using IDW as 
shown in Fig. 5. It can be observed that the northern and 
northwestern regions with an RSC of less than 1.25 meq/L are 
suitable for irrigation whereas areas located in the southern 
parts with an RSC value of above 2 meq/L are unsuitable for 
irrigation.

4.3. Determination of drinking water quality using the fuzzy 
method and AHP

IDW was also employed in ArcGIS environment in 
order to obtain drinking water quality zoning maps based 
on the following parameters: TDS, pH, Cl, SO4, Ca, Mg, Na, 
and K. The maps are illustrated in Fig. 6. It is evident from 
this Fig. 6., that calcium, magnesium, and potassium con-
centrations as well as pH and TDS are higher in the southern 
parts whereas the remaining parameters (SO4, Cl, and Na) 
are highest in the northern and northwestern areas.

Membership functions were also used for different 
parameters and AHP method was used to assign weights 
to different layers of maps and overlay them to obtain 
the final fuzzy maps for each parameter according to 
national drinking water standards (Table 5). A pairwise 
comparison of figures listed in Table 5 shows that pH and 
Ca have the highest significance (weight of 0.2) while K 
has the lowest significance (weight of 0.07).

The final fuzzy map is shown in Fig. 7. It can be seen 
that fuzzy values higher than 0.75 indicate inappropri-
ate quality while values less than 0.75 exhibits good and 
great drinking water quality. Thus, areas located in the 

Fig. 4. Interpolation map of the LSI and RSI indices.
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eastern parts of the study area are better suited for drink-
ing water supply compared to the northern and western  
regions.

Eventually, in order to evaluate the effectiveness of 
different parameters in estimating water quality, 15 sam-
ple points with known water quality were selected as 
shown in Fig. 8. A glance at Table 6 shows that areas with 
agricultural and urban lands (points 8, 9, and 10) corre-
spond to a high rate of pollution, an outcome consistent 
with the results obtained from different models. According 
to Table 6, reductions in LSI, MI, and RSC as well as 
increases in RSI and fuzzy-AHP indicate an increase in 
water quality, which is consistent with the results obtained 
by the proposed models in agricultural and urban regions.

Studies have proven the aptness of fuzzy models in 
estimating water quality [5,21,22] as well as the appropri-
ateness of employing LSI, MI, and RSI as complementary 
means for locating polluted areas in terms of industrial 
uses [23–25].

5. Conclusion

This study sought to generate groundwater quality 
zoning maps for the northern regions of Kohgiluyeh Boyer-
Ahmad province, Iran, through the application of geo-
statistical models in GIS environment. For this purpose, 
a diverse body of parameters were employed including 
potassium, sodium, magnesium, calcium, chloride, and 
sulfate concentrations as well as pH levels, TDS in water, 
SAR, and alkalinity. The parameters were measured for a 
total of 35 sample wells within the study area. GIS and AHP 
were incorporated along with fuzzy membership functions 
for estimating groundwater quality in the study region.  

Table 4
Values of water quality parameters for irrigation

Code X Y SAR Na% RSC Code X Y SAR Na% RSC

1 475,950 3,400,610 1.073126 25.02027 4.031473 18 474,260 3,399,570 1.0989 25.6212 4.1283
2 463,520 3,411,410 2.1112 36.1179 0.08281 19 468,790 3,402,770 2.15528 36.87201 0.084539
3 462,596 3,414,826 1.208475 29.06141 0.647743 20 467,760 3,405,680 2.262 38.69775 0.088725
4 463,996 3,415,019 1.387 33.782 0.646 21 462,680 3,406,140 1.03119 24.04252 3.87393
5 467,890 3,411,280 2.1808 37.3086 0.08554 22 468,790 3,402,770 1.08225 25.233 4.06575
6 470,634 3,407,405 2.32 39.69 0.091 23 466,520 3,408,277 1.25 30.06 0.67
7 473,774 3,404,851 1.05299 24.5508 3.955829 24 468,035 3,401,929 1.11 25.88 4.17
8 461,924 3,416,636 1.3662 29.9574 0.6039 25 466,818 3,405,010 1.21875 29.3085 0.65325
9 470,067 3,409,950 2.1576 36.9117 0.08463 26 462,961 3,402,984 1.4454 35.2044 0.6732
10 466,818 3,405,010 1.2375 29.7594 0.6633 27 459,560 3,406,795 1.334156 29.25476 0.589736
11 467,760 3,405,680 1.411499 34.3787 0.65741 28 460,803 3,413,870 1.38 30.26 0.61
12 462,600 3,406,200 1.0323 24.0684 3.8781 29 470,416 3,408,278 2.204 37.7055 0.08645
13 468,035 3,401,929 2.200845 37.65152 0.086326 30 470,634 3,407,405 2.2968 39.2931 0.09009
14 461,087 3,405,254 1.3455 29.5035 0.59475 31 467,936 3,403,861 1.0101 23.5508 3.7947
15 463,250 3,413,390 1.4235 34.671 0.663 32 470,416 3,408,278 2.24293 38.3715 0.087977
16 464,040 3,403,550 1.46 35.56 0.68 33 467,936 3,403,861 1.0545 24.586 3.9615
17 473,448 3,403,689 1.0434 24.3272 3.9198

Fig. 5. Water quality map for irrigation.

Table 5
Drinking Water Quality Standards (WHO) and weight of each 
parameter using AHP method

Parameter Limit (mg/L) Weight

Ca 200 0.2
Cl 200 0.1
Mg 150 0.15
K 12 0.07
Na 200 0.08
SO4 200 0.1
TDS 500 0.1
pH 7.5 0.2
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Fig. 6. Fuzzy map of each of the effective parameters in determining water quality in terms of drinking.
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The LSI, MI, and RSI factors were also employed along 
with the RSC index for the assessment of water quality for 
industrial and agricultural purposes, respectively. The find-
ings suggest that areas consisting of agricultural or urban 
lands are categorized as low water quality according to 
five different models. This is most likely due to the use of 
chemical fertilizers and pesticides as well as the ingress 
of industrial pollutants and wastewaters into water wells, 
which increases the overall water pollution in the area, 
rendering the water unsuitable for different purposes.
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