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a b s t r a c t
Fe3O4@MgAl-LDH as a new magnetic nanocatalyst was developed for phenol removal from waste-
water in the catalytic wet peroxide oxidation process. It was synthesized by co-precipitation and 
characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample 
magnetometer, field-emission scanning electron microscopy/energy-dispersive X-ray spectros-
copy, and Brunauer–Emmett–Teller. The results confirmed that Fe3O4@MgAl-LDH is a super-mag-
netic nanocomposite with a specific saturation magnetization (Ms) of 18.63 emu g−1 and a specific 
surface area of 235.8 m2 g–1. The modelling of the process was done using both response surface 
methodology (RSM) and artificial neural network (ANN). The Pareto analysis indicated that the 
relative importance of the process variables is as following: phenol concentration > volume of per-
oxide > dosage of the catalyst > reaction time. The optimum condition was at 0.5 g L–1, 100 min, 
0.7 mL, 65.15 ppm of catalyst amount, reaction time, peroxide volume and phenol concentration, 
respectively. The predicted response under optimum conditions was 96%, whereas the experimen-
tal response resulted in 98%. The feed-forward back-propagation was used for ANN modelling 
including the topology of 4 input variables, 8 neurons in the hidden layer and 1 output. The train-
ing of the network was accomplished by a Levenberg–Marquardt. The mean square error for the 
ANN and RSM models were 0.22 and 0.87, respectively, and the R2 values were 0.99 and 0.98, 
respectively. It is concluded that black-box ANN indicates a higher accuracy in estimating phenol 
remediation. The study showed that magnetic layered double hydroxides could be a promising 
catalyst for phenol removal from wastewaters.
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1. Introduction

Phenol and phenolic compounds are released from 
various industries such as petrochemical and coking pro-
cesses [1–3]. The permissible limit of phenol is 1 mg L−1 for 
industrial effluents to be discharged into inland surface 
waters (IS: 2490–1974) and 5 mg L−1 for discharge into public 
sewers (IS: 3306–1974) [4]. According to the guides of the 
World Health Organization (WHO), the maximum allow-
ance of phenol in drinking water is 0.002 mg L−1. There are 

two common methods used to eliminate the phenol con-
tents in wastewater, that is, physical–chemical and biolog-
ical methods [5–7]. The biological degradation of phenol 
is hard and it is very toxic so it is necessary to reduce the 
amount of phenol from wastewater. Biological treatment is 
environmentally friendly and energy-saving, but it cannot 
treat high concentration pollutants. Physical and chemical 
methods generate secondary by-products which eventually 
enter the environment as toxic aquatic pollutants [1–3,8]. 
Table 1 summarizes the advantages and disadvantages of 
physical–chemical methods [9]. The methods are divided 
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into conventional and advanced methods. The conventional 
treatments show high efficiencies with various phenolic 
compounds, while advanced treatments such as photo-
chemical treatment, Fenton processes and wet air oxidation 
use fewer chemicals compared to the conventional ones 
but have high energy costs. Through the various chemical 
methods used for the removal of phenol, its catalytic oxida-
tion by hydrogen peroxide is considered a suitable method. 
The complete degradation of phenol is resulted from this 
method at near ambient temperatures [3,10]. Like other 
catalytic processes, the property of the catalyst affects the 
efficiency of the process. Recently the use of transition metal 
catalyst especially, catalysts containing iron and copper 
have been reported [3,4,10,11].

Layered double hydroxides (LDHs) are the materials 
containing divalent and trivalent cations and the anions 
are interlayer [11]. LDH has different applications such 
as adsorbents of aqueous pollutants. The use of magnetic 
LDHs could facilitate their removal from the media after the 
process is finished [12]. Except for adsorption and cataly-
sis, the magnetic catalysts have been used in drug delivery, 
protein separation, reductive-acetylation of nitroarenes and 
textile wastewater treatment [13–17].

The objectives of this work were to develop the mag-
netic Fe3O4@MgAl-LDH nanocomposite as a novel magnetic 
nanocatalyst for remediation of phenol from wastewater 
using the CWPO process. The process was modelled by 
both response surface methodology (RSM) and artificial 
neural network (ANN) techniques to get which one could 
predict and model the process exactly. RSM is a statisti-
cal and mathematical technique useful for modelling and 
optimizing processes [18–20]. ANN is a black box tool for 
modelling and optimization. The magnetic LDH was syn-
thesized by co-precipitation and characterized by X-ray 
diffraction (XRD), Fourier-transform infrared spectroscopy 
(FTIR), energy-dispersive X-ray spectroscopy, vibrating 
sample magnetometer (VSM), field-emission scanning elec-
tron microscopy (FE-SEM), and Brunauer–Emmett–Teller 
(BET) techniques.

2. Experimental

The chemicals of NaOH, FeCl2·6H2O, FeCl3·6H2O, 
Na2CO3, Mg(NO3)2·6H2O and Al(NO3)3·9H2O were 

purchased from Merck Company and used without further  
purification.

2.1. Synthesis of MgAl-LDHs

The MgAl-LDH was synthesized using a co-precipi-
tation method. Briefly, metallic nitrates with Mg/Al molar 
ratio of 1 was dissolved in distilled water. Using the NaOH 
2 M, the pH of the solution was adjusted at 9 and CO3

2– was 
used as an interlayer anion (using 0.02  M Na2CO3). The 
solution was continuously stirred for 2  h and the resulted 
slurry was aged at 70°C for 12 h. The resulting product was 
separated by centrifugation, washed twice with distilled 
water, and then dried at 60°C for 12 h to get LDH [18].

2.2. Synthesis of Fe3O4 particles

5.8 g of FeCl3 and 2.15 g of FeCl2 were dissolved in 40 mL 
of water in an N2 atmosphere. The solution was stirred for 
2  h at 60°C. 5  mL of 28% aqueous ammonia solution was 
dropwise added to the above solution with continuous 
stirring until the pH of the solution reached 9.

A black precipitate was formed, which was removed 
magnetically, washed, and dried at 60°C for 6 h.

2.3. Synthesis of Fe3O4@MgAl-LDH

The Fe3O4@MgAl-LDH composite was synthesized by 
the precipitation of the LDH in the presence of the pre-
formed Fe3O4 particles. At first, the Fe3O4 suspension was 
prepared by a mixture containing Fe3O4 (0.15  g) in 20  mL 
of deionized water for 5  min. Then the salt solution con-
taining LDH was added dropwise to a suspension of 
Fe3O4 with continuous stirring. As before, the precipitates 
were separated using centrifugation and washed several 
times with deionized water. Finally, the magnetic-LDH 
precipitates were dried at 60°C for a day and heated at  
200°C [21,22].

2.4. Characterization of Fe3O4@MgAl-LDH

The crystalline phases of the catalyst were investi-
gated by a Philips PW1800 diffractometer and Cu Kα radi-
ation (λ = 1.54 Å). FTIR spectra were recorded on a Bruker 

Table 1
Comparison of efficiency and costs of phenol removal techniques

Methods Efficiency Pollutant conc./amount Cost

Conventional methods Distillation High High Low
Extraction High Medium Low
Absorption/adsorption High High Low
Biological treatment High Low Low
Chemical oxidation High High Low
Electrochemical oxidation High Medium High

Advanced methods Fenton/electro-Fenton High Medium High
Ozonation High High Medium
Wet air oxidation High High Medium
Photochemical treatment High Low High
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spectrometer (model TENSOR 27) at room temperature 
using the KBr disc technique.

The morphology of the mixed oxides was determined 
via field-emission scanning electron microscopy (FE-SEM) 
by a TESCAN MIRA-3 instrument with precoating samples 
with gold. The mapping of the LDHs film was investigated 
by a TESCAN electron microscope. The specific surface area 
of the nanocatalyst was determined using the BET method.

A VSM was used for determining the magnetic prop-
erties of the composite and done by Meghnatis Daghigh 
Kavir VSM. The N2 adsorption–desorption isotherms were 
carried out using BELSORP, Japan.

2.5. Experimental process

A batch mode setup was used for the catalytic oxidation 
process of phenol. The schematic of the setup is shown in 
Fig. 1. For a typical run, a definite amount of fresh cata-
lyst and hydrogen peroxide (according to the RSM exper-
imental design matrix) was put into a simulated phenolic 
wastewater under continuous stirring at 500 pm. The sam-
pling from the solution was done at definite time inter-
vals and immediately analyzed. The phenol and product 
concentration in the wastewater were detected and mea-
sured by UV-Vis spectrophotometer. After the process, 
some MnO2 was added to the solution to eliminate resid-
ual H2O2. An External magnet was used to remove the 
catalyst before measuring the residual phenol.

2.6. Experimental design and modelling procedure

Box–Behnken design of RSM was used to design the 
experiments and to interpret the effect of the functional 
factors of phenol concentration, contact time, catalyst dos-
age and peroxide volume on the responses (phenolic com-
pounds removal %).

The three levels were considered for each variable and 
a total of 27 runs to run an experiment. The experimen-
tal ranges and levels of the independent test variables are 
presented in Table 2.

3. Results and discussions

3.1. Characterization of Fe3O4@MgAl-LDH

Fig. 2 shows the FTIR spectrum of Fe3O4@MgAl-LDH 
composite. For the magnetic composite sample, the strong 
and broadband centered on 3,435 cm−1 is related to stretch-
ing vibrations of O–H in the brucite layers and interlayer 
water molecules [22,23]. The band at 1,637 cm–1 corresponds 
to a water deformation and that at 1,387  cm–1 is related to 
the interaction between the CO3

2– and the OH group [22], 
indicating that some CO3

2– ions existed inside LDHs. The 
bands from 400 to 900  cm−1 are attributed to the stretching 
vibration and bending vibration of M–O and M–OH [23]. 
The strong absorptions at 521  cm–1 from the Fe–O lattice 
vibration of Fe3O4 [22]. These results suggest that the Fe3O4@
MgAl-LDH composite has been achieved successfully.

Fig. 3 shows the XRD pattern of the composite Fe3O4@
MgAl (1:2) LDH. The characteristic peaks of hydrotal-
cite-like compounds which are appeared at 11, 23, 34, 38, 
46, 59 and 61.5 are observed. So the layered structure of the 

sample is approved. The peaks of Fe3O4 is not observed in the 
pattern [13]. No other diffraction peaks were not detected; 
it resulted that the as-prepared Fe3O4@MgAl-LDH was a 
pure composite of Fe3O4 with MgAl-LDH.

The VSM curves of Fe3O4@MgAl-LDH is shown in 
Fig. 4. The specific saturation magnetization (Ms) of the 
catalyst is 18.63  emu  g−1 and the curve approve that the 
catalyst is a super-magnetic material [13].

The morphology and particle size of the catalysts was 
investigated by SEM (Fig. 5). The particles of the cata-
lyst are comprised of sphere-like particles, which the layer 
morphology is observable on the surface of particles. The 
SEM image of the catalysts reveals that the mean particle 
sizes of all catalysts are in nanoscale (less than 100 nm).

Table 2
Experimental ranges and levels of the independent test variables

Variables Symbol Ranges of levels

–1 0 +1

Catalyst amount (g) x1 0.3 0.4 0.5
Phenol concentration (ppm) x2 50 125 200
Reaction time (min) x3 60 80 100
Peroxide volume x4 0.3 0.5 0.7

 
Fig. 1. Scheme of the experimental tests in CWPO process.
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In Fig. 6, the mapping of the catalyst is shown and it 
is observed that O, Mg, and Fe are uniformly dispersed, 
regardless of the morphology of the examined region. Thus 
it is concluded that Fe3O4 is uniformly dispersed in the 
matrix of the catalyst.

The specific surface area of the nanocatalyst deter-
mined using the BET method. The pore volume and pore 
size distribution were derived from the desorption pro-
files of the isotherms using the Barrett–Joyner–Halenda 
method. The results indicated that the catalyst has a high 
relative surface area (235.8 m2 g–1). The pores of the nano-
catalyst were mostly microporous (average diameter of 
1.65  nm). The high surface area of the magnetic catalyst 
has usually a direct relationship with the particle size of 
the catalyst. The smaller the particle size, the higher the 
specific surface area [3,14,15,23].

3.2. Results of RSM modelling

The effect of process variables like phenol concentra-
tion, contact time, catalyst dosage and peroxide volume 
on the removal of phenol was investigated using response 
surface methodology according to Box–Behnken Design. 
The batch runs were conducted in Box–Behnken designed 
experiments to visualize the effects of independent fac-
tors on responses. Experiments are conducted accord-
ing to the Box–Behnken experimental design as shown  
in Table 3.

Fig. 2. FTIR spectrum of Fe3O4@MgAl-LDH.

Fig. 3. XRD pattern of the catalyst.

Fig. 4. VSM spectra of the catalyst.
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Fig. 5. FE-SEM images of Fe3O4@MgAl-LDH.

Multiple regression analysis of the experimental data 
yielded the following regression equation for the percentage 
removal of phenol [Eq. (1)].

Response = �238.9 – 302.5 x1 + 0.1644 x2 – 1.596 x3 – 194.8 x4   
+ 287.5 x1

2 – 0.000622 x2
2 + 0.00813 x3

2 + 71.9 x4
2 

– 0.1667 x1x2 + 225.0 x1x4 + 0.625 x3x4	 (1)

The model predicts that among singular terms, all fac-
tors except the concentration of phenol show a negative 
effect on the response. Among binary terms, the interac-
tion of x1x2 has a negative effect on the response, while x1x4 
and x3x4 term have a positive impact on the response.

Table 4 shows the analysis of variance (ANOVA) for 
the percentage removal of phenol. Analysis of variance is 
required to test the significance and adequacy of the model 
[24–26]. The mean squares are obtained by dividing the 
corresponding sum of squares by the degrees of freedom. 
The fisher’s variance ratio (F-value) is the ratio of the mean 
square owing to regression to the mean square owing to 
an error [24–26]. Here the ANOVA of the regression model 
demonstrates that the model is highly significant as evident 
from the calculated F-value (82.59) and a very low probabil-
ity value (P = <0.0001). The determination coefficient (R2) is 
a statistical key factor to investigate the significance of the 
model. It is a correlation criterion between the experimental 
and predicted data.

A graph of the phenol removal percentage (experimental 
response) plotted vs. the predicted responses is exhibited in 
Fig. 7. The determination coefficient between the predicted 

and observed values for the conversion was 0.9838, confirm-
ing that experimental results are in good agreement with pre-
dicted results.

Another proof to approve the efficiency of the models is 
to evaluate the residuals.

Fig. 8a shows the plot of the predicted response against 
the residual values (normal probability plot). A graph of 
the residual against the predicted response shows ran-
dom behaviour without a tendency to residuals for experi-
mental values (Fig. 8b). Fig. 8c shows the plot of residuals 
against the order of data shows randomly dispersed around 
the horizontal axis and accordingly the residual plots 
approve the adequacy of the model.

Furthermore, the F-test was used to verify the statistical 
analysis of the model.

It is concluded from the results of the F-test that the 
model is statistically significant with an F-value of 82.59. 
The p-value and t-value of each term of the model are 
shown in Table 5.

Since the p-values of all the coefficients are P  <  0.05, it 
implies that these are significant. The linear effect of coeffi-
cients main variables is significant (P < 0.0001). Similarly, the 
interactive effects of x1x2, x1x4 and x3x4 as well as the quadratic 
terms are also significant.

Besides, the relative significance of model terms was 
predicted by Pareto analysis (according to Eq. (2)) [3]:

P bi
bi

ii �
�

�
��

�

�
��� �� �

�
2

2 100 0 	 (2)
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The result of the Pareto analysis is shown in Fig. 9. 
According to the analysis the order for the independent vari-
ables as follows:

Phenol concentration > volume of peroxide > dosage of 
the catalyst  >  reaction time. Among the main factors, the 
concentration of phenol and dosage of the catalyst is the 
most effective factors on the oxidation of the phenol. The 
result is in agreement with the results of Hosseini et al. [3]. 
They studied the phenol removal by the CWPO process by 
consideration 4 process variables and concluded that the 
phenol concentration is the most important process vari-
able. Gholipoor and Hosseini [23] studied the catalytic wet 

peroxide oxidation of phenol on Cu-MOF. They optimized 
the process by considering four variables, that is, reaction 
temperature, phenol concentration, Cu-MOF dosage and 
contact time and resulted that the relative importance of 
phenol removal is as follows: reaction temperature  >  phe-
nol concentration  >  Cu-MOF dosage  >  contact time. Since 
in our work, the reaction temperature is constant and had 
not been considered as a process variable, the initial phenol 
concentration resulted as the most important variable in the 
CWPO process.

Among the variables, the effects of the main factors 
on phenol relative importance of the model terms on the 

Table 3
Box–Behnken design matrix along with experimental and predicted response values for phenol removal

Predicted

ANNRSMExperimentalV (H2O2) mLTime (min)Concentration (ppm)Catalyst dose (g L–1)Run order

92.88793.708930.71001250.41
81.96781.875820.31001250.42
97.69796.916980.7801250.53
88.74385.875860.51001250.34
92.91985.083850.560500.45
82.03886.208870.3601250.46
92.78877.041770.5802000.57
83.0472.958740.3802000.48
91.2681.333810.5801250.49
82.34486.25850.3801250.310
91.45588.458870.780500.411
86.88676.416760.5602000.412
91.8584.083850.7801250.313
81.12781.333810.5801250.414
94.97981.083800.3801250.515
87.57677.083770.51002000.416
9385.208860.5601250.317
84.9588.208890.580500.518
95.0289.041900.51001250.519
85.9981.333820.5801250.420
92.9985.75860.5100500.421
8289.041880.5601250.522
94.50481.625820.380500.423
85.98975.708750.5802000.324
81.14188.041880.7601250.425
91.5181.875820.580500.326
81.88979.791800.7802000.427

Table 4
Analysis of variance of the proposed model

Source of variations Sum of squares Degree of freedom Adjusted mean square F-value

Regression 797.500 11 72.500 82.59
Residuals 13.167 15 0.878
Total 810.667 26
R2 = 98.38% R2(adj) = 97.18% R2(pred) = 93.30%
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phenol removal are as following order: x1x4 (19.92%)  >  x2 
(18.47%) > x2

2 (12.05%) > x4 (11.48%) > x3
2 (10.39%) > x1

2 (8.13%), 
x4

2 (8.13%)  >  x3x4 (6.148%)  >  x1 (3.16%)  >  x1x2 (1.54%)  >  x2 
(0.81%) > x3 (0.1%).

3.3. Response surface plots and optimizing

The relationship between independent and dependent 
variables as illustrated in three-dimensional (3D) response 
surface plots and two-dimensional (2D) contour plots.

The three-dimensional response surface and the two-di-
mensional contour plots are the graphical representations of 
the regression equation and provide a method for predict-
ing the efficiency of phenol removal with different values 
of the variables and identification of the type of interactions 
between these variables.

Each contour curve represents an infinite number of 
combinations of two variables with the other maintained at 
their respective zero levels. A circular contour of response 
indicates that the interaction between the corresponding 
variables is negligible. In contrast, an elliptical or saddle 
nature of the contour plots indicates that the interaction 
between the corresponding variables is significant [24–26]. 

Fig. 10 illustrates the three-dimensional (3D) surface plot 
and 2D contour for the combined interaction of peroxide 
volume and reaction time on the catalytic wet peroxide 
oxidation of phenol. As represented in Fig. 10, maximum 

Fig. 7. Correlation between experimental and predicted 
responses.

Fig. 6. SEM image, energy-dispersive X-ray spectroscopy mapping.
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degradation is at a high level of reaction time and a high 
level of peroxide volume.

Fig. 11 shows the 2D contour and 3D surface plot for 
the interaction of catalyst dosage and peroxide volume. 
The term x1x4 exhibited a positive effect on the phenol deg-
radation and it was found from this figure that increasing 
the amount of both peroxide volume and catalyst dosage 
leads to maximize the degradation of phenol.

In the case of binary interaction of concentration of 
phenol and catalyst dosage, as indicated in Fig. 12, the x1x2 
has a negative effect on the degradation of the phenol and 
the optimum condition occur at the high-level of catalyst and 
low concentrations of the phenol, as indicated by dark green 
section.

Furthermore, the optimum condition for the degradation 
of the phenol was predicted by the response surface meth-
odology (RSM). The optimum condition was at 0.5  g  L–1, 
100  min, 0.7  mL, 65.15  ppm of catalyst amount, reaction 
time, peroxide volume and phenol concentration, respec-
tively. The predicted response under these conditions was 
96%, whereas the experimental test of the predicted condi-
tion led to 98% degradation for phenol. Gholipoor et al. [23] 
reported that the optimal conditions for the phenol degra-
dation occurred at phenol concentration 400 ppm, Cu-MOF 
amount (1.5 g L–1) at 50°C for 30 min with a 91.87% of phenol  
removal.

3.4. ANN modelling

Artificial neural networks are centred on modelling 
the process based on the behaviour of brain neurons. Of 
course, the processes are considerably less complex than the 
brain, hence ANN is as nonlinear empirical models that are 
especially useful in representing input-output data, mak-
ing predictions in time, classifying data, and recognizing 
patterns [27].

ANNs having a highly interconnected structure, consist 
of a large number of simple processing elements called neu-
rons, which are arranged in different layers in the networks; 
an input layer(s), an output layer(s) and hidden layers [27].

Hidden layers perform the non-linear transformations 
on the input space and computation purpose.

In this study, a three-layered (input, hidden and out-
put) feed-forward back propagation neural network with 
Levenberg–Marquardt learning algorithm was used for 
modelling phenol removal from wastewater by catalytic wet 

Fig. 8. Residual plots for CWPO of phenol.

Fig. 9. Results of Pareto analysis.
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Fig. 11. The 2D contour and 3D surface plot for the interaction of 
catalyst dosage and peroxide volume.

Table 5
Estimated regression coefficient and corresponding t and p-value

Term Coefficient t-value p-value

Constant 81.333 150.36 0.000
x1 (catalyst amount) 1.917 7.09 0.000
x2 (phenol concentration) –4.333 –16.02 0.000
x3 (reaction time) 0.333 1.23 0.237
x4 (peroxide volume) 3.417 12.63 0.000
x1·x1 2.875 7.09 0.000
x2·x2 –3.500 –8.63 0.000
x3·x3 3.250 8.01 0.000
x4·x4 2.875 7.09 0.000
x1·x2 –1.250 –2.67 0.018
x1·x4 4.500 9.61 0.000
x3·x4 2.500 5.34 0.000

Table 6
Comparison between the results of RSM and ANN modeling

Parameters RSM model ANN model

Regression coefficient 0.983 0.991
MSE 0.878 0.22
Model developing With interactions Without 

interactions

Fig. 10. The 3D surface plot and 2D contour for the combined 
interaction of peroxide volume and reaction time.

Fig. 12. The 2D contour and 3D surface plot for the interaction of 
catalyst dosage and concentration.
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peroxide oxidation over magnetic LDH as a function of pro-
cess parameters.

Four input neurons were the phenol concentration, con-
tact time, catalyst dosage and peroxide volume, a single 
hidden layer of neurons, and an output neuron indicating 
the percentage of phenol removal. Normalization of the 
inputs and targets was done in the range of (−1) to (1) to 
make the neural network training more efficient. The hyper-
bolic tangent sigmoid transfer function ‘TANSIG’ was used 
for the hidden layer while a purely linear transfer function 
‘PURELIN’ was chosen for the output layer. Mean square 
error (MSE) values were used as the error function. This func-
tion measures the network performance using equation 3.

MSE �
�� ��

�

�
�
�
�

�

�

�
�
�
�

�
� y y

n

nn
i

n

exp

/
2

1

1 2

	 (3)

where n is the number of patterns, ynn the network prediction, 
yexp the experimental response and i is an index of the data. 
The most important step in the development of the ANN 
model is the selection of the optimum number of hidden 
layer neurons in the ANN architecture.

Though hidden layers do not directly interact with the 
external environment, they have a great effect on the final 
target. Both the number of hidden layers and the number of 
neurons in hidden layers must be carefully considered. The 
topologies used to determine the optimal number of hidden 
layer neurons showed that the number of these neurons var-
ied from 2 to 12. It was found that the best performance of the 
network is obtained with eight neurons are in the hidden layer.

During the training, the whole sample set (27 runs) 
was divided for training, validation, and testing in 70:15:15 
proportions. The regression coefficient (R2) is a measure 
of the explanatory power of the model. Here for the best 
predictive model chosen values of R2 is 0.999, 0.992 and 
0.981 for training, validation, and testing respectively as 
shown in Fig. 13. The overall predicted R2 for the model 
was 0.991 as shown in Fig. 13, indicating the quality of 
the trained network and its high predictability.

3.5. Comparison of the ANN and RSM models

Response surface methodology and artificial neu-
ral network have been widely applied in optimizing and 
modelling various processes in environmental studies.

RSM consists of a collection of statistical and mathe-
matical techniques for designing experiments, modelling, 

Fig. 13. Neural network model with training, validation, test and all prediction set.
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evaluating the effects of factors and searching for the opti-
mum condition [26].

The main advantage of RSM is the ability to reduce the 
number of experiments and determine the contribution of 
each factor in predicted response due to the accurate statis-
tical analysis.

This ability is powerful in identifying the insignificant 
main parameters and interaction or quadratic terms in the 
model and thereby can reduce the complexity of the issue.

On the other hand, this technique can be used only 
within certain ranges of parameters, which are selected 
before the modelling. ANN has developed as an attractive 
tool for nonlinear multivariate modelling [27]. The main 
advantages of ANN are: (i) ANN can learn from observing 
data sets and (ii) ANN can inherently capture almost any 
complex and non-linear process.

Therefore, the ANN model is so predictable and flex-
ible that new experimental data can be added to build a 
reliable model. The comparative values of MSE and R2 are 
given in Table 6.

4. Conclusions

Fe3O4@MgAl-LDH as a new magnetic catalyst for wet 
peroxide oxidation of phenol from wastewater was devel-
oped and promising activity resulted.

The main advantages of the magnetic nanocompos-
ite were the low price of the nanocomposite, high activ-
ity, and easy removal after the process. The process was 
modelled and optimized by both response surface meth-
odology and artificial neural network. The Pareto analysis 
indicated that phenol concentration is the most import-
ant factor in the CWPO process. Besides, the interaction 
between catalyst amount and peroxide volume was the 
most significant effecting parameter on the efficiency of 
phenol remediation. The optimum condition was at 0.5 L–1, 
100  min, 0.7  mL, 65.15  ppm of catalyst amount, reaction 
time, peroxide volume and phenol concentration, respec-
tively. Under these optimized conditions, the experimental 
degradation of phenol (98%) agreed with the predicted 
response value (around 97%). The ANN model showed 
the superior capability to the RSM model with a mean 
square error of 0.22 and a regression coefficient of 0.99. The 
study indicates that the application of magnetic layered 
double hydroxides in the removal of phenolic wastewater 
could be promising and further studies are under study.
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