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a b s t r a c t
Phenol is a harmful substance even at low concentrations. The photocatalytic process is a suitable 
method for phenol treatment due to its characteristics. The complexity of the photocatalytic reactions 
is one of the problems for the applicability of photocatalytic technology in large-scale wastewater 
treatment. The data mining approach is a suitable solution for this problem. In this study, artificial 
neural network (ANN) and random forest (RF) methods were used to predict the efficiency of phe-
nol removal using the data obtained from a cascade photocatalytic backlight reactor with TiO2 as 
photocatalyst. The effect of operational parameters, that is, TiO2 concentration 40–100 g/m2, initial 
phenol concentration 50–700 mg/L, and pH 8, 9 was investigated and kinetic of phenol degradation 
was determined. On the ANN model using 15 neurons in the hidden layer allowed to obtain the 
best values for R2 and MSE as 0.9996 and 0.36 mg/L, respectively, and on the RF model, the best 
values for R2 and the MSE were 0.9972 and 1.36 mg/L, respectively. Comparing model outputs with 
lab results showed RF and ANN can be used for predicting phenol photocatalytic degradation with 
satisfying accuracy.
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1. Introduction

Wastewater originated by industrial activities contains 
a variety of hazardous materials that may pollute air and 
water and result in harmful effects on both ecosystems 
and humans. Phenol is one of these materials and it can be 
found in various industrial wastewaters like an olive mill, 
and petrochemical factories [1]. It is a toxic and organic 
aromatic compound (C6H5OH) consisting of a phenyl 
group (–C6H5) which bonded to a hydroxyl group (–OH) 
[2]. In addition to natural sources of phenol production, 
the release of phenol-containing industrial wastewater in 
the environment has increased phenol supply in water 
resources. Phenolic compounds can create complexes 
with chlorine which cause an unpleasant taste and odor in 

water [3]. Phenol has harmful effects on human health. It 
can be absorbed from the skin rapidly and it can be bio-ac-
cumulated. Also, it can cause eye and skin burns in case 
of contact. Based on Environmental Protection Agency 
(EPA) classification, phenolic compounds are classified 
as the main pollutants and they are suspected to cause 
cancer and harm fetus [4–6]. Due to its harmful effects on 
health, various regulatory authorities have imposed strict 
limits to phenol concentration in industrial discharges 
and drinking waters. Based on the guidelines prescribed 
by WHO, a concentration of 1 μg/L phenol is allowed for 
drinking water. EPA has declared that the concentration of 
phenol in lakes and streams should be limited to 0.3 mg/L 
[7]. Therefore, removing phenol and its derivatives from 
water and wastewaters considered essential. For this pur-
pose, various methods have been used such as biologi-
cal treatment [8], electrochemistry [9], absorption [10], 
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halloysite-based adsorbent [11], bio-filter [12], and cavita-
tion [13]. The advanced oxidation process (AOP) is one of 
the most effective ways for the treatment of organic pollut-
ants from water and wastewater [14,15]. In compression to 
conventional methods AOP has several benefits such as (1) 
it is capable of complete mineralization of organic materi-
als, (2) it produces no sludge, (3) the energy consumption 
is low [16]. In the AOP methods generated hydroxyl and 
super anion radicals are responsible for organic pollutant 
degradation.

Heterogeneous photocatalysis is an AOP method and 
has been reported to treat organic pollutants very effec-
tively [17,18]. Several materials are investigated as a semi-
conductor in heterogeneous photocatalysis. TiO2 is a semi-
conductor metal and because of having characteristics such 
as: being inactive, low price, stability, and having a large 
bandgap is the most favorite catalyst material in hetero-
geneous photocatalysis [19]. When TiO2 is irradiated with 
ultraviolet (UV) light, it excites electrons in the valance band 
so that they are transferred to the conduction band and, as 
a result, holes are created in the valance band. These holes 
react with hydroxide ions and produce hydroxyl radicals 
[20]. Anatase, rutile, and brokit are three phases of TiO2. 
Anatase and rutile are the most used types. Anatae band 
gap is around 3.1 ev and for rutile, it is 3.01 ev. Generally 
using two different semiconductors or using two phases of 
a semiconductor can lower the recombination rate of elec-
tron–hole and thus causes an increase in the degradation 
rate of organic matters [21]. Wastewater treatment using a 
heterogeneous photocatalytic process is done in two ways: 
(1) reactors with suspended photocatalyst, (2) reactors with 
fixed photocatalyst on a surface [22]. Suspended photocat-
alytic systems need an additional separation unit which 
raises the cost of treatment [23]. Hence, the fixed bed pho-
tocatalytic reactors have extensively attracted the attention 
of scientists to enhance the applicability of heterogeneous 
photocatalytic technology in large-scale water treatment 
[24]. Because many parameters influence the AOP reac-
tions, modeling photocatalytic degradation using conven-
tional mathematical modeling is too hard [25,26]. Data min-
ing approaches like artificial neural networks (ANN) [27], 
support vector machines (SVMs) [25], adaptive neuro-fuzzy 
inference systems (ANFIS) [28] are suitable and efficient 
solutions for this problem.

ANN can identify the complex relationships between 
input and output variables with high efficiency and accept-
able accuracy [29]. It has shown satisfactory performance 
in many areas of science and engineering. Recently, some 
researches have been performed using ANN in modeling 
heterogeneous photocatalysis process. Ghanbary et al. 
[30] prepared TiO2 nanoparticles using the sol–gel method 
under different thermal conditions and predicted photo-
catalytic activity by ANN. Behnajady and Eskandarloo 
[31] prepared TiO2 nanoparticles using the sol–gel method 
under different pH conditions and predicted the photocat-
alytic activity by ANN. Amani-Ghadim and Dorraji [32] 
investigated the photocatalytic activity of ZnO nanoparti-
cles under different operational parameters and created a 
model using ANN.

Random forest (RF) is another data mining method 
which is introduced by Breiman [33]. It is a nonlinear method 

and can be used for classification and regression problems. 
Its application and accuracy in various filed of sciences are 
studied by various researchers and it was promising. Singh 
et al. [34] used the random forest to model the infiltration 
rate of soil and predicted the impact of water quality on it 
using the developed model. Hamidi et al. [35] investigated 
the application of the random forest method to predict 
snowfall. Naghibi et al. [36] used the random forest method 
to produce groundwater spring potential maps.

In this study, two models were created using RF and 
ANN methods for predicting the photocatalytic removal of 
phenol using the results obtained from a novel cascade cat-
alytic reactor. The RF model has not been used in literature 
for this purpose. In addition, as a new approach, the optimal 
values of effective parameters in phenol removal (TiO2 con-
centration, pH, initial phenol concentration, and treatment 
time) were obtained using controlled random search with 
local mutation algorithm and compared with lab results.

2. Materials and methods

2.1. Materials

In this empirical study, Tecnan Spain was used as a 
TiO2 provider. The average size of TiO2 particles used was 
10–15 nm and its bandgap is 3.37 ev [37]. The amount of 
TiO2 phases is 85% anatase and 15% rutile [38]. Phenol 
(purity over 99%), for adjusting pH, NaOH, and HCl 
of analytical reagent grade from Merck Co., (Germany) 
were used. For creating synthetic wastewater, phenol 
was dissolved in deionized water and for UV irradiation, 
160 w Narva Black Light was used.

2.2. Cascade backlight photocatalytic reactor

In this study, the reactor was made up of three plexiglass 
rectangular reservoirs. The dimension of the plate at the 
bottom of the reservoir was 420 mm × 250 mm × 2 mm and 
the height of the edges was 4 cm and the weir was 2 cm. For 
phenol treatment, the synthetic wastewater was circulated 
in the reactor with a flow rate of 4 L/min, and to increase 
dissolved oxygen concentration an aerator was used. Each 
time the experiments were carried out to establish balance, 
while ultra-violet lamps were off, the synthetic wastewater 
was rotated in the reactor for 15  min. The sampling was 
performed every half hour and the total time of each test 
was 3 h. Fig. 1 shows the reactor used in this study.

2.3. Analysis method

4-aminoantipyrine colorimetric method was used to 
measure phenol concentration [39] and Hach Dr 2800 
spectrophotometer was used for this purpose. For mea-
suring pH OHAUS ST20 pH meter was used. For calcu-
lating the remaining phenol concentration Eq. (1) was 
used:

Remaining phenol concentration � �
C
C0

100 	 (1)

where C and C0 are phenol and initial phenol concentra-
tion, respectively.
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2.4. Artificial neural networks

An ANN is an idea for information processing that 
is inspired by the biological nervous system and tries to 
process the information like the brain. The key element of 
this idea is the new structure of the information process-
ing system. The system consists of a large number of inter-
connected processing elements called neurons that work 
together to solve a problem [40]. In this study, a three-layer 
perceptron ANN model including an input layer, hidden 
layer, and output layer was created. The input layer had 
four operational parameters (inputs) including treatment 
time, TiO2 concentration, phenol initial concentration, and 
pH. For creating the best ANN model, tangent sigmoid 
(tansig), and log sigmoid (logsig) were examined for the 
hidden layer transfer function. The dependent variable of 
the output layer was the remaining phenol concentration 
and its transfer function was linear (purelin). Levenberg–
Marquardt backpropagation algorithm was used for train-
ing the neural network and MATLAB version 9.1 (R2016b) 
was employed for processing data and creating ANN 
model. Fig. 2 shows the schematic architecture of the ANN 
model that was used in this study.

As mentioned tansig and logsig transfer functions 
were examined as hidden layer activation functions. 
Therefore, it was necessary to scale all input data but in 
the RF method, input data doesn’t need to be scaled for 
model creation and therefore its output is not scaled too. 
Therefore, the ANN model was created in such a way that 
the input data were first scaled to the range –1 to 1 and after 
determining the result, it was again reverse-processed to 

its original state. In this way, it was possible to compare 
the outputs of the two methods.

2.5. Random forest

RF is an ensemble machine-learning algorithm 
introduced by Breiman [33]. It applies a combination of 
Bootstrap aggregating (bagging) and random variable 
selection techniques to the decision tree method and both 
regression and classification problems can be solved by it. 
RF uses a large number of decision trees, feeds each tree 
with a random sample with replacement from the main 
training data set, and chooses a subset of independent 
factors randomly at each node of a decision tree. Also, it 
should be noted that trees do not prune in an RF model [36]. 
This method decreases the correlation between individual 
trees and therefore increases the accuracy of the model. 
Almost only two-thirds of the training data appears in a 
bootstrap sample. One-third of the remainder, which is 
referred to as “out of bag sample (OOB sample)”, is used 
to validate the model. This is done by calculating out-of-
bag error (OOB error). In classification problems, one can 
well estimate the accuracy of a model using the OOB error 
value, but it is an approximation in regression problems 
[41]. In regression problems, the result will be determined 
by averaging the outcome of each tree. Like ANN, input 
parameters were treatment time, TiO2 concentration, phe-
nol initial concentration, and pH. The remaining phenol 
concentration prediction was the output of the model. For 
creating the RF model in MATLAB software, RF-Matlab 

 

Fig. 1. Diagram of reactor used in this study.
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package written by Jaiantilal, A. (n.d.) was used and it 
can be downloaded from https://github.com/jrderuiter/
randomforest-matlab. This package uses the classifica-
tion and regression trees (CART) algorithm for building 
decision trees. Fig. 3 shows the schematic diagram of the 
random forest model used in this study.

The following parameters were used to determine the 
best architecture of the RF model: ntree, the number of deci-
sion trees; mtry, number of independent variables which 
can be selected randomly; node size, which minimum 
size of terminal nodes is determined by this parameter. 
Using larger values for node size causes smaller trees to 
be grown.

2.6. Reactor parameters optimization

Data mining models also can be used to optimize system 
parameters. For this purpose, the global optimization 
algorithm called controlled random search with local 
mutation (CRS) was used [42]. It was first introduced by 
Price in 1978 [43]. NLOPT library has implemented this 
algorithm for MATLAB and was used in this study [44]. In 
this method, which is sometimes compared with a genetic 
algorithm, the problem should be boundary constrained 
and the optimization procedure starts with a population of 
points with random values where these points randomly 
evolve using heuristic rules. In other words, the point with 
the worst value is replaced with a new point with a better 
value and this loop continues until a certain condition is 
met [45].

3. Experiments

In this study, the effect of phenol concentration, pH, 
and TiO2 concentration were investigated. The full facto-
rial method was used for designing experiments. Table  1 
shows parameters considered in this study and their 
ranges. Initial phenol concentration and pH ranges were 
selected based on petrochemical wastewater characteris-
tics and TiO2 concentration was chosen based on the pre-
vious studies.

Input variable for ANN and RF models are treatment 
time (min), initial pH, initial phenol concentration (mg/L), 
and TiO2 concentration (g/m2). The remaining phenol con-
centration was chosen as the target variable. In this study, 
192 samples were used to feed the ANN and RF models.

4. Results and discussion

4.1. Kinetics of phenol photocatalytic degradation

In general, photocatalytic reactions follow first-order 
kinetics [52]. Kinetics of photocatalytic oxidation of phenol is 
also pseudo-first-order [51]:

r dc
dt

kc�
�

� 	 (2)

where k (min–1) is the rate constant. By integrating Eq. (2) and 
considering the initial concentration of phenol equal to C0, 
the following equation is derived:

 
Fig. 2. Schematic diagram of the proposed ANN model.
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ln C
C

kt
0

�

�
��

�

�
�� � � 	 (3)

where C is phenol concentration at time t (min). 
To  calculate k, first –ln(C/C0) was plotted against t, then 
linear regression analysis was used. The slope of the 
resulting linear regression model is equal to k. The results 
of linear regression analysis confirmed that the pho-
tocatalytic oxidation of phenol in experiments follows 
pseudo-first-order kinetics.

4.1.1. Effect of TiO2 and initial phenol concentration in k

Table 2 shows changes in the k relative to the TiO2 
and initial phenol concentration. The results showed that 
with increasing TiO2 concentration, the amount of k also 
increases. Hydroxyl radical produced in photocatalytic 
reactions is the main cause of photocatalytic oxidation of 
phenol [20]. Hence, as the concentration of TiO2 increased, 

 

Fig. 3. Schematic diagram of the RF model.

Table 1
Selected experiment parameters

Parameter Values References

Time, min 30, 60, 90, 120, 150, 180
pH 8, 9 [46–48]
Phenol, mg/L 50, 250, 500, 700 [49,50]
TiO2, g/m2 40, 60, 80, 100 [51]

Table 2
Correlation coefficient (R2) and rate constant (k) for phenol 
removal with pH = 8

TiO2 
concentration 
(g/m2)

Initial phenol concentration (mg/L)

50 100 500
k R2 k R2 k R2

40 0.0044 0.95 0.0035 0.93 0.0019 0.94
60 0.0049 0.97 0.0045 0.98 0.0028 0.97

80 0.0098 0.99 0.0091 0.97 0.0055 0.99

100 0.0107 0.98 0.0098 0.99 0.0058 0.98



A.M. Khaksar et al. / Desalination and Water Treatment 228 (2021) 229–241234

the rate of hydroxyl radical production also increased and 
the oxidation rate of phenol increased too. The results 
showed that with increasing initial phenol concentration, 
the amount of k decreased. This is because that photocata-
lytic oxidation occurs on the surface of TiO2 particles and 
there is a limited number of oxidation sites [51].

4.1.2. Effect of pH changes in k

Table 3 shows the effect of pH changes in the variation 
of k. The results showed that by changing pH from 8 to 
9, the amount of k increased. Increasing pH increases the 
production of hydroxyl radicals [38] and thus increases the 
value of k.

4.2. ANN model

For developing the model, the data were divided into 
training data (70%), validating data (15%), and testing data 
(15%). Also, mean squared error (MSE) and coefficient of 
determination (R2) were used to evaluate the model accu-
racy. MSE value is calculated using Eq. (4):

MSE prd exp� �� �
�
�1

2

1N
y yi i

i

N

, , 	 (4)

and R2 value is calculated using Eq. (5):
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where yprd,i and yexp,i are predicted and lab result of remain-
ing phenol concentration respectively, and ym is the aver-
age of the lab results. The number of neurons in the hidden 
layer is an effective factor for creating an accurate model. 
This parameter should be selected in such a way that, the 
value of R2 is maximized and the amount of MSE is min-
imized. To achieve the best accuracy, a range of 1–21 for 
neurons in the hidden layer was examined. Table 4 shows 
calculated MSE and R2 indices for the different number of 
neurons in the hidden layer.

As Table 4 shows that the best result was R2  =  0.9996 
and MSE = 0.36 and it was achieved when 15 neurons were 
used in the hidden layer. Table 5 shows ranges of consid-
ered parameters in building the ANN model for predicting 
remaining phenol concentration and the selected values 
based on the performance criteria of R2 and MSE.

Fig. 4 shows MSE value vs. training epochs of model 
training for the selected ANN model. As it can be seen train-
ing was stopped after 38 epochs.

The simulated and observed values in training, valida-
tion, and test samples, as well as all data, are compared in 
scatter plots provided in Fig. 5. As it can be seen the predicted 
values of C/C0 completely follow the observed values as they 
fit the 45° line.

Other researchers achieved similar accuracy when using 
ANN method to predict TiO2 photocatalytic behavior. For 
example, Lenzi et al. [53] used the ANN method to predict 
the photocatalytic degradation of textile reactive dye. The 
R2 value of their optimized model was 0.9995. Bennemla 
et al. [26] used the ANN method to predict photocatalytic 

Table 3
Correlation coefficient (R2) and rate constant (k) for phenol 
removal with TiO2 = 60 g/m2

Initial phenol 
concentration 
(mg/L)

pH
8 9

k R2 k R2

50 0.0049 0.97 0.0052 0.95
100 0.0045 0.98 0.0049 0.96
500 0.0028 0.97 0.0034 0.99

Table 4
MSE and R2 indices for different number of neurons in the hidden layer

Hidden 
layer size

R2 MSE (mg/L) Hidden 
layer size

R2 MSE (mg/L) Hidden 
layer size

R2 MSE (mg/L)

1 0.931 66.27 9 0.9991 0.88 17 0.9995 0.51
2 0.9644 34.83 10 0.999 0.97 18 0.9995 0.51
3 0.9854 14.36 11 0.9993 0.73 19 0.9996 0.4
4 0.9931 6.89 12 0.9993 0.66 20 0.9992 0.81
5 0.9953 4.72 13 0.9995 0.53 21 0.9994 0.59
6 0.998 2 14 0.9993 0.73
7 0.9984 1.55 15 0.9996 0.36
8 0.9982 1.8 16 0.9994 0.57

Table 5
Considered parameters for ANN model creation, examined 
range, and the selected values

Examined rangeValueParameter

–4Neurons in input layer
1–2115Neurons in hidden layer
–1Neurons in output layer
–Levenberg–

Marquardt
Training function

logsig–tansigtansigHidden layer function
–purlinOutput layer function
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degradation of oxytetracycline. The R2 value of the created 
model was 0.9975. Hence, ANN is a reliable method to pre-
dict TiO2 photocatalytic degradation.

4.3. RF model

Because OOB error is used for validating the 
RF model, there was no need for separate validating data 
set. Therefore the experimental data set was randomly 
divided into 163 samples for train data (85%) and 29 sam-
ples for test data (15%). As mentioned, RF is a collection of 
decision trees. For modeling with a decision tree, there is 
no need for data scaling, hence RF does not require data 
normalization too. Like the ANN model, MSE and R2 indi-
ces were used to evaluate model accuracy [Eqs. (4) and (5)]. 
Table 6 shows the considered ranges of RF model parame-
ters and selected tuning parameters of the model for pre-
dicting remaining phenol concentration in wastewater.

 

Fig. 4. MSE vs. the number of epochs.

 
Fig. 5. ANN model regression diagrams: (a) train data, (b) validate data, (c) test data, and (d) all data.
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Fig. 6 shows the OOB error rate vs. number of trees.  
As it shows in 200 trees, the OOB error rate converges and the 
model with 200 trees produced the best results.

MSE value of the selected RF model was 1.36 and the R2 
value was 0.9972. The convergence between model outputs 
and observed values shown in Fig. 7.

4.4. Initial phenol concentration effect

To study the effect of initial phenol concentration 
in phenol removal efficiency, initial phenol concentra-
tion from 50 to 700 mg/L is investigated. Results showed 
that an increment in initial phenol concentration causes 
a decrement in phenol removal efficiency. For example, 
when TiO2 concentration equals 40 g/m2, phenol removal 
efficiency decreased from 66% to 36% when phenol initial 
concentration increased from 50 to 700 mg/L. Fig. 8 shows 
experimental results and predicted values by the selected 
ANN and RF models.

4.5. Initial pH effect

pH is an important factor in photocatalytic treatment 
because the ionization status of both photocatalyst and 
target substance surface are pH-dependent. In this study, 
phenol removal performance was investigated in pH val-
ues of 8 and 9. Results showed that increment on initial 
pH causes increment on phenol removal efficiency. Fig. 

Table 6
Examined RF parameters

Examined rangeSelected valueParameter

Up to 1,000200ntree

1–44mtry

1–53Node size

 

Fig. 6. OOB error rate vs. number of trees.

 

Fig. 7. RF model regression diagrams: (a) train data, (b) validate data, and (c) all data.
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9 shows the experimental result and predicted values by 
ANN and RF models with TiO2 equals 60 g/m2 and initial 
phenol equals 700 mg/L with pH 8 and 9.

4.6. TiO2 concentration effect

Another variable that its effect on the phenol removal 
efficiency was investigated is TiO2 concentration. Based on 
the test results, with an increase in TiO2 concentration until 
80  g/m2, phenol treatment efficiency also increased and it 
could be due to the increase in the surface available for the 
photocatalytic reaction. Increasing the surface area causes 
charge carriers concentration increment and therefore causes 
an increase in hydroxyl radicals generation [26]. For exam-
ple with initial phenol concentration equals 700  mg/L and 

pH equals 9, the phenol removal efficiency increased from 
36% to 69% after 180 min treatment when TiO2 concentration 
increased from 40 to 80  g/m2, respectively. However, TiO2 
concentration increase from 80 to 100  g/m2 did not highly 
affect phenol removal efficiency. Lack of space for TiO2 
nanoparticles and surface saturation can cause this problem. 
Fig. 10 shows experimental results and predicted values by 
ANN and RF models when pH, initial phenol concentration, 
and TiO2 concentration are equal to 8, 700 mg/L, and 40 and 
80 g/m2, respectively.

4.7. Optimizing reactor parameters using ANN and RF models

Two developed models were used to determine the 
best operational parameters of the reactor using the CRS 

 
Fig. 8. Photocatalytic degradation of phenol with TiO2  =  40  g/m2, pH  =  9, and comparison with optimized model output  
(error bars represent standard deviation among duplicate tests): (a) ANN and (b) RF.

 
Fig. 9. Photocatalytic degradation of phenol with TiO2 = 60 g/m2, phenol = 700 mg/L, and comparison with optimized model output 
(error bars represent standard deviation among duplicate tests): (a) ANN and (b) RF.
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algorithm. In NLOPT implantation of CRS, the default 
value for initial population size is 10 × (n + 1) where n is the 
number of variables we need to optimize. In this study, the 
default value is used and three variables of initial phenol 

concentration, TiO2 concentration, and pH were optimized. 
As mentioned in section 2.6 (Reactor parameters optimi-
zation), in CRS the upper and lower limit of optimization 
variables must be determined. Thus initial phenol concentra-
tion 50 and 700, pH 8 and 9, and TiO2 concentration 40 and 
100 were used as the lower and upper limits, respectively. 
Table 7 shows optimized reactor parameters and predicted 
remaining phenol concentration after 180 min treatment. For 
comparison, the best result obtained from lab experiments is 
also provided. As Table 7 shows, the results between devel-
oped simulation models and lab experiments are satisfacto-
rily close and both models have adequate performance in 
this regard.

 
Fig. 10. Photocatalytic degradation of phenol with phenol = 700 mg/L, pH = 8, and comparison with optimized model output (error 
bars represent standard deviation among duplicate tests): (a) ANN and (b) RF.

Table 7
Best values of MSE and R2 indices for ANN and RF methods

ANN RF Lab

Initial phenol concentration (mg/L) 50 50 50
TiO2 concentration (g/m2) 91.5 90.56 100
pH 9 9 9
Treatment time (min) 180 180 180
Remaining phenol concentration (%) 8.16 10.1 9.6

Table 8
Removal efficiencies of other treatment methods for petrochemical and oil refinery wastewater

Method Treatment 
time (min)

Initial phenol 
concentration (mg/L)

Removal 
efficiency (%)

Study

Photocatalytic degradation (ZnO/TiO2) 160 60 100 [54]
Sono-photo-Fenton 60 50 76.1 [55]
Biochar-La/ultrasonic/persulfate 63 86 97.68 [56]
Electroflotation/electrocoagulation 30 3.17 65 [57]
Biodegradation using bacteria strain Acinetobacter calcoaceticus 2,880 800 91.6 [58]
Anaerobic stabilization pond 2,880 200 81.63 [5]

Table 9
Best values of MSE and R2 indices for ANN and RF methods

Method MSE R2

ANN 0.36 0.9996
RF 1.36 0.9972
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As mentioned in section 3 (Experiments), the initial 
phenol concentration and pH ranges used in this study are 
based on petrochemical wastewater characteristics. Other 
studies used different methods for the treatment of phenol 
in petrochemical wastewater. Some of these methods and 
their removal efficiencies are shown in Table 8. Comparing 
the removal efficiency from this study and Table 8 shows 
that the results are in the range of other studies and phenol 
treatment efficiency is satisfactory.

4.8. Comparison of ANN and RF models

The performance of created models is summarized in 
Table 9. As seen in Figs. 5 and 7 and also Table 7, the trend 
of C/C0 in created RF and ANN models fit the 45° line in 
a satisfactory manner. Hence, both models have acceptable 
accuracy for predicting phenol treatment efficiency. As seen 
in Table 8, it can be concluded that the ANN method is a 
little more accurate than RF.

In other studies, modeling the photocatalytic degradation 
of phenol is not limited to ANN and in addition to phenol, 
these methods have been used for modeling other phenolic 
compounds photocatalytic degradation too. Table 10 summa-
rizes some of these studies.

5. Conclusion

In this research, photocatalytic treatment of phenol using 
a photocatalytic backlight reactor has been investigated. 

The results showed that the phenol degradation process fol-
lows pseudo-first-order kinetics. Changes in k with changes 
in operational parameters showed that as pH and TiO2 
increased, the phenol removal efficiency increased too and 
with initial phenol concentration increase, phenol removal 
efficiency decreased. The impact of operational parame-
ters on phenol removal efficiency has been modeled using 
ANN and RF methods. For the ANN model, a three-layer 
perceptron with 15  neurons in the hidden layer has been 
used. MSE and R2 values for this model were 0.36 mg/L and 
0.9996, respectively. RF model has been created using 200 
trees and MSE and R2 values for this model were 1.36 mg/L 
and 0.9972, respectively. CRS algorithm has been used to 
optimize operational parameters with RF and ANN models. 
Comparing obtained results and lab data showed both ANN 
and RF can predict phenol removal with satisfying accuracy. 
It is suggested to investigate COD reduction and mineral-
ization by COD and TOC tests, monitoring phenol solution 
degradation by UV/Vis spectrum test, and identification of 
intermediates in the degradation of phenol by HPLC/MS or 
GC/MS in future studies.
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