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a b s t r a c t
Here we report the construction of carbon quantum dots (CQDs)/Bi4O5I2 photocatalyst with improved 
photocatalytic performance for methyl orange (MO) degradation under visible light. In particular, 
the CQDs/Bi4O5I2 samples synthesized with 2 wt.% CQDs achieved the best performance for the 
degradation of MO among all samples. This enhancement is ascribed to the optimized CQDs content, 
which causes the strong light adsorption and efficient electron separation of Bi4O5I2. According to the 
electron spin resonance measurement and quenching experiments, the •O2

– and h+ were found to be the 
main active species during the photodegradation process. Moreover, a possible photocatalytic mecha-
nism of CQDs/Bi4O5I2 towards MO degradation has been proposed.
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1. Introduction

Heterojunction photocatalysts have attracted consider-
able attention for its potential application in solving energy 
and environmental crisis [1–4]. In the past few years, many 
strategies were developed to promote the light absorption, 
photogenerated charges transfer and separation efficiency 
of the single photocatalyst, and thus promote the photocat-
alytic performance [5]. However, the research of visible-light 
photocatalysts with low-cost, high efficiency, and capable 
of eliminating environmental pollution is still a hot spot in 
this field [6,7].

Carbon quantum dots (CQDs), as one of the carbon 
nanomaterials, have attracted more interest due to their 

nontoxicity, efficient electron reservoir, and outstand-
ing optical absorption for solar energy conversion [8–11]. 
Much research is based on the unique electronic proper-
ties of CQDs, such as MoS2/CQDs/ZnIn2S4, CQDs/graphene 
aerogel, N-CQDs/SnS2, CQDs/Fe2O3@g-C3N4, have been 
devoted to achieving excellent photocatalytic activity for 
water oxidation or environmental remediation [12–15]. 
This enhancement is due to the strong electron acceptation 
of CQDs and excellent photogenerated charge mobility 
after surface CQDs modification. Recently, 0D/2D pho-
tocatalysts has attracted much attention in facilitate the 
interfacial charge flow and photoinduced carriers sepa-
ration [16–18]. Therefore, the zero-dimension CQDs can 
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be an ideal candidate for decorated 2D semiconductor 
photocatalysts.

Bi4O5I2, as one of I– deficient BiOI, shows superior vis-
ible-light adsorption and great potential for application in 
environmental decontamination [19]. Due to the unique 
layered structure and self-built internal static electric field, 
it has large specific surface area and efficient charge car-
riers’ separation, as well as high photocatalytic perfor-
mance [20–22]. However, the surface charge transfer and 
separation of Bi4O5I2 still need to be optimized, which 
could further increase the photocatalytic activity of Bi4O5I2. 
For this purpose, many heterojunction photocatalysts 
were designed to further promoting the charge separation 
and improving the photocatalytic behavior of Bi4O5I2. For 
example, Sun et al. [23] fabricated BiOI/Bi4O5I2 and Bi5O7I/
Bi4O5I2 photocatalyst with remarkably improved photocat-
alytic activity for o-phenyl phenol and 4-tert-butylphenol 
degradation. Hou et al. [24] designed Bi4O5I2/Bi2S3 hetero-
junction photocatalyst with improved photocatalytic activ-
ity for Cr(VI) reduction. Li et al. [25] synthesized 2D-2D 
BN/Bi4O5I2 composites by ion liquid assisted solvothermal 
method and explored its visible-light photocatalytic activ-
ities for the decomposition of bisphenol A. Jiang et al. [26] 
demonstrated nitrogen-doped hierarchical carbon (NHC) 
hybrid with Bi4O5I2 as an efficient photocatalyst for methyl 
orange (MO) degradation under visible light. This has 
inspired the incorporation of CQDs/Bi4O5I2 heterojunction 
with intimate contacts, efficient interfacial charge separa-
tion and high photocatalytic activity.

In this work, CQDs/Bi4O5I2 heterojunction photocata-
lyst was prepared by depositing CQDs on the surface of 
nanosheets assembled Bi4O5I2 nanoflower. The resultant 
CQDs/Bi4O5I2 displayed enhanced photocatalytic perfor-
mance and good stability for MO degradation under vis-
ible light, and the optimal CQDs contents have been iden-
tified to be 2 wt.%. The improved photocatalytic activity is 
due to the enhanced electron–hole separation efficiency. 
The electron transfer and possible photocatalytic mechanism 
of CQDs/Bi4O5I2 have also been explored.

2. Experimental

2.1. Preparation of photocatalysts

2.1.1. Synthesis of CQDs

CQDs were obtained according to the procedure of the 
previous report [27]. Typically, 5.4 mmol citric acid and 
335 µL ethylenediamine was added into 10 mL distilled 
water in a beaker. After sonicated and stirred for 10 min, the 
mixture was transferred into a 30 mL Teflon-lined autoclave, 
and heated at 180°C for 5 h. After cooling to room tempera-
ture naturally, the obtained product was centrifuged and 
analyzed by a semipermeable membrane for 12 h. Finally, the 
purified CQDs solid was gathered by freeze-drying of CQDs 
solution for 48 h.

2.1.2. Synthesis of Bi4O5I2

Bi4O5I2 was synthesized obtained using a previously 
reported procedure [28]: 0.4 mmol Bi(NO3)3·5H2O were fully 
dispersed into 19 mL ethylene glycol by vigorous stirring. 

Afterwards, 1 mL aqueous solution of 0.4 mmol KI was 
added dropwise. After that, the suspension was transferred 
into a 30 mL Teflon-lined autoclave at 130°C for 12 h. The 
obtained yellow precipitate was collected and washed with 
water and absolute ethanol and then dried at 60°C for 12 h.

2.1.3. Synthesis of CQDs/Bi4O5I2

Typically, 0.1 g Bi4O5I2 microspheres were dispersed in 
30 mL deionized water and sonicated for 20 min. After mixed 
with ascertain amount of 1 mg/mL CQDs solution, a brown 
solution appeared immediately. After stirred and sonicated 
for 5 min, the mixed solution was transported to a 40 mL 
Teflon-lined autoclave and heated to 140°C for 4 h. After that, 
the solid product was collected and dried at 60°C overnight. A 
series of CQDs/Bi4O5I2 photocatalysts were fabricated by add-
ing 0.5, 1, 2 and 3 mL CQDs solution and labeled as 0.5C-Bi4O5I2, 
1C-Bi4O5I2, 2C-Bi4O5I2 and 3C-Bi4O5I2 (the mass ratios 
of CQDs to Bi4O5I2 were 0.5%, 1%, 2%, and 3%, respectively).

2.2. Characterization

X-ray diffraction (XRD) patterns of prepared samples 
were gathered on a D/Max 2500 diffractometer (Rigaku, 
Japan) at a scan rate of 10°/min. The scanning electron 
microscopy images were recorded on an S-4800 field 
emission scanning electron microscope (Hitachi, Japan). 
Transmission electron microscopy (TEM) of the images 
were obtained on JEM-2100 (HR) microscopes. X-ray pho-
toelectron (XPS) spectra were conducted on an ESCALAB 
250X electron spectrometer (Thermo, America) with a 
150 W Al Kα X-ray sources. The UV-Vis diffuse reflectance 
spectra  (DRS)  were  recorded  using  an  UV-2450  spectro-
photometer (Shimadzu, Japan). Fourier-transform infra-
red (FT-IR) spectra were measured with a Bruker Vertex 
70 spectrometer. The photoluminescence (PL) spectra were 
investigated using a QuantaMasterTM 40 fluorescence spec-
trofluorometer. The electron spin resonance (ESR) signals 
of radicals were gathered on a Bruker model JES-FA200 
spectrometer. The electrochemical impedance was mea-
sured on an electrochemical workstation (CHI-760B, China).

2.3. Photocatalytic tests

Photocatalytic activities of fabricated samples were 
evaluated by photocatalytic degradation of MO under vis-
ible light (250 W Xenon lamp with a 420 nm cut-off filter). 
50 mg as-prepared photocatalyst was added into 100 mL 
MO aqueous solution (10 mg/L). After stirring for 30 min in 
dark to achieve the adsorption-desorption equilibrium, the 
above mixture solution was sampled (about 5 mL) every 
20 min and centrifuged to separate photocatalyst particles 
for further analysis. The experimental temperature was 
kept at 25°C by condensed circulating water. The concentra-
tion of MO was determined by a UV-Vis spectrophotometer 
at the wavelength of 464 nm.

2.4. Active species investigation

To fully understand the photocatalytic process of MO 
degradation, series of active species trapping experiments 
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were conducted. 0.1 mM triethanolamine (TEOA), 1,4-ben-
zoquinone (BQ) and isopropanol (IPA): utilized as the h+, 
•O2

–, and •OH scavenger, respectively [29]. The method was 
similar to the former photocatalytic activity test. The elec-
tron spin resonance (ESR) signals of •O2

– and •OH radicals 
were collected under visible light. 10.0 mg photocatalysts 
were dispersed in 1 mL methanol or H2O, and then 20 µL 
DMPO was added as spin-trap reagent, respectively.

3. Results and discussion

The phase structures of the as-prepared Bi4O5I2 and 
CQDs/Bi4O5I2 samples are firstly measured by XRD, as 
shown in Fig. 1. The diffraction peaks of as-prepared sam-
ples appears at 28.8°, 31.5°, 45.1° and 54.4°, which are cor-
related to the (–4 –1 1), (4 0 2), (4 2 2), and (811) diffraction 
planes of Bi4O5I2, respectively [30]. Apart from the peaks 

of Bi4O5I2, no other diffraction reflections can be detected, 
suggesting the high purity of prepared Bi4O5I2. After the 
introduction of CQDs, the characteristic peak of carbon at 
26° cannot be observed, which may ascribe to the low con-
centration of CQDs and the low diffraction intensity in the 
CQDs/Bi4O5I2 samples [31].

The morphology and microstructure of the CQDs/
Bi4O5I2 were studied by field emission scanning electron 
microscopy (FESEM) and TEM analysis. As can be seen in 
Fig. 2a, the Bi4O5I2 processed microsphere-like (1.5~2 µm), 
which consisted of many interlaced nanosheets. In Fig. 2b 
the FESEM image of CQDs/Bi4O5I2 remained the similar 
morphology of pure Bi4O5I2, which illustrated the intro-
duction of CQDs did not change the morphology of syn-
thesized samples. As displayed in the TEM image of 
Fig. 2d, the CQDs are uniformly dispersed with a diameter 
of about 5 nm. To further confirm the formation of CQDs/
Bi4O5I2, high-resolution transmission electron microscopy 
(HRTEM) and high-angle annular dark field-scanning 
transmission election microscope (HAADF-STEM) uti-
lized to obtain the corresponding element mapping images 
of the products. The elemental mappings (Fig. 2e) indi-
cate there are only C, Bi, O and I in the samples. HRTEM 
image of CQDs/Bi4O5I2 displays many CQDs are uniformly 
adhered to the surface of Bi4O5I2 nanosheets, which demon-
strates that the CQDs have been successfully coupled 
with Bi4O5I2. The interplanar distance of 0.315 nm and 
0.335 nm are corresponding to (1 0 0) and (0 0 2) plane of 
CQDs, respectively. Moreover, the lattice spacing of 0.311, 
0.271 and 0.318 nm are corresponding to the (4 1 0), (3 0 
3) and (1 1 1) spacing of Bi4O5I2. The above results suggest 
the successful preparation of CQDs/Bi4O5I2 photocatalysts.

Furthermore, XPS was carried out to identify the sur-
face chemical composition and status of obtained CQDs/
Bi4O5I2 photocatalysts. As presented in Fig. 3, two bands 
at 159.1 and 164.4 eV assigned to the Bi4f5/2 and Bi4f7/2 
[32]. In Fig. 3b, two peaks at 619.2 and 630.7 eV were 
attributed to I3d5/2 and I3d3/2, which belong to I– in Bi4O5I2 
[33]. In Fig. 3c, two peaks for O1s can be founded at 529.7 

 
Fig. 1. XRD patterns of Bi4O5I2 and CQDs/Bi4O5I2 samples.

 
Fig. 2. FESEM images of Bi4O5I2 (a) and 2C-Bi4O5I2 (b) photocatalysts; TEM images of 2C-Bi4O5I2 (c) and CQDs (d). HAADF-STEM 
image and elemental mappings (e) and HRTEM of the 2C-Bi4O5I2.
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and 531.4 eV, which ascribed to Bi–O bond in [Bi2O2]2+ slabs 
and hydroxyl groups on the surface of Bi4O5I2, respec-
tively [34]. Fig. 3d exhibits that the spectrum of C1s could 
be fitted to three peaks at 284.7, 286.3 and 288.5 eV, which 
belonged to the C–C, C–O and C=O, respectively [35]. 
XPS results deduced that the CQDs/Bi4O5I2 composite was 
successfully synthesized.

In  Fig.  4,  UV-Vis  diffuse  reflectance  spectra  (DRS) 
and optical bandgaps of prepared samples were ana-
lyzed to explore the optical property of fabricated sam-
ples. As shown in Fig. 4a, the pure Bi4O5I2 exhibited the 
absorption of sunlight shorter than 580 nm. Compared 
with pure Bi4O5I2, CQDs/Bi4O5I2 samples showed 
strong absorption from 500 to 700 nm, suggesting that 

 
Fig. 3. XPS spectra of 2C-Bi4O5I2: (a) Bi 4f spectrum, (b) I 3d spectrum, (c) O 1s spectrum, and (d) C 1s spectrum.

Fig. 4. (a) UV-Vis diffuse reflectance spectra (DRS) of obtained samples and (b) plots of (αhν)1/2 vs. photon energy (hν) of pristine 
Bi4O5I2 and CQDs decorated Bi4O5I2.
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incorporation of the CQDs could enhance the visible 
light absorption efficiency of Bi4O5I2, which is help-
ful for improving the photoactivity [36]. In Fig. 4b the 
optical bandgaps of pristine Bi4O5I2 and CQDs dec-
orated Bi4O5I2 samples are estimated from the Tauc’s 
plot by the following equation:

� � �h A h Eg
n

� �� � / 2
 (1)

where  α  is  the  absorption  coefficient,  h is Planck’s con-
stant, A is a constant, ν is the light frequency, and n = 1 and 
4 for a direct and indirect bandgap materials, respectively. 
The optical transition of Bi4O5I2 is direct and the value of 
n is thus 1. Therefore, the band gap value of the Bi4O5I2 is 
determined to be 1.97 eV. In order to fully understand the 
photocatalytic mechanism, the band structure of Bi4O5I2 was 
calculated by the following empirical equation:

E X E Ee
gCB � � � 0 5.  (2)

E E EgVB CB� �  (3)

where ECB and EVB are the conduction band (CB) and 
valence band (VB) edge potential of sample; X is the 
absolute electronegativity of the sample (5.93 eV for 
Bi4O5I2); Eg is the bandgap energy of the semiconduc-
tor; Ee is the free electrons energy on the hydrogen scale 
(4.5 eV). Thus, the conduction band and valence band 
of Bi4O5I2 were determined to be +0.445 and +2.415 eV, 
respectively. The Raman spectra was conducted to explore 
the structural changes of Bi4O5I2 and 2C-Bi4O5I2 samples. 
As presented in Fig. 5, two peaks at 106 and 151 cm–1 are 
assigned to the Bi-I vibration stretching mode of Bi4O5I2 
[37]. The peaks located at 1300 and 1,517 cm–1 are ascribed 
to the D and G-band of CQDs [38], indicating that 2C-Bi4O5I2 
was successfully synthesized.

The FT-IR spectra (Fig. 6) also helped determine the 
surface groups of prepared samples. Compared to the pure 

Bi4O5I2 sample, the peak at 1,387.2 cm–1 was assigned to the 
stretching vibration of the –COO– groups, revealing the exis-
tence of CQD. The peaks at 1,660 and 1,543.6 cm–1 belong 
to the stretching vibration of C=C bonds [39]. The FT-IR 
results indicate the CQDs/Bi4O5I2 have been successfully fab-
ricated. Electrochemical impedance spectroscopy (EIS) was 
performed to explore the interfacial charge transfer ability 
of prepared 2C-Bi4O5I2 and Bi4O5I2 samples. As displayed 
in Fig. 7, 2C-Bi4O5I2 sample possess much smaller diam-
eter of Nyquist circle than that of pure Bi4O5I2, indicating 
the faster interfacial electron transfer of 2C-Bi4O5I2 sample. 
This improvement is attributed to the strong chemical bond-
ing between Bi4O5I2 and CQDs.

PL analysis of Bi4O5I2 and 2C-Bi4O5I2 samples are dis-
played  in  Fig.  8.  Under  the  excitation  wavelength  of 
430 nm, the pure Bi4O5I2 exhibited sharp emission peaks 
at ca. 560 nm and two broad shoulder bands at 539 and 
578 nm. In the case of 2C-Bi4O5I2, the emission peak intensity 

 

Fig. 5. Raman spectra of Bi4O5I2 and 2C-Bi4O5I2 samples.

 

Fig. 6. FT-IR spectra of prepared Bi4O5I2, 2C-Bi4O5I2 and CQDs 
samples.

 

Fig. 7. EIS Nyquist plots of pure Bi4O5I2 and 2C-Bi4O5I2.
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centered at 560 nm is weaker than that of pure Bi4O5I2, 
indicating the increased charge separation efficiency. 
This improvement is due to the surface loading of CQDs, 
which can inhibit the high charge recombination of pure 
Bi4O5I2 and promote photocatalytic performance.

In order to evaluate the photocatalytic activity of 
prepared photocatalysts, MO was chosen as the target 
contaminant. As shown in Fig. 9a, only 57% MO can be 

removed by pure Bi4O5I2 after 120 min irradiation of vis-
ible light. After the introduction of CQDs, the photocata-
lytic efficiency of CQDs/Bi4O5I2 gradually increased, it can 
be noticed that CQDs/Bi4O5I2 prepared with 2 wt.% CQDs 
(2C-Bi4O5I2 sample) display the best photocatalytic effi-
ciency. The removal rate of MO reached 86% after 120 min 
irradiation, this improvement is due to the excellent vis-
ible light absorption capacity of the 2C-Bi4O5I2 sample. 
Fig. 9b shows the photodegradation kinetics of MO over 
different samples, all the results are fitted by a first-order 
kinetic model. The 2C-Bi4O5I2 sample showed the maxi-
mum value of k (0.01479 min–1), which was approximately 
3 times higher than that of pure Bi4O5I2. The ESR technique 
was employed to measure the main active species during 
the photocatalytic experiment. Three peaks located at 
3495, 3607, 3525 G area scribe to the oxidation of DMPO 
in the air. In Fig.9c, a six-peak signal of DMPO-•O2

– was 
detected when the sample was exposed to visible light, 
indicating the generation of •O2

– [40]. However, no sig-
nals for DMPO-•OH were found under consistent condi-
tions, implying that the •OH radicals were not produced 
in our experiment. The recyclability of the CQDs/Bi4O5I2 
photocatalyst was tested five consecutives in the oxida-
tion of MO under optimized conditions. As shown in 
Fig. 9d, the photocatalytic efficiency of MO remained at 
82.7%, indicating the high stability and photocatalytic 
performance of the prepared heterojunction samples.

Based on the above experimental results and anal-
yses, the potential charge separation and MO degrada-
tion over CQDs/Bi4O5I2 were proposed and illustrated in 

 

Fig. 8. PL spectra of Bi4O5I2and CQDs/Bi4O5I2 composite 
(2C-Bi4O5I2) excited at 343 nm.

 
Fig. 9. MO degradation rate (a) and the first-order rate constant (b) of obtained photocatalysts; ESR spectra (c) and cycle experiments 
(d) of 2C-Bi4O5I2 samples under visible light irradiation.
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Fig. 10. The conductive band (CB) of Bi4O5I2 is estimated 
to be +0.445 eV vs. Normal Hydrogen Electrode (NHE) and 
less negative than that of O2/•O2

– (–0.33 eV vs. NHE). Thus, 
electrons in the CB of Bi4O5I2 cannot react with O2 to pro-
duce •O2

– radical [22]. However, when the CQDs modified 
on the surface of Bi4O5I2, the photogenerated electrons will 
migrate to the CQDs and react with O2 to produce abun-
dant •O2

– [41]. Additionally, the VB position of Bi4O5I2 is too 
high compared with OH–/•OH (+1.99 V vs. NHE), the holes 
stored in the VB of Bi4O5I2 cannot react with OH– to produce 
•OH [42]. Therefore, the main reactive species including 
hole and •O2

–, this is consistent with the result of ESR exper-
iments. Here, the CQDs adhered to the surface of Bi4O5I2 
act as electron acceptors and reservoirs, which lead to 
enhanced electron transfer and •O2

– production of Bi4O5I2, 
thus, greatly improved the activity for organic degradation.

4. Conclusion

In summary, CQDs/Bi4O5I2 heterojunction photocata-
lysts were successfully synthesized with enhanced photo-
catalytic efficiency for MO degradation compared to pure 
Bi4O5I2under visible light. The introduction of CQDs signifi-
cantly facilitated the visible light adsorption and photo car-
riers’ separation. The 2C-Bi4O5I2 sample displayed excellent 
photocatalytic activity among all samples. The CQDs/Bi4O5I2 
heterojunction photocatalysts also showed high stability and 
reusability. The •O2

– and h+ were confirmed to play the chief 
role in the photodegradation process. Current work provides 
a simple and efficient way to improve the photocatalytic 
activity of Bi4O5I2 for contaminants elimination and environ-
ment protection.
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