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a b s t r a c t
Remote sensing (RS) effectively identifies, analyzes, and monitors wetlands. In addition to these 
two-dimensional studies, RS is used with several techniques in determining shallow water depths. 
The primary purpose of this study is to obtain shallow wetland bathymetry utilizing spectral 
reflections obtained at different water depths by field study and satellite images. Machine learn-
ing (ML) algorithms, which are widely used in remote sensing, are used in this study. Four algo-
rithms were selected as random forest (RF), support vector machine (SVM), Neural Networks 
(NN), and Maximum Likelihood Classification (MLC). Since machine learning algorithms use 
training samples/datasets, the classification accuracy is directly related to selecting these data. The 
effect of pixel counts on classification was investigated by using two different training data set 
also. Duden (Kulu) Lake, which is a shallow wetland, was chosen as the study area. The Iterative 
Self-Organizing Data Analysis Technique (ISODATA) classification algorithm divided into as 
many clusters as possible was applied on Sentinel-2 multispectral images. All classes were rede-
fined using measured spectral signatures and were created a bathymetric map. This map was 
used as reference data in creating training sets and the accuracy assessment of ML algorithms. 
When the water surface areas obtained from algorithms were compared with the bathymetric 
map and Normalized Difference Water Index, the best result was obtained with RF. According 
to the accuracy assessment results, it was seen that the number of training data affects the 
accuracy, and the best results were obtained with SVM and RF algorithms with training data 
containing more pixels (overall accuracy 93.87% and 92.64, kappa 0.89 and 0.87, respectively).
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1. Introductıon

Wetlands provide breeding, growing, and feeding 
opportunities to many fish and wildlife species and are shal-
low waters considered the bridge between terrestrial and 
water systems [1]. In addition, wetlands and lakes play a 
crucial role in the Earth’s surface system, such as the atmo-
sphere, hydrosphere, etc., and are affected by environmental 
changes and human activities [2]. With the understanding 
of the importance of wetlands in recent years, efforts have 

been made to protect these areas. The first step in protect-
ing wetlands is to map these areas and then regularly 
monitor them. However, because of the wildlife and struc-
ture of wetlands, accessing them is often complicated and 
complex; mapping and monitoring wetlands via remote 
sensing (RS) is the optimal solution [3].

RS is defined as the acquisition and measurement of 
information about certain properties of phenomena, objects, 
or materials by a recording device, not in physical contact 
with the features under surveillance [4]. Electromagnetic 
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radiation (EMR) is described as all energy that moves with 
the velocity of light in a harmonic wave pattern. When 
EMR comes into contact with any object or material such as 
water, buildings, or atmospheric gases, it can be absorbed, 
reflected, scattered, or emitted. RS is principally based on 
detecting and recording reflected and emitted EMR. What 
essentially makes remote sensing possible is that each 
object or material has certain emission and/or reflective 
properties known as its spectral signature or profile, which 
distinguish it from other objects and materials. Satellite, 
aerial or ground-based RS sensors are tuned to collect 
this “spectral” data [4].

RS-based methods make it possible to generate accurate 
maps of shallow water areas by coupling remote sensing 
data with ground-based measurements while reducing or 
eliminating the time-consuming ground-based measure-
ments [5]. There are numerous methods such as spectral 
indices, thresholding, and classification for detecting sur-
face water areas with remotely sensed multi-band images. 
The reflectance of shallow water is dependent on the bottom 
type of the water, but using the ratio of spectral reflectances 
decreases the sensibility of bottom albedo [6]. Several empir-
ical and semi-analytical methods are based on the band ratio 
models and apply models with the assumption of vertically 
homogeneous water columns [7]. These models are valid 
if it is considered that total reflectance of water-related 
to turbidity and water depth [8]. However, very shallow 
and transparent water bottoms are the exception in these 
models [9]. Classification maps are the main product of 
remote sensing image processing and pixel-based classifica-
tion uses spectral reflectivity of features. Many pixel-based 
classification algorithms have been used to map land use 
land cover (LULC) and their changes from remotely sensed 
data. Unsupervised and supervised classification meth-
ods are widely used for mapping wetlands using differ-
ent remote sensing data [10]. Unsupervised classification 
and cluster labeling is the dominant method for large area 
LULC mapping, and unsupervised classification involves 
a considerable dataset, and the algorithm has to cluster 
that dataset into various classes [11]. The most commonly 
used unsupervised method is the Iterative Self-Organizing 
Data Analysis Technique (ISODATA), which was devel-
oped by Ball and Hall [12]. It is a mathematical algorithm 
and stated that it gives better results in many studies [13]. 
ISODATA algorithm allows for a different number of clus-
ters and calculates the class means iteratively using mini-
mum distance [14]. It is widely used for LULC classifica-
tion [15]. In the case of supervised machine learning, image 
classification methods use labeled information (training 
data) about class membership of single pixels (labeled by 
expert users) to build a model able to generalize to the 
whole image [16]. The most commonly used methods are 
random forest (RF), support vector machines (SVM), Neural 
Networks (NN), and Maximum Likelihood Classification  
(MLC).

Machine learning (ML) algorithms have come out as 
more accurate and efficient alternatives to conventional 
parametric algorithms in the last decades. Machine learn-
ing has been successfully applied in remote sensing for 
wetland classification [16]. Tian et al. [17] applied the RF 
classification method to detect the wetland land cover. 

Amani et al. [18] compared the five different ML classifiers 
(K-nearest neighbor, MLC, SVM, classification and regres-
sion trees, and RF) in terms of performance in the wetland 
classification, and the results showed that the overall accu-
racies of classifications were nearly similar, except RF clas-
sifier. Yagmur et al. [19] used the SVM algorithm to classify 
shallow wetlands according to the depth of the water using 
spectral bands of satellite images and spectral water indi-
ces. Unsupervised classification can also be used to under-
stand similar classes in the satellite images and prepare 
reference data, including training and validation in super-
vised classification. Wagle et al. [20] applied the unsuper-
vised classification to prepare reference data and evaluate 
the performance of ensemble learning methods, RF and 
XGBoost, for LULC classification.

Bathymetry quantifies depths to study the topography 
of water bodies, and bathymetric mapping is the process 
of making bathymetric maps based upon the depth data. 
Traditionally, bathymetry is produced by interpolating 
depth data collected by echo sounders, and the digital ter-
rain/bathymetric models are created [21]. Compared with 
traditional, the RS method is faster and more applicable 
to various environments, including shallow coastal waters 
and clear rivers which cannot be reachable for in-situ mea-
surements. Bathymetry can be estimated using several 
RS techniques, each having its depth detection capability, 
accuracy, strengths/advantages, drawbacks, and best appli-
cation environment [22]. Imagery-derived bathymetry is 
cost-effective and provides extensive area analysis. Besides, 
it is produced and has a lower accuracy than LIDAR 
or echo sounders [23].

Depth information obtained by analyzing satellite 
images is called satellite-derived bathymetry (SDB). There 
are two approaches to extracting water depth from satellite 
imagery: physics-based inversion algorithms and in-situ 
measurements to show reflectance to depth relationship [6]. 
This study applied an approach to classify shallow water 
areas using a spectroradiometer and depth data measure-
ments. Detecting surface water using optical remote sensing 
is based on the difference between the spectral reflectance 
of land and water. Water absorbs most of the near-infrared 
(NIR) energy and mid-infrared (MIR) wavelengths; how-
ever, vegetation, soil, and impervious surfaces have a higher 
reflectance in these wavelengths. Therefore, in a multi-
spectral image, water appears a darker tone in the infrared 
(IR) bands and can be easily differentiated from dry land 
surfaces [24].

There are a few studies for deriving bathymetry of water 
bodies using optical satellite images. Kerr and Purkis [25] 
proposed a new algorithm for deriving bathymetry using 
multi-resolution satellite data, bottom reflectance, and 
water depth in coral reef landscapes. Ai et al. [26] retrieved 
water depth using high-resolution satellite images with a 
deep learning algorithm in a shallow marine area.

The study’s primary purpose is to present an approach 
to produce the bathymetry of shallow wetlands, which do 
not have bathymetry and could not be generated due to 
ground conditions, by utilizing the spectral reflections of 
water at different depths. Besides, the potential of ML algo-
rithms in the determination of satellite-derived shallow 
wetland bathymetry based on spectral measurements was 
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investigated using Sentinel-2 satellite images. Unsupervised 
ISODATA classification was made with 300 clusters; spec-
tral reflections in each cluster were examined one by one 
and assigned to four water groups and non-water. This 
classification was used as reference data to create two dif-
ferent training datasets. These training datasets were pro-
duced according to the different pixels, like greater than 
100 or not in each training polygon. The study used train-
ing datasets for classification with RF, SVM, MLC, and NN 
algorithms. Accuracy assessment of the eight classified 
maps was made based on the generated reference bathy-
metric map. Additionally, a class-based areal comparison 
of results was investigated with the reference data.

2. Study area

Duden Lake is a tectonic lake in the middle of Turkey, 
in the Konya Closed Basin, within the provincial borders 
of Ankara at an altitude of 950 m above sea level (Fig. 1). 
There are freshwater ecosystems, saltwater ecosystems, and 
associated flat steppes in the region and a small freshwater 
lake in the south of the lake. The reeds on the shore of the 
freshwater lake are essential breeding grounds for water-
fowl and are the most critical growth point for the world-
wide endangered white-headed duck. In addition, the lake 
is a crucial accommodation point during the migration 
periods of shorebirds and is a closed, shallow wetland with 
185 bird species, primarily flamingos. For these reasons, it 
was declared a qualified natural site in 2020 [27].

The sources feeding the lake are Kulu Creek, ground-
water, and precipitation. The most critical threat to the 
lake is the drop in the water level of the area. Excessive 

groundwater use due to wrong product pattern, which is 
the general problem in Konya Closed Basin, and unplanned 
interventions on water resources brought Kulu to the point of 
extinction, like other lakes in the basin [30].

Since the water coming from Kulu Creek is used in the 
agricultural areas around the lake from the spring months, 
the only source that feeds the site is precipitation most of 
the time. When the precipitation and evaporation data of 
Kulu Meteorology Station, which is approximately 6 km 
away from the lake, are examined, it is seen that the aver-
age amount of evaporation is exceptionally high compared 
to the average amount of precipitation (Fig. 2). For exam-
ple, while the average precipitation in July is 12.5 mm, 
evaporation is 260.8 mm, and the amount of evaporation 
is approximately 20.9 times the precipitation amount. For 
this reason, water is seen in the lake during the months 
with the highest precipitation (winter and spring months). 
Water almost disappears in the region during the summer 
months and September, as seen in Fig. 3. As of October, with 
the onset of precipitation and the ending of agricultural 
water use, water begins to collect in the lake.

3. Data used and methodology

3.1. Data used

3.1.1. Sentinel-2 data

The Sentinel satellites were designed by the European 
Commission’s Copernicus program to deliver the wealth 
of data and imagery for Europe. The Sentinel-2 has pro-
vided freely available data of Earth’s land surface since 2015 
and has 13 spectral bands whose spatial resolutions differ 

Fig. 1. (a) Duden Lake (false color combination of Sentinel-2 image), (b) Location in the map of Turkey (c and d) views from Duden 
Lake [28,29].
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from 10 to 60 m. Sentinel-2 Level-2A data is an orthoimage 
Bottom-of-Atmosphere (BOA) radiometrically and geomet-
rically corrected reflectance product images. A field study 
was carried out on the same day and at about the same 
time as the satellite image date, and water reflectance val-
ues were measured. Sentinel-2 multispectral image (MSI) 
Level 2 image information dated April 27, 2019, used is 
given in Table 1 [31].

3.1.2. Spectral reflectances

Water’s spectral reflectance at different water depths was 
measured 20 times at 5–10 points (water1 = 10, water2 = 10, 
water3 = 8, water4 = 5) for each depth with the FieldSpec 
handheld spectroradiometer covering the 325 to 1,075 nm 
range. Measured water depths with an aluminum level-
ing rod are ≥30 cm, 15–20 cm, 5–10 cm, ≤5 cm. The spectral 

Fig. 2. Kulu meteorological station average precipitation and evaporation data.

Fig. 3. Duden Lake on different dates (Sentinel-2 MSI).

Table 1
Sentinel-2 satellite image details [25]

Resolution Sentinel-2 MSI

Spatial (m)
B1: Coastal aerosol, B9: Water vapor, B10: SWIR Cirrus = 60 m
B2: Blue, B3: Green, B4: Red, B8: NIR = 10 m
B5, B6, B7, B8A: Vegetation Red Edge, B11, B12: SWIR 1–2 = 20 m

Radiometric (bit) 12
Temporal (d) 5

Spectral (central wavelength) (µm)
B1: 0.443, B2: 0.490, B3: 0.560, B4: 0.665, B5: 0.705, B6: 0.740, B7:0.783, 
B8: 0.842, B8A: 0.865, B9: 0.945, B10: 1.375, B11: 1.610 µm, B12: 2.190
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signatures of water and wet soil measured by spectroradi-
ometer are given as an example in Fig. 4.

Since the spectroradiometer measures between 325 to 
1,075 nm, spectral bands of the satellite image were selected 
according to this interval. Spectroradiometer measurements 
were done simultaneously with the acquisition of the satel-
lite image. That is why surface reflectance satellite images 
were used, and nine bands (from Band 1 to Band 8A) were 
selected for the classification process. Also, it is important to 
use multiple bands for eliminating the problem of a variety 
of in-water optical properties [32].

According to Mobley [33], the water depth and spec-
tral reflectance are directly related to each other and water 
depth can be determined via their relationship. Sentinel-2 
MSI band center points were marked on each spectral 
reflection graph obtained from spectroradiometer measure-
ments and averaged. The averages of these spectral reflec-
tion curves measured by spectroradiometer at four different 
water depths and wet ground and resampled to Sentinel-2 
are given in Fig. 5a. The reflections of the four water classes 
taken on the Sentinel-2 MSI image are presented in Fig. 5b.

The area where spectroradiometers (spectrometers) and 
depth measurements were made at different water depths 
are shown on the Sentinel-2 true color combination in 

Fig. 6 with red circles. Swampy areas surround the lake, so 
measurements were made in only the non-swampy area.

3.2. Methodology

As the first process, the ISODATA (Recursive Self-
Organizing DATA) classification was applied. The 2,050 ha 
lake and its surroundings were divided into 300 clusters 
and the spectral reflections of each class were compared 
with the measured spectra. The clusters were collected in 
five classes: four water classes and non-water classes, and 
a bathymetric map was created as a reference map. The 
training data required for the implementation of ML algo-
rithms was taken from this thematic map for each class. 
A sufficient number of training samples are critical for image 
classifications [34–36]. Furthermore, since machine learning 
algorithms construct a mathematical model based on train-
ing data, sample data selection is significant. Supervised 
classifications were made to show the classification perfor-
mance of each ML algorithm with two approaches: training 
polygons contained less than equal 100 pixels (dataset1) 
and more than 100 pixels (dataset2).

In this study, Duden Lake was evaluated with different 
pixel-based classification algorithms. Four supervised ML 

Fig. 4. Spectral signature of water (a) and wet soil (b).
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algorithms were applied with two different training data-
sets to obtain the spectral-based bathymetry of the shallow 
wetland. Four ML algorithms were selected for deriving 
bathymetry: RF, SVM, MLC, and NN.

RF classifier is an ensemble classifier that generates 
multiple decision trees using a randomly selected set of 
training samples and variables [37]. RF is a more power-
ful extension of decision trees and overcomes the overfit-
ting problem that is the main disadvantage of the decision 
tree classifier [38]. RF automatically creates decision trees 
using the training data of an objective variable (e.g., water 
depth) and predictor variables (e.g., pixel values of satel-
lite images) and provides the mean of the outputs from the 
trees of the regression model. Thus, compared with simple 
empirical or semi-empirical other models, RF can create 
more accurate models based on real data [39].

Like RF, SVM and NN are also non-parametric super-
vised classifiers. The hyper-planes (support vectors) are 
selected in the SVM classification. These support vectors 
maximize the distance between the given classes [40].  

This distance is called margin. Maximizing the margin 
provides data to separate the classes and decreases the 
probability of misclassification [38]. In the NN, there are 
processing nodes that are referred to as neurons. As a 
non-linear supervised classification algorithm, NN uses 
a standard backpropagation algorithm by choosing the 
number of hidden layers and activation function. It uses 
the weights of neurons interconnected with all neurons 
in the other layers, instead of the algorithm to regulate 
the network connection, and adjusts the weights in the 
nodes to minimize the error between the actual network 
output and the output for learning activity [41–43].

MLC is a parametric supervised classifier. It depends 
on the statistics of a Gaussian probability density func-
tion model for each class and computes the likelihood of 
unknown measurement based on the Bayesian equation 
[40,44]. Unlike the other algorithms, it is based on a clear 
statistical approach and has been widely selected for wet-
land classification.

3.3. Accuracy assessment

The main objective of the accuracy assessment is quan-
tified accuracy of the produced classification maps by error 
matrix, also known as confusion matrix [45]. The obtained 
data were summarized in the error matrix. The main ele-
ments of the error matrix are producer’s accuracy (PA), 
user’s accuracy (UA), overall accuracy (OA), and kappa 
coefficient (K) [46]. Whereas PA defines the map produc-
er’s identification of the land cover types on the map from 
the satellite image, UA defines the land cover types on the 
ground by a person using the map. OA considers the diag-
onal elements of the error matrix and defines the similar-
ity of the classified map from the land cover types on the 
ground [45]. K is assessing the actual and chance agreements 
between the map and ground data, considering all elements 
in the confusion matrix [47,48]. K values vary between 0 
and 1, and the closer k approaches 1, the higher the accu-
racy. PA, UA, OA, and K parameters were calculated for 
each classification result via the following equations.

PA Samples correctly identified in the column
Column total

� �100  (1)

Fig. 5. (a) Average spectral reflectance of four water classes and wet soil and (b) reflectances of four water classes resampled to Sen-
tinel-2 MSI image.

Fig. 6. Spectrometers and depth measurements locations.
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Table 2
Confusion matrices of the classification algorithms with two datasets

dataset1 dataset2

SVM Non-water water1 water2 water3 water4 User 
Acc. (%)

SVM Non-water water1 water2 water3 water4 User 
Acc. (%)

Non-water 132,631 0 0 0 233 99.82 Non-water 132,306 0 0 0 98 99.93
water1 0 11,954 326 0 0 97.35 water1 11 12,488 567 11 0 95.50
water2 5 4,200 25,936 12,164 4 61.30 water2 49 3,666 25,334 2,930 120 78.92
water3 387 0 1,825 12,064 2,008 74.08 water3 5 0 2,042 19,883 590 88.29
water4 307 0 0 26 1,830 84.60 water4 959 0 144 1,430 3,267 56.33
Prod. Acc. 
(%)

99.48 74.00 92.34 49.74 44.91
Prod. Acc. 
(%)

99.23 77.31 90.20 81.98 80.17

Over. Acc. 89.57% Over. Acc. 93.87%
Kappa 0.807 Kappa 0.887

NN Non-water water1 water2 water3 water4 User 
Acc. (%)

NN Non-water water1 water2 water3 water4 User 
Acc. (%)

Non-water 132,971 0 0 0 1,033 99.23 Non-water 131,917 0 0 0 82 99.94
water1 0 14,134 9,403 0 0 60.05 water1 5 10,327 44 0 0 99.53
water2 0 1,910 12,508 1,559 0 78.29 water2 98 5,827 22,365 1,568 32 74.82
water3 359 110 6,176 22,695 3,042 70.09 water3 0 0 4,563 19,018 51 80.48
water4 0 0 0 0 0 0.00 water4 1,310 0 1,115 3,668 3,910 39.09
Prod. Acc. 
(%)

99.73 87.50 44.53 93.57 0.00
Prod. Acc. 
(%)

98.94 63.93 79.63 78.41 95.95

Over. Acc. 88.54% Over. Acc. 91.08%
Kappa 0.788 Kappa 0.837

ML Non-water water1 water2 water3 water4 User 
Acc. (%)

ML Non-water water1 water2 water3 water4 User 
Acc. (%

Non-water 132,688 5,295 15,443 3,489 1,229 83.90 Non-water 132,723 161 398 581 1,204 98.26
water1 0 7,097 8 0 3 99.85 water1 0 8,040 158 0 0 98.07
water2 0 2,555 7,674 179 45 73.41 water2 1 7,841 22,801 4,549 65 64.67
water3 212 1,207 4,962 20,545 2,235 70.45 water3 0 75 3,018 14,979 12 82.83
water4 430 0 0 41 563 54.45 water4 606 37 1,712 4,145 2,794 30.06
Prod. Acc. 
(%)

99.52 43.93 27.32 84.71 13.82
Prod. Acc. 
(%)

99.54 49.77 81.18 61.76 68.56

Over. Acc. 81.87% Over. Acc. 88.07%
Kappa 0.619 Kappa 0.778

RF Non-water water1 water2 water3 water4 User 
Acc. (%)

RF Non-water water1 water2 water3 water4 User 
Acc. (%)

Non-water 132,836 0 0 0 623 99.53 Non-water 132,428 0 1 47 238 99.78
water1 0 11,407 8,279 9 0 57.92 water1 10 14,179 3,698 114 19 78.68
water2 85 4,121 6,614 464 25 58.48 water2 44 1,973 18,777 756 5 87.11
water3 205 626 13,194 23,732 1,834 59.94 water3 36 2 5,611 21,958 410 78.37
water4 204 0 0 49 1,593 86.29 water4 812 0 0 1,379 3,403 60.83
Prod. Acc. 
(%)

99.63 70.61 23.55 97.85 39.09
Prod. Acc. 
(%)

99.32 87.77 66.85 90.53 83.51

Over. Acc. 85.57% Over. Acc. 92.64%
Kappa 0.734 Kappa 0.865



A. Dervisoglu et al. / Desalination and Water Treatment 243 (2021) 231–241238

UA Samples correctly identified in the row
Row total

� �100  (2)

OA

Sum of the diagonal tailled
correctly identified

Column tota
=

( )
ll number of samples

× 100  (3)

K Observed accuracy Chance agreement
Chance agreement

�
�

�
�

1
100  (4)

4. Results and discussion

The accuracy assessment of the results was made 
using all pixels except the pixels used as training data of 
the reference image, which was created by controlling the 
pixel-by-pixel reflectance values. Confusion matrices were 
determined and are given in Table 2 and; summarized 
overall accuracy; and kappa values are given in Table 3.

According to accuracy assessment results, whereas 
SVM classification with dataset2 showed the highest over-
all accuracy and kappa with 93.87% and 0.887, MLC clas-
sification with dataset1 showed the lowest values with 
81.87% and 0.619, respectively. The increasing number of 
pixels in the training data improved the detection of shal-
low water classes, especially for water3 and water4. The 
best result with dataset1 seems to be obtained in the SVM 
algorithm, also. Qian et al. [49] stated that the SVM algo-
rithm was not affected by the size of the data set accord-
ing to the results of their study, and similar results were 
obtained with this study. The second-best result was 
obtained with the RF algorithm with dataset2, while data-
set1 gave a lower result. These algorithms were followed 
by NN and MLC algorithms implemented using dataset2. 
Although the overall accuracy was high, especially in the 
classifications made using dataset1, it was seen that NN 
and MLC did not give good results when each water class 
was examined separately. Machine learning offers signif-
icant potential for effective and efficient classification of 
remotely sensed images with high dimensional and com-
plex features. However, a machine learning classification is 
challenging to implement, and algorithm selection, training 
data requirements, user-defined parameter selection are 
essential. Studies have consistently shown that increasing 
the training sample size results in increased classification 
accuracy [50]. This study is consistent with these results, 
and increasing training sample size has increased accuracy.

Besides the accuracy assessment, classification results 
were compared as surface area coverage. The water surface 
areas of four different water classes taken from the reference 
map (determined by ISODATA + spectral signatures) and 
created with ML algorithms are given in Table 4. In addi-
tion, the total water surface area was determined by using 
the Normalized Difference Water Index (NDWI = Green–
NIR/Green+NIR) [51], which is the most used index in 
subtracting the total water area and it is given in Table 4.

When the total water surface areas are compared in 
Table 4, it is seen that the bathymetric reference map and 
NDWI results are very close, and the closest results to this Ta
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value are obtained with RF (dataset1), MLC (dataset2), and 
SVM (dataset1), respectively. Besides, MLC (dataset1) gave 
the worst result, and insufficient training pixel number was 
thought to be a factor in this. It may be for the same reason 
that NN (dataset1) cannot classify all four classes. It has been 
observed that the MLC algorithm is more affected by the 
number of training datasets. The difference between clas-
sifications with dataset2 is lower comparing with classifi-
cation with dataset1. Bathymetric maps obtained with two 
data sets and four classification methods are given in Fig. 7.

In Fig. 8, the NDWI results showing the total water 
surface area, the bathymetric reference map obtained with 
the spectral signatures, the RF (dataset2) result, which is 

visually and as surface area closest to the reference; and 
SVM (dataset2), which gave the highest results in accuracy 
assessment, are given together.

5. Conclusion

The study demonstrated that remote sensing is an 
effective method for analyzing the wetlands, easily identi-
fied with the medium spatial resolution Sentinel-2 optical 
images.

This study indicated that ML classification algorithms 
could derive shallow water bathymetry with a spec-
tral-based approach. According to the accuracy assessment, 

Table 4
Areal comparison of the ML classification results

Algorithm Training data 
(Number of pixel)

water1 (ha) water2 (ha) water3 (ha) water4 (ha) Total water surface 
area (ha)

Reference map 161.54 280.87 242.54 40.06 725.01
NDWI 725.53
MLC ≥100 145.31 180.98 276.28 119.89 722.46
MLC <100 71.08 104.53 291.61 10.34 477.56
SVM ≥100 161.47 268.93 240.93 69.83 741.16
SVM <100 122.80 423.09 162.84 21.63 730.36
NN ≥100 260.01 143.40 262.18 76.25 741.84
NN <100 235.37 159.77 323.82 0 718.96
RF ≥100 167.29 254.4 255.44 62.55 739.68
RF <100 196.95 113.09 395.91 18.46 724.41

Fig. 7. Classification results: dataset1: number of pixels <100, dataset2: number of pixels ≥100.
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the SVM and RF method with dataset2 (number of pixels 
≥100) showed almost close results and better performances 
than the others. On the other hand, low accuracies were 
obtained with dataset1 (number of pixels <100). At the same 
time, acceptable results were obtained with dataset2 in NN, 
and MLC algorithms, respectively. Low accuracies were 
obtained with dataset1 except for SVM and the worst per-
formance was obtained in MLC with dataset1. When the 
areas of the four water classes determined by the four clas-
sification algorithms are compared, it is seen that the values 
are not very similar. According to the total water area, RF 
(dataset1) and MLC (dataset2) results are close to the total 
water area. However, SVM and RF classification results with 
dataset2 gave close values in class-based areal comparison. 
In addition, visual comparison of these two results resem-
bled the bathymetry map created with ground truth data.

SVM and RF algorithms are seen to be powerful meth-
ods for classifying remotely sensed data, however, the best 
algorithm for a given task may be case-specific and may 
depend on the classes mapped, the nature of the training 
data, and the prediction variables provided. Therefore, users 
should experiment with multiple classifiers and training 
data to identify the best method.

The study was limited to a single period because the 
pandemic created a problem to reach the lake area. The 
results can be confirmed with studies to be repeated on dif-
ferent dates. In future studies, performances can be evalu-
ated using high-resolution satellite images and other ML 
classification algorithms and also deep learning methods 
such as deep neural networks. Additionally, by testing this 
study in wetlands with bathymetric maps produced by the 
classical method, the accuracy of satellite-derived bathy-
metric maps can be investigated.
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