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a b s t r a c t
Effluents from industries such as textile, distillery, bone wash, paper, and paint pose serious envi-
ronmental hazards and lead to health problems for human beings. The purpose of this study is to 
analyze the dissolved oxygen parameter in such industrial effluent. The dissolved oxygen was mon-
itored and recorded for ten concentrations and three different speeds with time till DO reached sat-
uration in paint industrial effluent. Based on the data generated from 270 experimental results, the 
optimization techniques response surface method (RSM) and artificial neural network (ANN) are 
proposed to find the optimized operating parameters with 17 experimental runs using three inputs 
time, speed, and feed concentration. In RSM analysis, with a single objective function, a second- 
order quadratic has been represented with a higher degree of fitting which produced R2 = 99.85% 
and R2

adj  =  99.65%. From ANN analysis, with the support of optimization tool ANN produced 
R2  = 91.45%, R2

adj  = 93.82%. From the analysis, it is evident that RSM performed better than ANN. 
The error percentage is 0.59% which validates the predicted model from the predicted and con-
firmatory experimental results. From this experimental study, we can conclude that RSM-based 
results give superior results compared to ANN results.
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1. Introduction

Industry effluent contains a large variety of dyes, chem-
icals as a raw materials that pose a great health hazard and 
if these are discharged without proper treatment, it disturbs 
the biological activities and equilibrium of the aquatic eco-
system. Furthermore, if these raw materials coalesce with 
dissolved oxygen in water makes them carcinogenic, toxic 
and mutagenic, it may lead to allergies and even make the 
health worst of living beings. Therefore, it is crucial that 
effluents from the industries are must be treated in an ade-
quate way before discharging. Many researchers have done a 
research on waste water treatment and few of their research 
works are highlighted below to know the importance of 

treatment of waste water from industries. Esteves et al. [1] 
evaluated online monitoring of biological wastewater plants 
treating simulated textile effluent for use in the control 
strategy.

Vives et al. [2] conducted over a laboratory-scale sequ
encing batch reactor system using data acquisition and 
control software. Al-Kdasi et al. [3] discussed an overview 
of basis and treatment efficiency for different advanced oxi-
dation processes are considered and presented according 
to their specific features.

Hanafy and Elbary [4] work is concerned with the treat-
ment of wastewater effluent of paint industry and treatabil-
ity studies have been conducted. It was implemented using 
a sequential batch reactor as a biological treatment system.
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Baskar et al. [5] utilized the textile industry effluent as a 
partial replacement for clay in the conventional brick man-
ufacturing process. Yifeng [6] developed a sensor for the 
detection of dissolved oxygen using a graphite paste with 
high accuracy, excellent stability, and fast speed. Lina et al. [7] 
used sequence batch reactor technology to analyze the bio-
logical treat wastewater discharge from the textile industry.

Tewari et al. [8] conducted a survey of 36 distilleries and 
highlighted the status of wastewater generation in Indian 
distilleries. Research and development in wastewater treat-
ment and disposal is enlighted. Work was undertaken by 
Sandip et al. [9] uses RSM optimization for removal of 
hydrochloride from the simulated pharmaceutical waste.

An investigation by Bahadr Körbahti et al. [10] was 
done in the presence of NaCl electrolyte with carbon elec-
trodes on the electrochemical oxidation of water-based paint 
wastewater treatment. As indicated by these results, the 
electrochemical strategy could be a solid option in contrast 
to regular physicochemical strategies for the treatment of 
water-based paint squander water.

Ramesh Babu et al. [11] discussed methods of oxidation 
biotreatment in the petrochemical and membrane process.

Fersi and Dhahbi [12] showed using the ultrafiltra-
tion process as a pretreatment for the nano-treatment pro-
cess improved the textile effluent efficiency treatment by 
increasing the membrane run-time.

Sowmeyan and Swaminathan [13] recommended phys-
iochemical and biological treatment methods and treating 
effluent from molasses from inverse anaerobic fluidization 
is a better choice. Satyavali and Balakrishnan [14] explored 
distinctive interactions covering natural and physiochemical 
strategies to treat the gushing and diminish the remaining 
natural burden and shading in the molasses-based refin-
ery squander water. Saravanan et al. [15] contemplated 
the treatment of refinery effluent utilizing an oxygen- 
consuming reactor. Sewage muck was utilized as seed cul-
ture to treat the effluent and worked under various fixations.

Trial impacts of untreated refinery emanating, released 
from refinery unit, and post-treatment gushing from the 
power source of anaerobic treatment plant were concen-
trated on mung bean by Kannan and Upreti [16]. Samar
ghandi et al. [17] done a research on process for 2,4-D 
herbicide removal from aqueous solutions using stainless 
steel 316 and graphite anodes using RSM.

Badkar et al. [18] analyze the impacts of process fac-
tors of laser-hardened pure titanium on heat input and 
tensile strength using the RSM and ANN model. Thoai 
et al. [19] applied RSM and ANN for biodiesel production 
via base-catalyzed transesterification. Obtained models 
are compared to optimize the methyl esters production 
process from edible oils. Onu et al. [20] compared four 
methods are RSM, ANN, and ANFIS, and the mechanistic 
method of modeling in eriochrome black-T dye adsorp-
tion using modified clay. Heidari et al. [21] have analysed 
the effect of operating parameters, intermediate identi-
fication, degradation pathway, and optimization using 
RSM by electro-Fenton process.

Sumathi et al. [22] used RSM and ANN optimization 
methods to find the optimal model parameters for dissolved 
oxygen process parameters using paper mill effluent in a 
semi-batch fermenter.

Saravani and Arulmozhi [23] uses RSM to address the 
impact of different process factors of o-cresol onto Bacillus 
cereus and cetyl ammonium bromide on the biosorption 
foam separation. Almasi et al. [24] analysed and studied 
effects on removal of carbon and phenol from the petro-
leum industry wastewater. Samarghandi et al. [25] have 
found optimal operational parameters to improve the biode-
gradability of textile effluent. Samarghandi et al. [26] have 
a analyse on degradation and it is investigated in a three- 
dimensional electrochemical reactor. Dargahi et al. [27] uses 
the application of a fluidized three-dimensional electro-
chemical reactor for process optimization and degradation 
pathway. Afshin et al. [28] uses Box–Behnken design for 
optimizing parameters of hexavalent chromium removal 
from aqueous solutions. Hasani et al. [29] have improved 
the efficiency of electrochemical, Fenton, and electro-Fenton 
processes using anodes to remove oxytetracycline antibiotic 
from aquatic environments. Dargahi et al. [30] use RSM to 
find the optimal influencing factors for degradation of dia-
zinon insecticide from aqueous solutions in an advanced 
oxidation processes.

In effluent treatment, dissolved oxygen (DO) is an 
important process variable in these plants. DO refer to the 
quantity of free oxygen dissolved in a unit volume of water. 
DO is expressed in mgm per liter or in ppm. The quantity of 
DO for example in the range of 4–5 mg/L affects the health 
of fishes and below 2 mg/L can be lethal. A very high value 
of DO indicates that the oxygen intake by microorganisms is 
a low and subsequent breakdown of nutrient sources. The 
amount of free or DO present in effluent becomes too low, 
the aerobic bacteria will expire and putrefaction occurs and 
when the DO level is too elevated, energy will be devastated 
in the aeration of the effluent. In industrial applications, 
the DO level should be little to forestall erosion and heater 
increase assemble which restrains heat move. In develop-
ing countries in many places, these treatment plants are 
being handled by people not so well conversant about the 
seriousness of the problem. Even though DO is measured 
as ppm or mg/L, measure the partial amount of oxygen in 
the water. Dissolved oxygen level is reliant on both salin-
ity and temperature. Most of all biotechnological measures 
are of an oxygen-consuming kind. A microorganism or 
cell reacts to the fluid stage oxygen fixation in controlling 
its general digestion. Subsequently, information on the DO 
fixation and the appropriate control during the interaction 
is of incredible significance. In this work, dissolved oxy-
gen is considered as a process variable for experimental 
analysis in paint industrial effluent. The graphical abstract 
of the work (experimental setup) is shown in Fig. 1.

2. Materials and method

2.1. Experimental setup and procedure

The present study was experimental and was con-
ducted in a laboratory-scale pilot. In this study, industrial 
waste from paint industry was considered for analysing 
the variation of dissolved oxygen parameter. The experi-
mental setup for the batch process was fabricated with a 
speed adjustable agitator in a semi-batch reactor is shown 
in Fig. 1 and the line diagram [22] is shown in Fig. 2. 
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It consists of a lark hygiene fermenter, rotameter, efflu-
ent storage, stirrer, control valve, dissolved oxygen probe 
(DO), and personal computer. The components with the 
specification are given in Table 1. The 1.5 L semi-batch reac-
tor has provisions to regulate the air flow, stirrer speed, 
and temperature. The effect of time, agitation speed, and 
feed concentration on dissolved oxygen for paint industry 
effluent were studied. The effluent is diluted with water 
from 10% to 100% in steps of 10%. One litre of the efflu-
ent was charged into the reactor. At the moment of time 
t = 0, clean air was abruptly supplied through a pre-cali-
brated rotameter at a flowrate of 1 lpm into the fermenter. 
Dissolved oxygen (DO) using a DO probe was observed in 
a personal computer. Three speeds 135, 145 and 155 rpm 
were chosen to study the effect of the speed on the vari-
ation of DO with time. The experiment was carried out 
at room temperature. The experimental results with dilu-
tion in steps of 10% from 10% effluent to 100% effluent for 
three different speeds of 135, 145, and 155 were obtained 
and consolidated. Fig. 3a and b show the experimental 
and calculated readings for speed 155  rpm from 100% 
and 10% paint industry effluent concentration.

3. Optimization using RSM and ANN

In the Industrial arena, the above experimental runs 
in higher numbers (270 experimental runs per effluent) 

lead to time consumption and higher cost of the process 
to identify optimal process parameters [31] and to design 
the controller. Therefore in order to reduce the number of 
experimental runs and time consumption, [32] response 
surface methodology (RSM) based BBD [33] which reduces 
the 270 experimental runs into 17 experiments per effluent 
was deployed with the same influential parameters and 

 
Fig. 2. Line diagram of experimental setup.

 
Fig. 1. Experimental setup for process model.

Table 1
Fermenter components and specification

Fermenter Type: Lark Hygene Fermenter, 
Manufacturer: India

Fermenter container Total volume: 3 L; H × D: 
250 mm × 150 mm

Aeration Air outlet with 0.2 microfilter; Air 
sparger – L-type with micropores

Mixing assembly Viton V-rings; 2 Smooth bearings; 
2-Impeller with 6 blades each; 3 baffles

Agitation Stirrer PMDC motor; Accuracy 1 rpm; 
Speed range: 20–1,000 rpm

DO control Accuracy 0.1 mg/L or +/–1%; 
Operating range 0–100%

Rotameter Range: 0.5–5 L/min
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desired levels. Added to this fact, it also helps in identify-
ing the significance of the interaction of input parameters 
which holds the advantage over the selective levels of par-
ticular process parameters. ANN has been used to develop a 
model using data obtained from the experimental results of 
paint industry effluent. From the optimal model parameters 
of DO obtained from RSM, it was compared with ANN.

3.1. Experimental design employing BBD with RSM

RSM is the best suited experiential optimization prac-
tice to evaluate the association between input parameters 
and experimental outputs [34–36]. RSM method is adopted 
process of Black Box Design (BBD) and Central Composite 
Designs (CCD) [37–40]. Without disturbing the optimiza-
tion accuracy BBD specifically reduce the number of experi-
mental sets judged against the conventional factorial design 
(CFD) method [41]. The three factors used as independent 
variables are time, speed, and concentration. These factors 
were varied at three different levels (–1, 0, +1) from mini-
mum to maximum level, as shown in Table 2. The follow-
ing Eqs. (1) and (2) describe the relationship between the 
uncoded and coded variables.
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−( )
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where A1, A2 and A3 are the uncoded variables with own 
units and a1, a2 and a3 are the coded variables respectively. 
To formulate the factors of coded variables dimensionless. 
The impacts of the three variables on the DO is approxi-
mated using quadratic model shown in Eq. (4).
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Let y is the predicted response (dissolved oxygen in 
ppm), b0, bi, bii, bij are offset term, linear effect, square effect, 
interactive effect respectively and Xi, Xj is the variables that 
are independent as well as coded [23].

Design–Expert software version 11.0.1 is used for the 
analysis of variance, experimental design, optimization of 
the process parameters and regression analysis [42]. The 
coefficient of regression (R2) and p-value of the analysis of 
variance (ANOVA) will be obtained and used to resolve 
the suitability of the model.

3.2. ANN modeling

In ANN, artificial neurons use machine learning tech-
niques to obtain the results. Added to it [22] discussed that 
the ANN model can be estimated using the same experi-
mental data set used in RSM. Minimization of the objective 
function is done using the Backpropagation technique. For 
training, the network Levenberg–Marquardt algorithm is 
used, and mean square error (MSE) is used for performance 
measures. The Levenberg–Marquardt algorithm works with 
the Jacobian matrix and gradient vector. Its design works 
with sum of the squared errors (loss function).

Matlab (R2016b) is used for ANN modeling. 17 exper-
imental runs have been proposed by considering all prob-
able permutations of factors and also considering values 
given in Table 2. The 3–10–1 ANN architecture used as 
shown in Fig. 4 is proposed. The ratio 70:15:15 of input 
data taken for training, validation, and testing respectively. 
The parameters time, speed, and concentration are used to 
train the ANN. The mean square error (MSE) is used for 
evaluating the performance of the model. The predicted 
R2 is 91.45% and R2

adj is 93.82%.

(a) 

(b) 

Fig. 3. Experimental and calculated data for 155 rpm for 100% 
and 10% concentration.

Table 2
Three factors levels in terms of coded and uncoded symbols

Experimental variable Variables Levels

Coded Uncoded –1 0 1

Time (min) a1 A 0 15 30
Speed (rpm) a2 B 135 145 155
Concentration (%) a3 C 10 50 90
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4. Results and discussion

4.1. Model fitting and analysis of variance

Box–Behnken design used for analysis and statistical 
summary of short of fits for each model is found employ-
ing Design–Expert V8 software [43] is shown in Table 3. 
Table 4 shows the experimental and predicted DO values 
for paint industry effluent under different concentrations. 
With the better R2 and R2

adj a second-order quadratic model 
has been suggested and the obtained values are R2 = 91.45%, 
R2

adj = 93.82%.
Table 5 states that in reference to given settings, to deter-

mine the DO points, quadratic and intuitive impact among 
the picked their boundaries contributed in own particular 
manner. Thus, the quadratic model was distinguished.

4.2. Model fitting, modification and analysis of variance

The generated result fits the selected quadratic based on 
the exploration by the model [44]. The connection between 
the three input parameters A, B, C are time, speed, and 
feed concentration respectively, and dissolved oxygen is 
given in Eq. (5).

Dissolved oxygen = + + − −
+ − +
9 00 1 05 0 14 2 06
0 075 0 33 0 3
. . . .
. . .

A B C
AB AC 55

0 85 0 48 0 622 2 2

BC
A B C− − −. . . 	 (5)

The proportion, the disclosed variety to the all-out 
variety is characterized as the coefficient of determination 

(R2); a assess the level of fit. At the point when a model 
capitulates an R2 of 0.9, it very well may be considered as 
a decent model [22]. This implies that the response model 
utilized in this examination expresses in a well way the 
process, at 95% certainty point, keeping R2  =  99.85% and 
R2

adj = 99.65%. Furthermore, the value of F = 503.67 (F) with 
the probability value as low as p  <  0.001 and is genuinely 
significant for consideration.

The significant model and results for paint industry 
effluent A, B, C, AC, BC, A2, B2, C2 obtained from ANOVA 
is given in Table 5. Parameters time, speed, and feed con-
centration are the coefficients for the quadratic terms are 
point to be very significant, which surmises that these 
parameters comprise extremely large impacts on the dis-
solved. This result likewise tracked down that the interac-
tion impact of time and speed is not significant. Despite the 
fact that time and speed aren’t critical, the speed of mixing 
doesn’t influence the time for saturation.

Minimizing the oxidation time to accomplish satura-
tion as far as DO helps in diminishing the force needed for 
running the compressor. Mixing action doesn’t influence 
as seen in the light of the fact that the rising of the air itself 
makes turbulence and better blending. After assessing the 
worth of the boundaries, the model is able to be made do 
by taking out the extremely less noteworthy terms. The 
final model is given in Eq. (6).

Dissolved oxygen = − + + −
+ − +
82 14 0 13 1 31 0 13
5 0 5 41 8 75
. . . .
. . .

A B C
AB AC BBC
A B C− − −3 77 4 75 3 902 2 2. . . 	  (6)

Table 3
Statistical summary

Basis Degree of freedom Total of squares Mean square F-value p-value Prob. > F Suggestion

2F1 vs. linear 3 0.93 0.31 0.49 0.7493 –
Linear vs. mean 3 43.00 14.33 25.66 <0.0001 –
Cubic vs. quadratic 3 0.078 0.026 6.366E+007 <0.0001 Aliased
Quadratic vs. 2F1 3 6.25 2.08 188.16 <0.0001 Suggested
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Fig. 4. Neural network architecture.
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The regression model was additionally assessed using 
analysis of variance (ANOVA), and the outcomes are dis-
played in Table 5. The low likelihood value shows that the 
model is exceptionally huge. The decency of attack of the 
model was additionally taken a look at utilizing the assur-
ance coefficient (R2); the values are. Moreover the value of 
R2 additionally demonstrates that the model can clarify 
99.85% of the all-out variety of the productivity to the oper-
ating parameters. To envisage the connection between the 
operating factors and efficiency, linear plots and contour 

maps were generated and shown using Design–Expert 
(version 7.0) based on the regression model.

4.3. Model accuracy check for RSM

To get a plentiful model, a precision check is unavoid-
able; by looking at the predicted and experimental dissol
ved oxygen the exactness of the model was verified. Fig. 5 
presents the linear relationship among the experimental and 
predicted dissolved oxygen. Thusly, the remaining be able 

Table 4
Experimental and predicted data

Run Coded variables Real variables Dissolved oxygen (ppm)

a1 Time 
(min)

a2 Speed 
(rpm)

a3 Concentration 
(%)

A Time 
(min)

B Speed 
(rpm)

C Concentration 
(%)

Experimental Predicted

1 0 –1 1 15 135 90 6 5.96
2 1 1 0 15 145 50 8.1 8.1
3 –1 0 –1 0 155 50 9.3 9.29
4 0 1 1 30 135 50 9 8.97
5 –1 1 0 0 145 10 9 7.97
6 –1 0 1 15 135 90 8.8 8.7
7 –1 –1 0 15 145 50 6.3 6.19
8 0 0 0 15 135 10 10.5 10.37
9 0 –1 –1 15 145 50 10.9 10.8
10 0 0 0 30 145 90 9 8.97
11 0 1 –1 30 155 50 5.5 5.44
12 1 0 1 0 135 50 9 8.97
13 0 0 0 15 155 10 8.8 8.64
14 0 0 0 15 145 50 9.6 9.58
15 1 0 –1 30 145 10 6.4 6.4
16 1 –1 0 15 145 50 9 8.97
17 0 0 0 0 145 90 6.3 6.23

Table 5
Analysis of variance results for acquired model

Basis Total of 
squares

Degree of 
freedom

Mean square F-model value p-value
Prob. > F

Characteristics

Model 50.19 9 5.58 503.67 <0.0001 Significant
A – Time 8.82 1 8.82 796.65 <0.0001 Most significant
B – Speed 0.15 1 0.15 13.66 0.0077 Significant
C – Feed concentration 34.03 1 34.03 3,073.79 <0.0001 Most significant
AB 0.022 1 0.022 2.03 0.1970 Not significant
AC 0.42 1 0.42 38.16 0.0005 Significant
BC 0.49 1 0.49 44.26 0.0003 Significant
A2 3.04 1 3.04 274.77 <0.0001 Most significant
B2 0.95 1 0.95 85.81 <0.0001 Most significant
C2 1.64 1 1.64 148.56 <0.0001 Most significant
Residual 0.077 7 0.011 – – –
Lack of fit 0.077 3 0.026 – – –
Pure error 0.00 4 0.00 – – –
Cor. total 50.26 16 – – – –
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to be verified to decide the level that the model fulfills the 
suspicions of analysis of variance, and the internally stu-
dentized residuals be capable to gauge the standard devia-
tions (SD) isolating the predicted and experimental values. 
Fig. 6 illustrates the association between the internally 
studentized residuals and typical probability (%).

4.4. Optimization by RSM

To identify the optimal model parameters response 
surface method was used in Design–Expert software [45]. 
Time, speed, and feed concentration with respective DO 
were considered for analysis, and the relationship between 
these parameters is given in Fig. 7a–f. Each plot illustrates 
the impacts of any two factors inside their thought about 
ranges, with the 3rd factor set to the degree of nothing. 
The inclination of each factor in impacting the dissolved 
oxygen can be envisioned better in the reaction surface.

Prominent interaction among two variables is encoun-
tered in an elliptical contour plot. From the response sur-
face and contour plot, it is clear, that the relations impacts 
of feed concentration and time is more significant. Fig. 7a 
and b demonstrate speed has a slight impact on DO satu-
ration whereas Fig. 7c and d shows that dissolved oxygen 

esteems adjust under feed concentration and time for a 
specific speed.

Fig. 7e and f show indeed that speed has a small impact 
on DO variation with feed concentration and time. As seen 
from these plots, the least considerable factor is speed 
when contrasted with feed concentration and time. Time 
assumes a larger part in effluent saturation. This impact 
proposes that the speed of mixing doesn’t influence the time 
for saturation.

4.5. Modelling by ANN

The obtained experimental results using paint indus-
trial effluent were used to develop an artificial neural net-
work-based mathematical model. Regression plots obtained 
using ANN by training validation, testing, and overall 
predicted model are presented in Fig. 8. Table 6 states the 
predicted response for dissolved oxygen by ANN. It tends 
to be seen that the overall R2 is 91.45% and R2

adj is 93.82% 
predicted by ANN, the predicted model is recommended 
for modeling and optimizing for DO. R2 values of train-
ing and analysis as well propose that the artificial neu-
ral network model be adequately trained as well as it 
grasps superior in the calculation of new value. Predicted 
models of both ANN and RSM are near to the experimen-
tal results and the R2 value of RSM prediction compare 
to ANN prediction was a higher degree of fitness.

4.6. Condition optimization and confirmation tests

In reference to obtained results, the predicted input fac-
tors using RSM were chosen for the confirmatory experi-
ment because of their fitness and is presented in Table 7. The 
minimized DO of 8.84 was calculated at a time of 15  min, 
feed concentration of 50%, and speed of 144 rpm was found 
using Design–Expert Software.

In RSM optimization, confirmatory trials were managed 
to keep the condition best possible to confirm the predicted 
end result. The analysis concluded that feed concentrations 
and time exclusively contributed towards the DO minimi-
zation. The connection impact of time is transcendently sig-
nificant towards the different effluent concentrations. The 
minimum value of DO shows the good agreement between 
the predicted and experimental outcomes which approves 
the legitimacy of the model with the error of 0.59%. Table 8 
clearly shows to facilitating RSM is the more remarkable and 
compelling tool for optimization.

In Design Expert Software RSM was used to obtain the 
optimal model parameters of DO process. By assuming time, 
speed, and feed concentration as input functions aligned 
with the contribution of DO. The predicted optimal condi-
tions by RSM for dissolved oxygen were 8.84  ppm at time 
15  min, speed 145  rpm, and 50% feed concentration. The 
RSM result was very near to the confirmatory experimental 
value of 8.89 ppm.

The results were similar to study carried out by [22], 
which indicated that the treatment of containing wastewa-
ter from paper mill industry RSM gives the superior results 
with R2 of 99.85%. The results of the conducted studies are 
consistent with the present study. Regarding the parame-
ters, it can be said that increasing each of these parameters 
directly has an effect on the efficiency.

Fig. 5. Actual vs. predicted data.

 
Fig. 6. Normal plot of residuals showing the relationship between 
normal probability (%) and internally studentized residuals.
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Fig. 7. Surface and contour plots showing the interactive effects of dissolved oxygen with time, speed and concentration.
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Fig. 8. Regression plots of ANN model for paint industry effluent.

Table 6
Predicted response for dissolved oxygen by ANN for paint industry

A Time (min) B Speed (rpm) C Concentration (%) Experimental Predicted

15 155 90 6.0 5.87
0 145 10 8.1 7.9
30 155 50 8.6 8.4
15 145 50 9.0 9.8
15 145 50 9.0 9.8
30 135 50 8.8 8.6
30 145 90 6.3 6.1
15 135 10 10.5 10.3
30 145 10 10.9 10.7
15 145 50 9.0 9.0
15 135 90 5.5 5.3
15 145 50 9.0 8.8
0 135 50 6.9 6.7
15 155 10 9.6 9.7
0 155 50 6.4 6.2
15 145 50 9.0 8.8
0 145 90 4.8 4.6

Table 7
Predicted and confirmatory experimental results for RSM

Result Time 
(min)

Speed 
(rpm)

Concentration 
(%)

DO 
(ppm)

Predicted result 
using RSM

15 145 50 8.84

Confirmatory 
experimental result

15 145 50 8.25

Error percentage 0.59%

Table 8
Predictive capacity of RSM and ANN

Parameters RSM ANN

RMSE 8.08 01.32
R2 99.85 73.55
R2

adj 99.65 75.58
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5. Conclusion

The research work analysis was carried out in a batch 
study and it evaluates precisely the effect of effluent and 
water proportion and stability on DO. The optimization tech-
niques RSM and ANN are proposed to find the optimized 
operating parameters with 17 experimental runs using three 
inputs time, speed, and feed concentration against DO of 
the paint industrial effluent. In RSM analysis, with a sin-
gle objective function, a second-order quadratic was sig-
nified with a higher degree of fitting with R2 = 99.85% and 
R2

adj  =  99.65%. From ANN analysis, using optimization tool 
ANN produced R2  =  91.45%, R2

adj  =  93.82%. From the anal-
ysis, it is evident that RSM performed better than ANN. 
The error percentage is 0.59% which validates the predicted 
model from the predicted and confirmatory experimental  
results.
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