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a b s t r a c t
In order to comply with legal regulations related to wastewater quality, the operational mode of 
facilities at wastewater treatment plant (WWTP) should be properly adjusted according to parameters 
of influents, however it is very difficult without frequently performed measurements. Currently there 
are known many techniques and devices for assesment of wastewater parameters such as chemical 
oxygen demand, biochemical oxygen demand, total organic carbon, as well as phosphorus and 
nitrogen compounds. In spite of the far reaching improvements of treatment process automatisation, 
there still isn’t developed a automatic and fast measuring system of wastewater parameters. Rapid 
on-line method of wastewater parameters estimation by electronic nose and computer simulations 
could be recomended as an alternative solution in many WWTPs in comparation with traditional 
approch. Within this paper the analysis of real-time data obtained from laboratory bioreactor were 
used to estimate wastewater parameters in order to develop the inexpensive and fast-responding 
measuring for the WWTPs. The elaborated method enables continuous and relatively low cost 
monitoring of the wastewater quality even in many key points of operating and control WWTP. In 
this context, computer simulation support with on-line e-nose measurments could be cheap and 
useful tool to improve the WWTP efficiency.

Keywords:  On-line measurement; Wastewater parameters estimation; Electronic nose; Modelling 
strategies; Operating and control of WWTPs

1. Introduction

After the treatment process is finished at a wastewater 
treatment plant (WWTP), the produced effluents are 

subsequently released to rivers or other water bodies, 
possibly having a negative impact on the environment. 
Numerous legal regulations and directives, determining the 
acceptable pollutant levels in an effluent stream, have been 
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issued. The operation of facilities in a wastewater treatment 
plant should match the parameters of the wastewater 
influent, in order to meet the strict requirements laid down 
in the regulations and maintain adequate level of the 
wastewater quality indicators. However, this may not be 
possible without conducting measurements on a regular 
basis. At present, numerous methods and devices exist for 
the purpose of evaluating such wastewater parameters as 
total organic carbon (TOC), biochemical oxygen demand 
(BOD), chemical oxygen demand (COD), total suspended 
solids (TSS), oxygen uptake rate (OUR), as well as the level 
of nitrogen and phosphorus compounds. Even though 
the automatization of treatment process has been greatly 
improved over the years, there is still no system for automatic 
measuring of relevant wastewater parameters. Determining 
the above-mentioned parameters by means of proper 
methodology may take between 1 h (in the case of COD) and 
5 d (for BOD5). Measuring other parameters with immersed 
sensors presents the problem of lack of repeatability caused 
by the biological film coating the sensors or other kind of 
block measurement areas of the sensor [1]. Additionally, the 
high cost of professional measuring equipment constitutes 
a severe hurdle. Thus, measurements in numerous local 
wastewater treatment plants are conducted rarely, while the 
treatment process is carried out drawing on the observations 
made by experienced staff. As an alternative, an on-line 
estimation of wastewater parameters performed by means 
of an electronic nose and computer simulations can be 
proposed for numerous wastewater treatment plants.

At present, electronic noses (e-noses) are utilized to 
measure odorous compounds. An e-nose is a device which 
mimics the human olfactory sense, and comprises an array 
of several non-specific gas sensors [2]. Individual sensors are 
partially sensitive to various groups of chemical compounds. 
Every gas mixture creates a unique signal profile, which 
may be compared to fingerprints in dactyloscopy, as an 
identical combination is extremely unlikely to form in two 
different gas samples. Hence, the term “gas fingerprint” is 
commonly used in relation to signal combinations [3,4]. The 
obtained multidimensional set of signals is subsequently 
analyzed. For this purpose appropriate statistical analyses 
of multidimensional data are used, such as principal 
component analysis (PCA) [5], support vectors machines 
(SVM) [6], decision trees (DT) and random forests (RF) [7] 
or artificial neural networks (ANN) [8,9].

Some authors have attempted to compare the standard 
parameters of sewage to an e-nose response [3,10]. Most 
frequently, it consisted in the evaluation of the e-nose 
system to recognition and classification of sewage odours 
concerning their location in a WWTP as well as the odour 
concentration assessment. In some earlier studies, attempts 
were made to employ the e-nose for the assessment of 
standard physical-chemical parameters of sewage such as 
COD, TSS, volatile suspended solids (VSS), and turbidity, but 
the correlation coefficient was quite weak (r = 0.52 ÷ 0.67) [3].

The gas sensors utilized in analyses are non-
selective to single chemical compounds and – contrary to 
chromatography – do not allow for an accurate qualitative 
and quantitative analysis. Single sensors do not yield 
satisfactory results, because a given signal may be generated 
by many different gas samples. An array of multiple sensors 

produces a virtually unique set of signals, enabling a precise 
differentiation between the investigated samples. The sensors 
used for this purpose should be sensitive to various groups 
of pollutants. The sensors that are most commonly employed 
in electronic noses include metal oxide semiconductor 
(MOS) resistance sensors, conducting polymers (CP), quartz 
crystal microbalance (QCM) or surface acoustic wave (SAW) 
sensors [11].

The VOC profile of wastewater is diverse in relation to 
its content and concentration. As many as 450 compounds 
can be identified in the gases produced in the course of 
wastewater treatment; roughly 100 of them are considered 
strong odorants [12], distinguished by a broad range of 
odours. These substances can be divided into four main 
groups [13]:

•	 Sulfur compounds: hydrogen sulfide, dimethyl sulfide, 
diethyl sulfide, diallyl sulfide, carbon sulfides, sulfur 
dioxide, methyl mercaptan, ethyl mercaptan, propyl 
mercaptan, butyl mercaptan, tert-butyl mercaptan, 
allyl mercaptan, crotyl mercaptan, benzyl mercaptan, 
thiocresol, and thiophenol;

•	 Nitrogen compounds: ammonia, methylamine, dimethyl-
amine, trimethylamine, ethylamine, diethylamine, 
triethylamine, cadaverine, pyridine, indole, and skatole;

•	 Acids: acetic, butanoic, and valeric;
•	 Aldehydes and ketones: formaldehyde, acetaldehyde, 

butyralde-hyde, isobutyraldehyde, isovaleraldehyde, 
acetone, and butanone.

The presence sulfur and its derivatives is somewhat 
problematic, as sulfur compounds lead to the poisoning of 
sensors, subsequently causing signal drift and, eventually, 
decalibration of the device. However, this problem is 
relatively insignificant in the biological part of the waste-
water treatment plant. Apart from hydrogen sulfide, many 
other substances can be enumerated, including dimethyl 
sulfide, methanetiol, as well as mercaptans [14].

The VOC concentration above the water surface strictly 
depends on micropollutants concentration in wastewater. 
The change of pollutants concentration is caused by three 
different methods, that is, volatilization, sorption on solid 
compartments and biodegradation [15]. Volatilization 
mostly pertains to volatile organic compounds [16], poly-
cyclic aromatic hydrocarbons [17], surfactants [18], and 
such micropollutants as, for instance, acetone, hydrogen 
sulphide, and phenol [19]. The intensity of this process is 
highly dependent on the operating conditions, including 
temperature, pressure, aeration and mixing. Volatilisation by 
stripping takes place in the aeration tank. This is due to air, 
which raises the mass transfer of pollutants between phases. 
In primary and secondary settlement tanks, where the 
surface of wastewater is still, surface volatilisation predomi-
nates. Gas pollutants generated in the course of wastewater 
treatment processes may be identified by means of an 
electronic nose. Apart from volatilization, biodegradation 
also yields (bio)gases – either nitrogen or carbon compounds –  
depending of what the oxygen conditions in wastewater 
are. Therefore, the measurements performed by means of an 
electronic nose display both the concentrations of pollutants 
dissolved in wastewater, and their degradation degree.
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Using electronic noses at wastewater treatment plants 
has been discussed in scientific literature. Usually, it 
involves assessing the possibility of an e-nose application 
in identifying and classifying odours, depending on where 
they originate in a wastewater treatment plant [20,21] and 
evaluating the concentration of odour in the relevant air 
samples [22–24]. In some studies, an electronic nose was used 
to estimate the standard wastewater pollution parameters, 
including BOD [25,26], COD, VSS, TSS, and turbidity [3]. 
The afore-mentioned studies assumed that highly polluted 
wastewater should be discernible from the wastewater 
characterized by low level of pollutants. What follows is that 
e-noses can be used also for an early detection of hazardous 
chemical compounds capable of disrupting the operation of 
organisms in the biological part of a WWTP. For instance, 
this includes the hardly-biodegradable derivatives of crude 
oil, which are detrimental to the activated sludge and its 
operation, hampering the course of the treatment process 
[10]. A gas sensor array, which is capable of identifying 
multiple types of pollutants, can be successfully used for 
this purpose.

An electronic nose was also used for odour classification 
in light industrial treatment plants, as well as municipal 
wastewater treatment plants [27]. As part of the study, a total 
of 144 air samples were collected from various treatment 
processes, including initial treatment, sedimentation tanks, 
biological treatment, and discharge of treated wastewater. 
The gas sensor array signals were analyzed with neuron 
networks, comprising 12 input neurons, as well as two 
hidden layers with 12 neurons each. Individual odour types 
yielded high correlation of up to 0.99.

Computer modelling can be supplemented with waste-
water parameters estimated in real-time. The modelling of 
wastewater treatment processes can be carried out by means 
of, for instance, TOXCHEM+, BASTE, WATER8/WATER9, 
GPS-X, and WEST software [28].

In Europe, models are mainly used by scientists for 
research purposes in terms of process optimisation and 
energy efficiency; in turn, the majority of their users overseas, 
mainly in North America (U.S.A. or Canada), are designers 
in private companies. Simultaneously, there are clear global 
trends in the use of increasingly sophisticated computer 
tools for optimising biochemical processes based on the 
activated sludge method [29].

Average conditions are reflected by the results of general 
fate models, which are mostly created as steady-state 
models. On the other hand, dynamic models allow for an 
evaluation of wastewater in actual, dynamically changing 
conditions. GPS-X is software which may be applied for 
dynamic simulation of biological treatment of wastewater. 
It utilizes the activated sludge model (ASM) with 13 
constituent components (in its first version) to describe the 
transformation and removal of both carbon and nitrogen. 
The activated sludge model and its updated versions, that is, 
ASM2, ASM2D and ASM3, can be used in the case of COD, 
BOD, TSS and nitrogen compounds. On the other hand, 
TOXCHEM+ software may be employed to simulate other 
compounds.

ASM is a complex physical-chemical-biological system, 
characterized by plethora of interactions between the 
local conditions, state variables, as well as the dynamic 

input variables. The previously conducted simulation 
studies [29–32] proved that both the software architecture 
and simulation platform (including, for instance, GPS-X, 
SIMBA, and BIOWIN), were adequate for this purpose. At 
present, they are used on a regular basis in many developed 
countries, such as European Union member states, Japan, 
Australia, the USA, and Canada. This process was facilitated 
by the advent of more powerful computers, as well as the 
greater knowledge of the metabolism of the concerned 
bacteria or their specific groups [32]. Computer simulations 
and mathematical models of wastewater treatment plants, 
coupled with electronic noses supplying data about estimated 
wastewater parameters, can be used for an on-line control 
of WWTP processes. Owing to such a solution, the overall 
efficiency of the systems may be improved. As evident 
from the mapping of energy consumption carried out at a 
wastewater treatment plant, approximately 20%–30% of total 
plant operation costs can be reduced by adjusting the aeration 
of the biological treatment process. The widely-described 
[21,30] problems of inefficient aeration of the aerobic zones of 
bioreactor and the excessive capacity of the aerated volume 
both stem from varying influent load, as well as discharge 
limits for low concentrations of ammonium in the effluent. 
These phenomena are known to generate additional, unne-
cessary costs in numerous wastewater treatment plants. 
Mathematical modelling/computer simulation with an elec-
tronic nose may be utilized for an on-line monitoring and 
control of the wastewater (its content of carbon, and nitro-
gen, compounds), as well as the prediction of the dynamic 
behaviour of input/output variables and local conditions in a 
given part of a wastewater treatment plant system.

2. Materials and methods

The study aimed to assess the viability of real-time 
control biological treatment processes at a wastewater 
treatment plant by conducting on-line measurements with 
an electronic nose and performing computer simulations. 
The first stage involved a laboratory research conducted by 
means of a sequencing batch reactor (SBR). The laboratory set 
utilized in the study is presented in Fig. 1.

The concentration of organic compounds and nutrient 
(N, P, and S in particular) during the active phase of 
treatment involving mixing and aeration can be reduced 
by means of an SBR. Under aerobic conditions, pollutants 
undergo transformation to CO2, H2O as well as oxidized 
inorganic P, S and N compounds; then, removal of organic 
compounds and oxygen bound in nitrates follows. Methane 
is produced under anaerobic conditions by a specific group of 
microorganisms. Each treatment process is performed in one 
volume in a proper sequence; therefore, monitoring can be 
carried out by means of only a single measurement device. In 
the classical WWTP operating in the flow mode, comparable 
data should be ensured by conducting measurements 
in several locations [33].

The semi-automatic SBR which utilized the activated 
sludge method and operated in 12-h cycles. At the beginning 
of the cycle continuous mixing was activated lasting 9 h. 
Simultaneously, together with mixing, continuous aeration 
was activated for a period of 2.5 h, and then intermittently 
in order to sustain oxygen concentration at the level of 
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2 gO2/m3. In the final part of the cycle, a 2 h sedimentation 
phase was initiated and finished with decantation, during 
which the treated wastewater was discharged and after 
which the reactor was loaded with raw wastewater. The 
SBR reactor enabled reduction of organic compounds and 
nutrient concentration (compounds of carbon, nitrogen 
and phosphorus) during an active phase of treatment 
mixing and aeration. The laboratory equipment consisted 
of three independent SBR reactors, each with a 10 dm3 
chamber. All reactors were equipped with a mechanical 
stirrer, aeration system with membrane diffuser, and 
temperature stabilization system. During the experiment, 
the temperature of sewage was kept at 20°C ± 0.1°C. The 
measurements were conducted during the whole cycle, but 
the results from the final part of the sedimentation phase 
were taken for subsequent analysis of treated wastewater 
quality. Wastewater treated in the bioreactor during the 
study was collected from a primary settlement tank of a 
municipal wastewater treatment plant) in Lublin (Poland), 
characterized by the daily flow rate of Qd = 65 000 m3/d.

Activated sludge used during the experiment was 
was characterized by the following parameters: mixed 
liquor suspended solids (MLSS = 3.2 g/dm3), mixed liquor 
volatile suspended solids (MLVSS = 2.4 g/dm3), the food to 
microorganism ratio (F/M ratio = 0.10 g BOD5/gMLVSS·d), 
sludge volume index (SVI = 235 mL/dm3) and a sludge 
retention time (SRT) of 15 d.

The gas samples were taken from the wastewater 
headspace in a bioreactor chamber; the volume of samples 
equalled 200 cm3/min. The samples were dehumidified 
by means of DM-110-24 Perma Pure dryer with nafion 
tubing and silica gel. The measurement was performed 
with an array comprising eight MOS-type TGS Figaro 
sensors, that is, TGS2600-B00, TGS2602-B00, TGS2610-C00, 
TGS2610-D00, TGS2611-C00, TGS2611-E00, TGS2612-D00, 
and TGS2620-C00. Additionally Maxim-Dallas DS18B20 
temperature sensor and Honeywell HIH-4000 relative 
humidity sensor were both used to measure and evaluate 
stability of environmental conditions. The measurements 
were conducted continuously over 60 d, with the readout 
frequency of 1 s.

The measurement performed with MOS sensors 
involved registering changes in the resistance of the sensing 
element in the sensors utilized in the study is presented in 
Fig. 2. In line with the application scheme recommended 
by the manufacturer, the input voltage was measured in 
the resistive divider comprising a sensing element RS and 
a load resistor RL connected to the circuit ground. The 
resistance of a sensing element was subsequently determined 
with the formula RS = RL (VC – VOUT)(VOUT)–1, where RS ‒ 
resistance of a sensing element (kΩ), RL – resistance of a 
load resistor (kΩ), VC ‒ input voltage of the divider [V], 
VOUT ‒ output voltage of the divider (V).

To calibrate readouts from electronic nose system the 
liquid phase of treated sewage was subjected to standard 
measurements involving: N–NO2, N–NO3, N–NH3, COD, 
TSS, VOC, as well as pH and turbidity. A HACH DR2800 
spectrophotometer was used for measuring the N–NO2, N–
NO3, N–NH3, COD, and TSS. The analysis was conducted 

Fig. 1. Scheme of the proposed control system.

 
Fig. 2. An electronic nose with MOS gas sensors – prototype 
prepared by authors.
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according to the HACH-Lange methodology with cuvette 
tests. Apart from that, HACH HQ40D digital pH meter was 
utilized to measure the pH, while turbidity was evaluated 
with Eutech Instrument TN-100 turbidimeter. Pollution level 
was measured after the SBR sedimentation phase concluded. 
Due to the odour nuisance commonly attributed to the 
emission of volatile organic compounds at a wastewater 
treatment plant, the VOC levels were measured as well by 
means of a Photovac Voyager portable gas chromatograph, 
which operated in VOC mode on column V and was equipped 
with a PID detector. The air sample was collected with a long 
probe; the sampling time equalled 30 s. The studies proved 
that after calibrate the electronic nose to the prediction of 
chemical oxygen demand, highly accurate (r = 0.98) COD 
estimation is feasible. This method of indirect COD value 
estimation may serve both as a preliminary measurement 
device for estimating wastewater parameters on-line, 
and as an early detection system that identifies excessive 
biological loads or non-typical pollutants.

The second-stage of the study involved the creation of 
a suitable SBR model by means of the dynamic simulator, 
which is based on the ASM. The real-time data obtained in 
the course of tests including a laboratory sequencing batch 
reactor were modelled and used for the comparison of 
computer simulation and the data collected by the electronic 
nose. This enabled to develop a cheap and responsive 
measuring system for wastewater treatment plants, 
which allows for a continuous and relatively inexpensive 
monitoring of wastewater quality. The operating conditions 

of the wastewater treatment process can be optimized in 
accordance with the obtained results. Such a solution could 
decrease the negative environmental impact of the effluent 
and cut the operating costs by saving energy consumption, 
leading to an overall improvement in the efficiency of a 
treatment plant operation.

3. Results and discussion

The proposed real-time control system for a wastewater 
treatment plant utilizes continuous measurements performed 
by means of an electronic nose coupled with computer 
models of the WWTP. This solution enables predicting the 
values of wastewater effluent parameters and subsequent 
adjustment of the treatment process, including, for instance, 
matching the aeration intensity to the wastewater quality.

3.1. Electronic nose monitoring of SBR process

The typical shape of signals and sensor resistance (8 sensors) 
values obtained during the measurements is presented in 
the figure below (upper chart). Additionally, the results of 
standard measurements (N–NO2, N–NO3, N–NH3, TSS, 
COD, turbidity) are presented on lower chart in Figs. 3 and 4..

The values of sensors resistance were analysed using ANN 
and was compared to results of standard measurements. 
The parameter characterized by best correlation (r = 0.988) 
and narrow confidence interval reaching approximately 
10 mg/dm3 (i.e., 17% of the measured scale) was chemical 

 
Fig. 3. Results of measurements conducted over the period of one week, from both the standard measurement (lower part) and a gas 
sensor array (upper plot), (A) beginning of sedimentation, (B) raw sewage load and (C) start of aeration.



61G. Łagód et al. / Desalination and Water Treatment 275 (2022) 56–68

oxygen demand. Similarly high correlation was obtained 
in the case of turbidity (r = 0.940), total suspended solids 
(r = 0.938), as well as nitrogen compounds N–NO2 (r = 0.869), 
N–NO3 (r = 0.958), N–NH3 (r = 0.978). However, because an 
electronic nose is unable to measure these parameters in 
a direct way, it should be treated as an additional device 
for estimating wastewater parameters on-line, and as an 
early detection system identifying abnormal conditions. 
This includes diversified concentration of pollutants and 
the presence of potentially hazardous substances (such as 
pesticides or petroleum derivatives) which may negatively 
impact the biological part of wastewater treatment process. 
Measurements of wastewater quality parameters should 
be conducted regularly, in order to adjust their prediction 
algorithm to the current situation [10].

3.2. Utilisation of multiple networks

Nowadays, very efficient computers allow to utilise 
many artificial neural networks to predict specific parameter 
and afterwards to count mean values for many networks. 
In order to determine the application possibility of multiple 

networks to predict particular wastewater quality para-
meters (COD, N–NO3, N–NO2, N–NH3) as well as best 
parameters of artificial neural networks (number of hidden 
neurons, activation functions of hidden neurons, and 
output), 10,000 networks with one hidden layer consisting 
of 1 to 100 hidden neurons were tested. To activate the 
hidden and output neurons, the linear (lin), logistic sigmoid 
(log), hyperbolic tangent (tanh), and the exponential (exp) 
functions were used. Summary table of basic statistics for 
particular chemical indicators as well as COD was shown 
in Table 1. The lowest mean value of prediction accuracy 
was observed for N–NO2 in range 0.49–0.62, especially for 
linear function of hidden layer (Fig. 5). The COD has highest 
average score in all variants of activation function.

Fig. 6 shows a example chart for the N–NO2 prediction 
accuracy (quality) for each combination of activation f., and 
different numbers of hidden neurons. To assess the quality 
of N–NO2 prediction a validation data subset was taken, 
which was not used to learn the neural network. It can be 
discerned that networks with neurons in the range 1–10 have 
significantly lower values of validation quality. Networks 
with neurons in the range 10–20 are almost identical to the 

 
Fig. 4. Dependences between the measured parameters and the parameters predicted by means of an e-nose: COD, N–NO3, 
N–NO2, N–NH3.
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Table 1
General statistic of networks validation quality for all activation functions variants

Parameter Activation of 
hidden layer

Activation of 
output layer

% Valid 
obs.

Mean Median Maximum Lower 
quartile

Upper 
quartile

Std. 
Dev.

Standard 
error

N–NH3

Tanh Lin 100 0.968164 0.968639 0.993562 0.962710 0.975611 0.010547 0.000408
Lin Tanh 100 0.859990 0.849643 0.911647 0.844732 0.872917 0.021138 0.000850
Log Lin 100 0.959442 0.962646 0.988348 0.953022 0.967843 0.013849 0.000548
Log Tanh 100 0.944898 0.951583 0.989902 0.937876 0.965420 0.041330 0.001641
Log Log 100 0.917179 0.903178 0.995402 0.890342 0.962313 0.042122 0.001697
Log Exp 100 0.959470 0.963063 0.994591 0.951850 0.973141 0.027542 0.001139
Lin Log 100 0.965936 0.967887 0.971889 0.967428 0.968465 0.005953 0.000245
Exp Exp 100 0.943528 0.954353 0.993635 0.941096 0.969684 0.062297 0.002436
Tanh Tanh 100 0.965424 0.969483 0.989726 0.960921 0.975488 0.018510 0.000742
Lin Exp 100 0.955380 0.957361 0.971276 0.952075 0.959448 0.007108 0.000283
Exp Tanh 100 0.914400 0.937818 0.986253 0.920198 0.953215 0.086270 0.003355
Exp Lin 100 0.933659 0.935748 0.980084 0.922453 0.951341 0.032925 0.001308
Exp Log 100 0.959762 0.965063 0.993893 0.949224 0.976396 0.026470 0.001037
Lin Lin 100 0.864429 0.857632 0.920239 0.852599 0.873261 0.017164 0.000693
Tanh Exp 100 0.962170 0.973313 0.996663 0.956585 0.981285 0.049552 0.002021
Tanh Log 100 0.952593 0.963076 0.993686 0.942718 0.973017 0.031223 0.001296

N–NO2

Log Tanh 100 0.845738 0.861941 0.901958 0.842573 0.875602 0.063343 0.002592
Tanh Tanh 100 0.840501 0.857782 0.919030 0.833922 0.871755 0.062907 0.002481
Exp Lin 100 0.846473 0.865485 0.907545 0.836045 0.881111 0.066420 0.002691
Log Lin 100 0.833222 0.855306 0.903002 0.824561 0.870410 0.078700 0.003224
Lin Lin 100 0.606379 0.618174 0.657439 0.595758 0.629073 0.034294 0.001376
Tanh Lin 100 0.842561 0.857573 0.920244 0.830565 0.873980 0.055344 0.002228
Tanh Log 100 0.849668 0.858862 0.914105 0.846971 0.868525 0.048394 0.001897
Log Exp 100 0.853202 0.867285 0.920008 0.860332 0.872769 0.060655 0.002497
Tanh Exp 100 0.853971 0.864836 0.898053 0.859311 0.870319 0.059091 0.002362
Lin Exp 100 0.496225 0.485989 0.630407 0.480780 0.494524 0.035562 0.001457
Log Log 100 0.850094 0.868881 0.903312 0.854264 0.876403 0.067084 0.002567
Lin Log 100 0.564289 0.562415 0.669617 0.511641 0.613662 0.054786 0.002226
Exp Exp 100 0.865738 0.872535 0.894689 0.862119 0.878959 0.049784 0.001932
Exp Log 100 0.856350 0.863890 0.900486 0.855122 0.871105 0.043989 0.001770
Lin Tanh 100 0.623211 0.624035 0.654573 0.618969 0.629969 0.012624 0.000495
Exp Tanh 100 0.804333 0.840407 0.899716 0.792704 0.862945 0.099844 0.003968

N–NO3

Exp Lin 100 0.949616 0.951520 0.964377 0.947512 0.954592 0.010015 0.000386
Log Log 100 0.940394 0.954280 0.976767 0.946453 0.958921 0.079053 0.003127
Lin Exp 100 0.859854 0.866398 0.884768 0.852268 0.871208 0.015659 0.000635
Tanh Log 100 0.955305 0.959284 0.977106 0.954721 0.964144 0.020002 0.000815
Lin Tanh 100 0.897713 0.897022 0.913969 0.891755 0.903564 0.006814 0.000267
Tanh Tanh 100 0.951512 0.953698 0.971760 0.950504 0.956383 0.013957 0.000570
Lin Lin 100 0.896497 0.898059 0.916496 0.886941 0.907017 0.012273 0.000475
Log Lin 100 0.950826 0.954010 0.975566 0.950724 0.956472 0.018360 0.000758
Log Exp 100 0.944699 0.958444 0.978821 0.954116 0.962618 0.093117 0.003773
Tanh Lin 100 0.955256 0.956643 0.975583 0.954162 0.958961 0.012905 0.000519
Tanh Exp 100 0.963127 0.966726 0.981460 0.960259 0.972559 0.043674 0.001729
Log Tanh 100 0.944643 0.948050 0.965640 0.943978 0.951441 0.015980 0.000638
Lin Log 100 0.910076 0.910962 0.920522 0.906219 0.914765 0.005651 0.000225
Exp Exp 100 0.938494 0.957520 0.986628 0.953717 0.961124 0.142364 0.005645
Exp Tanh 100 0.944838 0.947034 0.973568 0.941496 0.951605 0.012004 0.000479
Exp Log 100 0.927764 0.957192 0.976439 0.949941 0.960348 0.074788 0.003079

(Continued)
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networks with a higher number of hidden neurons. These 
results indicate that application of a large number of hidden 
neurons is not reasonable. Therefore for further inquiries 
one hidden layer with 20 neurons was adopted.

Amount of learning epochs is also important issue, due 
to due to influence on validation quality (Fig. 7). Network 
learning was terminated when output error for the testing 
subset was greater than the error for the learning subset. 
For most of the applied networks it was enough to use less 
than 200 learning epochs.

A electronic nose system based on artificial neural 
networks can be continuously adjusted (ANN learning), 
which can increases the estimation accuracy of selected 
parameters. It is possible through cyclical enlargement of 
measurement data sets [10]. Such system of fast estimation of 
wastewater parameters should be calibrated individually at 

each implementation. Estimation of wastewater parameters 
required approximately 5–15 min.

3.3. Mathematical modelling and computer simulation

Nowadays, comparing optimization performance sys-
tems wastewater treatment plant, in major cases focus to 
improvement operation of the facility in order to improve 
the quality of life and reduce energy consumption. Definitely 
so significant computer development technique and 
modelling, last enlargement in Poland is simple and easily 
accessible calculation methods (including spreadsheets, 
databases data, simple computational programs and 
it depends) on the spot standards as well as designers 
and WWTP explorers questioning. The effluents from 
WWTPs are discharged to water bodies or rivers, therefore 
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Fig. 5. Averages values of network validation quality for together for COD, N–NO3, N–NO2, N–NH3.

Parameter Activation of 
hidden layer

Activation of 
output layer

% Valid 
obs.

Mean Median Maximum Lower 
quartile

Upper 
quartile

Std. 
Dev.

Standard 
error

COD

Lin Tanh 100 0.927846 0.927754 0.933884 0.927754 0.927772 0.000348 0.000014
Lin Exp 100 0.975182 0.975177 0.975296 0.975177 0.975186 0.000024 0.000001
Exp Tanh 100 0.983038 0.983448 0.988685 0.981977 0.984758 0.004743 0.000191
Log Lin 100 0.985049 0.985303 0.988195 0.984429 0.986029 0.001527 0.000062
Exp Log 100 0.984411 0.985117 0.988854 0.984076 0.985955 0.003785 0.000150
Tanh Exp 100 0.982738 0.983205 0.986650 0.981545 0.984099 0.001943 0.000079
Lin Lin 100 0.957869 0.957756 0.960374 0.957751 0.957819 0.000301 0.000012
Lin Log 100 0.964542 0.964658 0.965263 0.964617 0.964712 0.000505 0.000020
Tanh Tanh 100 0.983032 0.984997 0.989220 0.983784 0.986061 0.038714 0.001515
Exp Exp 100 0.983097 0.983469 0.988042 0.981765 0.984814 0.002557 0.000103
Log Exp 100 0.981614 0.981761 0.986774 0.980599 0.982863 0.002490 0.000101
Tanh Lin 100 0.985583 0.985916 0.989019 0.985011 0.986593 0.001824 0.000071
Log Log 100 0.972542 0.983480 0.987625 0.982186 0.984603 0.095978 0.003791
Exp Lin 100 0.985474 0.985822 0.988999 0.984870 0.986541 0.002185 0.000088
Tanh Log 100 0.980758 0.983450 0.987317 0.981665 0.984570 0.047969 0.001994
Log Tanh 100 0.973881 0.983131 0.988696 0.980113 0.985047 0.083163 0.003280
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can be detrimental for environment toward Green Deal 
implementation in operation and control of the WWTPs. 
EGD is a set of policy initiatives by the European Commis-
sion with the overarching aim of making the European Union 
(EU) climate neutral in 2050.

To normalize issues pertaining to wastewater discharg-
ing many directives and regulations have been released, 
which determine permissible levels of pollutants in effluent 
stream. In order to comply with these regulations and not 
exceed level of particular indicators of wastewater quality, 
the operational mode of facilities at WWTP should be 
properly adjusted according to wastewater parameters 
of influents. These is very difficult without frequently 
performed measurements. Currently there are known 
many techniques and devices for assessment of wastewater 
parameters such as COD, BOD, TOC, TSS, OUR, level of 
phosphorus and nitrogen compounds. In spite of the far 
reaching improvements in automatisation of treatment 
process, there still isn’t developed a automatic measuring 
system of basic wastewater parameters.

The computer simulation used for comparison with the 
data obtained by means of an electronic nose provides the 
description of the actual conditions found in a wastewater 
treatment plant, enabling to carry out dynamic processes in 
an efficient way. Real-time control of biological treatment 

processes conducted on-line with an electronic nose and 
mathematical modelling/computer simulations that utilize a 
supervisory system and another treatment device (including 
dissolved oxygen control and its profile in bioreactor and 
effluent ammonium) could enable considerable energy 
savings at a wastewater treatment plant, without exerting a 
negative impact on the quality of the treated wastewater.

Due to the development of artificial intelligence and 
machine learning, the computer vision technology is cons-
tantly improving and achieving better and better results, 
often capable of even surpassing human abilities. One of the 
many applications in artificial intelligence is an automatic 
image analysis, which is currently a strongly developed 
branch of information technology that has a number of 
applications. One of the possible fields of application for 
automatic image analysis is the recognition and classification 
of objects observed using microscopic techniques. Such 
objects can be an activated sludge organisms, mainly 
protozoa, metazoan as well as bacteria. The rapid on-line 
method of wastewater parameters estimation by electronic 
nose supported by microscopic images carried out in this 
way can provide the information used in analyses of the 
work of bioreactors with activated sludge, biofilm or hybrid 
systems. The aforementioned automatic analyses can be 
used in the future control of the stability of the purification 

 
Fig. 6. Quality value of network validation considering number of neurons in hidden layer n∈ <1–100> and different transfer function 
of hidden and output layer for N–NO2 prediction.
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processes carried out, the evaluation of the quality of the 
treated wastewater, and in the detection of early symptoms 
of treating process failure. Such analyses can also be 
used to assess the level and scope of the impact of treated 
wastewater discharge on the receiving waters.

Required time for determine some parameters according 
to proper methodology vary from 1–2 h COD for even 
5 d BOD5. For the other parameters obtained by means 
immersed sensors, there could be problems with lack of 
repeatability due coating of sensors with biological film. 
Considerable limitation could be also a cost of professional 
measuring equipment. Therefore, in many local WWTP the 
measurement are performed very seldom and treatment 
process is based mainly on observations of experienced 
personnel. Rapid on-line method of wastewater parameters 
estimation by electronic nose and computer simulations 
could be recommended as an alternative solution in many 
WWTPs in comparation with traditional approach. However, 
the algorithms used need adequate and rapid knowledge of 
WWTP operation parameters to correctly recognize WWTP 
recommendation as is proposed in Fig. 8.

Proposed concept of real-time control system besides 
arguments driven from experiments conducted by authors, 
looks promising also because also other scientist suggest 
application electronic nose in analysis and control of 
WWTP. Various publications report that the odor nuisance 
of treatment devices can be determined based on e-nose 
readouts [20,23,24,34–37]. The e-nose usage for odor intensity 
detection in a WWTP as well as the odor analysis in six object 

locations was described by Blanco-Rodríguez et al. [38]. 
The prospective use of a gas sensor array for monitoring 
the wastewater treatment results in SBRs operating under 
laboratory conditions has been discussed as well [10,35]. 
Research indicated that the e-nose can be employed for 
classifying wastewater as well as odors to their respective 
location in a WWTP [3,27,36] reported that gas fingerprints 
can be processed with PCA enabling to interpret and 
differentiate wastewater samples in relation to origin and 
quality, relative to their reference (i.e., deionized water). In 
other WWTPs it was shown that the samples taken from 
the inlet works, settling tank, and final effluent proved that 
a nonspecific sensor array allows distinguishing between 
various types of sewage samples and originating from 
different treatment works [26,36,39].

The in-situ studies performed in full-scale in WWTPs 
using an e-nose have already been conducted by the team 
Łagód et al. [36] and the obtained results are already 
promising, proving the validity and applicability of the 
employed methods. The obtained research results confirm 
that the gas sensor arrays in various configurations can be used 
for analyzing different mixtures of gases from wastewater 
headspace. Rapid, relatively cheap, and repeatable operation 
(provided that the sensors are appropriately flushed before 
use) are the advantages of the above-mentioned devices. 
This method can be employed for so-called screening tests 
(i.e., showing any deviations from the norm). The on-line 
measurements allow also conducting a constant monitoring 
of the wastewater table headspace, and hence acquiring 

 
Fig. 7. Dependences between the measured parameters and the parameters predicted by means of an e-nose: COD, N–NO3, N–NO2, 
N–NH3.
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the information on the conducted processes. Moreover, 
the operation of multisensor arrays as well as the results 
obtained from the performed studies can serve as a basis 
for developing models of wastewater treatment processes 
and early warning systems. Łagód et al., [36] reported that 
the intensity of signals from sensors changed along with 
drops in the level of wastewater pollution; therefore, it was 
possible to classify the samples regarding their similarity and 
the analyzed gas-fingerprint corresponded to the pollution 
level expressed by physical and biochemical indicators. 
These findings are coherent with other research described 
in literature of subject which reveal that the treatment stage 
are also related to the intensity of odor emission [13,33,40,41]. 
Moreover previous work [36] reported that on the basis of 
the PCA and the distribution analysed points on the graph, 
it was possible to notice certain tendencies and correlations 
between the pollution indicators; what has already been 
mentioned in the literature [3,10,24,42–45]. In addition, the 
previous research of authors carried out in a laboratory 
bioreactor [35], showed a shift in the characteristics of the 
studied samples towards the values on the x-axis of PCA plot, 
as the wastewater pollution level increased. Furthermore, the 
accuracy for training and testing data obtained by decision 
tree in case of samples taken in full-scale WWTP was very 
good (reaching 98% and 97%, respectively). There were 
only two observations of outflow from the bioreactor which 
were erroneously classified in the secondary settling tank 
in the test sample; however, this is understandable since 
both stages are adjacent to each other in the wastewater 
treatment process. Therefore, a relatively simple predictive 
model characterized by sufficient accuracy was obtained [36], 
which suggest that method can be developed and applied 
in future for standard procedure of processes control in  
WWTP devices.

4. Conclusion

Improving the efficiency of the wastewater treatment 
process could be done through real-time measurement of 
wastewater parameters performed in a continuous manner. 

Thus far, no commercial devices for on-line measurement 
and control of standard wastewater parameters were 
available. The authors’ previous studies showed that an 
electronic nose can be successfully employed for estimation 
of wastewater parameters in bioreactors with activated 
sludge [10,36].

Accuracy of ANNs with 10÷20 hidden neurons are almost 
identical to the networks with a higher number of hidden 
neurons. Correlation between estimated parameters and 
measured parameters with standard techniques are very 
high: chemical oxygen demand COD r = 0.988, turbidity 
r = 0.940, total suspended solids r = 0.938, as well as nitrogen 
compounds r = 0.870 for N–NO2 in range to 0.55 mg/m3, 
r = 0.959 N–NO3 in range to 29 mg/m3 and r = 0.979 for N–NH3 
in range to 36 mg/m3. Estimation results characterise quite 
wide 95% confidence band, reaching approximately 10 mg/
dm3 for COD, 7.5 mg/m3 for N–NH3, 9 mg/m3 for N–NO3 and 
0.3 mg/m3 for N–NO2.

The obtained values of wastewater parameters could 
serve as an early warning system quickly indicating non-
standard wastewater parameters. Additionally such system 
provides continuous relevant information which can be used 
for data supply for dynamic modelling of processes at a 
WWTP. Additionally, software based on biokinetic activated 
sludge model enabled to perform simulations modelling 
different conditions and dynamic behaviour of input/output 
variables, as well as local conditions in a selected part of a 
treatment plant.

Abbreviations

ADC — Analog-to-digital converter
ANN — Artificial neural networks
ASM — Activated sludge model
BOD — Biochemical oxygen demand
COD — Chemical oxygen demand
CP — Conducting polymers
MLSS — Mixed liquor suspended solids
MOS — Metal oxide semiconductor
OUR — Oxygen uptake rate

 

Fig. 8. Concept of real-time control of biological treatment processes conducted on-line with an electronic nose and mathematical 
modelling/computer simulations.
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PCA — Principal component analysis
QCM — Quartz crystal microbalance
SAW — Surface acoustic wave
SBR — Sequencing batch reactor
SVI — Sludge volume index
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VSS — Volatile suspended solids
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