Modeling and optimization of electrocoagulation process for removal of Cr(VI) and total suspended solids from tannery effluent

Deepesh Singh^a, Vikas Shende^b, Sushil Kumar Agrahari^a, G.L. Devnani^c, Yash Jaiswal^{d,*}, Sunder Lal Pal^{d,*}

^aDepartment of Civil Engineering, HBTU, Kanpur, India ^bDepartment of Energy Centre, MANIT, Bhopal, India ^cDepartment of Chemical Engineering, HBTU, Kanpur, India ^dDepartment of Chemical Engineering, MANIT, Bhopal, India, Tel. +91-755-405-1802; +919479961203; emails: yash.jaiswal28@gmail.com (Y. Jaiswal), Sunderlalin@gmail.com/sunderp@manit.ac.in (S. Lal Pal) http://orcid.org/0000-0002-3787-9085

Received 21 April 2022; Accepted 4 October 2022

ABSTRACT

Hexavalent chromium [Cr(VI)] is one of the toxic heavy metals and total suspended solids both present in different industrial effluents. The key objective is to adopt best and design suitable methods either to reduce or to prevent heavy metals from wastewater. This present study concerns with EC (electrocoagulation) technique which was a robust technique used to treat polluted tannery effluent without using any chemicals and easy to operate and generate less by-products after wastewater treatment. In electro coagulation electric current is applied to both electrodes (anodes and cathodes) whereby sacrificial anodes corrode to create free ions for coagulations in the solution. This study also optimize process variables like current density, operating time and initial pH for electro coagulation for removal of Cr(VI) and total suspended solids (TSS). The response surface methodology (RSM) with central composite design (CCD) used in the development of modelling and statistical analysis of tannery wastewater by EC where RSM is a best mathematical and statistical tool for optimizing the solutions and identify the best solution and artificial neural network which is a robust technique of optimization, validate the RSM prediction. A CCD was executed for suitable and adequate measurement and predicted two factor interaction model were design for %Cr(VI) removal efficiency for both aluminium and iron electrode. The most significant model for %TSS removal efficiency for aluminium and iron electrode, respectively, was quadratic and linear. These models gave coefficient of determination R-squared value, adjusted R-squared value and predicted R-squared values for Cr(VI) and TSS for both Al and Fe electrode, respectively. The optimum condition for predicted maximum Cr(VI) removal was found to be 53.93% and 57.72% for Al and Fe electrodes, respectively, similarly 89% and 86% for %TSS removal.

Keywords: Cr(VI) and total suspended solids (TSS) removal; Response surface methodology (RSM); Central composite design (CCD); Statistical modeling; Artificial neural network (ANN); Analysis of variance (ANOVA); Design-Expert software

* Corresponding authors.

1. Introduction

Industrial waste are usually generated from different industrial processes, the amount and toxicity of waste released from industrial varies with the industrial processes, among all the industrial wastes tannery effluents are highest pollutant [1]. Other industries like electroplating, dairy, textile, oil and oil in water emulsion etc. also generate toxic wastewater [2]. Electroplating industry, leather tanning and textile mill generate a high concentration of chromium (Cr(VI)) in its effluents 140, 10–15 and 5–20 mg/L of Cr(VI), respectively [3,4]. Various treatment are used for tannery effluent like physico-chemical methods, sedimentation, electroflotation, coagulation, filtration, adsorption, reverse osmosis, chemical precipitation etc. [5-7]. Cr(VI) is naturally soluble in aqueous solution [8]. Approximately, 90% of tanneries in the world use Cr salt as tanning material and at least 60% of the Cr is used up in tanning process rest remain in the tanning effluent [9].

The electrocoagulation (EC) technology is highly acceptable for wastewater treatment, due to the need for simple and easy operation, good settling ability of the sludge, lower sludge production, bigger flocks and reducing the secondary pollution without using chemicals and also being safe and environmentally friendly [10,11]. EC is a treatment process of applying electrical current to treat contaminated wastewater and capable of removing small particles with direct current applied, setting them into motion [12,13].

2. Experimental setup and working process

2.1. Apparatus required

The electrocoagulation unit was used 2-L glass reactor for treatment of 1.5 L of tannery effluent. The reactor having an area of 4 cm² × 6 cm² and height of 12 cm, contains six Al or Fe electrodes with magnetic stirrer. Al and Fe electrodes were having thickness of 5 mm, length and width of 5 and 10 cm, respectively. The whole process was connected by D.C. power supply through connecting wire. Tannery effluent which was collected from tanneries treated by EC reactor at maintain initial pH (3, 6.5, and 10), current density (15, 30, and 45 mA/cm²) and operating time (30, 60, and 120 min) [14]. U.V. double beam spectrophotometer, pH-meter and I.R.-30 were used for measuring Cr(VI), pH of solution and total suspended solids of samples [15].

2.2. Experiment processes and analytical approach

For experiment, tannery effluent was collected and segregated it into nine other sample for experiment for both Al and Fe electrodes and maintained initial pH at 3, 6.5 and 10 as required for experiment [16,17]. In these samples, took one sample and maintain initial pH-3 (more acidic) by using acids and treated it for 120 min at 15 mA/cm² current density [18,19]. In that treated sample picked out the treated samples at 30, 60 and 120 min for checking Cr(VI) and total suspended solids (TSS) concentration in treated sample. Similarly took other samples and maintained parameters (initial pH, current density, operating time) like (3, 15, 120), (3, 30, 120), (3, 45, 120), (6.5, 15, 120), (6.5, 30, 120), (6.5, 45, 120), (10, 15, 120), (10, 30, 120), (10, 45, 120) and picked treated sample at 30 and 60 min also for both electrodes (Table 1). The calculation of %Cr(VI) removal efficiency and %TSS removal efficiency after electrocoagulation process were performed using the following formula [20,21].

$$%C_{R} = \left[\frac{\left(C_{0} - C\right)}{C_{0}}\right] \times 100 \tag{1}$$

where C_{R} -contaminant removal, C_{o} and C are concentration of wastewater before and after electrocoagulation.

3. Methodology

Response surface methodology is a collection of mathematical and statistical techniques useful for the modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response [20,22,23].

A central composite design (CCD) is very effective design tool for fitting second-order model was pointed out in this study. The number of tests required for CCD include: 2^k factorial points, 2k axial points fixed at a distance and n_c central points where k is the number of factors [20] then total number of design points in a CCD is $N = 2^k + 2k + n_c$.

The value of alpha (the axial points, α) and n_c are chosen so that the CCD can acquire certain desirable properties causes the CCD to be rotatable. A CCD for 3 factors (operating time, current density, pH) have 8 design points ($2^k = 8$), 6 axial points (2k = 6), and 6 central points and total 8 + 6 + 6 = 20 runs, with alpha to be 1.

The data obtained from the experiment was analyzed using Design-Expert trial version software (Stat-Ease Inc., Minneapolis) for three analytical steps: various model test, analysis of variance (ANOVA) and the response surface plotting were performed to establish an optimal condition [24,25]. The optimum operating time and current density, two dependent factors were analysed as response; Cr(VI) and TSS removal. A regression model was employed for predicting the optimum conditions. The response can be expressed as polynomial model [20,22,26].

$$Y = \beta_o + \sum_{i=1}^n \beta_i X_i + \sum_{i=1}^n \sum_{j=i+1}^n \beta_{ij} X_i X_j + \sum_{i=1}^n \beta_{ii} X_i^2$$
(2)

where *Y* is the predicted response; *n* is the number of independent factor, X_{ij} the controlling factors, β_0 constant coefficient.

Response surface plots were developed from model equation. These response surface plots are helpful in locating the optimized condition [3,13]. In numerical optimization each parameter is set at a desired goal (maximum,

Table 1 Input variable factors and initial ranges

Factor	Variables	Range of initial variables		
Α	pН	3	6.5	10
В	Current density (mA/cm ²)	15	30	45
С	Treatment time (min)	30	60	120

minimum, target, within range and none) along with upper and lower limits for each variable (Fig. 1).

3.1. Artificial neural network modeling

Artificial neural network (ANN) is a parallel computing model, which can map almost any function of practical use [3]. In it normalized CCD data (with range –1 to +1) were used to train the ANN model in visual gene developer 1.7 neural network tool platform. In this case six neurons were chosen for the hidden layer. The sigmoidal, hyperbolic and Gaussian transfer functions were used for input to hidden layer mapping and predicted, which transfer function gave best R^2 -value for data and compared with models, which was selected through response surface methodology (RSM) technique. The Bayesian regulation based function 'TRAINBR' was applied in the feed-forward back propagation framework to train the network in working platform [27]. The ANN model used to validate the optimum RSM predictions.

4. Results and discussion

4.1. Statistical result and analysis

The three factor variable and two response for both aluminium and iron electrode for electrocoagulation was analyzed using RSM, respectively. The CCD Tables 2 and

Stop Setup Formation Experimental Analysis Actual Responses Model Selection ANOVA Model Diagnostic Checking Yes Graphical Analysis Process Optimization

Fig. 1. Schematic representation of methodology.

3 developed the mathematical equations where ANOVA and ANN predicted response was analysed as a function of current density, pH and operating time.

4.2. Model selection and validation

Predicted responses were formed to develop models using RSM [3,20]. The responses were correlated with three factors variable (pH, current density, operating time) according to three factor variable RSM predicted four model (linear, two factor interaction, quadratic and cubic). To determine a most significant model following parameters must follow:

- The model *F*-value must be high.
- The value of Prob. > *F* must less then 0.05 indicate terms are significant [28].
- The predicted *R*²-value is close to the Adj.-*R*² value or difference not more than 20% [20].
- Adeq. precision measures the signal to noise ratio. A ratio greater than 4 is desirable [3].

4.2.1. Model selection for %Cr(VI) removal efficiency for Al and Fe electrode

To develop a response surface regression model for %Cr(VI) for Al electrode a two factor interaction model was most significant and polynomial model as shown in Eq. (3) and Table 4.

%
$$Cr(VI)$$
 removal efficiency = +39.39 - 0.633 × pH
+ 0.133 × current density + 0.075 × Operating time
- 0.013 × pH × current density - 9.95 × pH × time
+ 1.44 × current density × time (3)

To develop a response surface regression model for %Cr(VI) for Fe electrode a two factor interaction model was most significant and polynomial model as shown in Eq. (4) and Table 5.

% Cr(VI) removal efficiency =
$$+46.14 - 2.33 \times pH$$

+ 0.231× current density + 0.066 × Operating time
- 0.019 × pH × current density - 7.613 × pH × time
+ 1.042 × current density × time (4)

4.2.2. Validation of model for %Cr(VI) removal efficiency

The response surface model was selected for higher R^2 -value like 0.9621 and 0.99 for Al and Fe electrode, respectively. However R^2_{adj} value likely close to the R^2 -value insure a satisfactory result. For validation of model graphical method were used and characterize the residue of the models. A residual is a difference between experimental value and its predicted value [20,26]. If the model is valid, the residue should be structure less, it should be unrelated to any other variable like predicted response. The graphical representation of residue vs predicted response for

S. No.		Actual valu	e	%Cr(V	I) removal effic	iency for Al	%Cr(VI)	%Cr(VI) removal efficiency for Fe			
	рН	Current density (mA/cm²)	Operating time (min)	Exp.	ANOVA pred.	ANN pred.	Exp.	ANOVA pred.	ANN pred.		
1	3	15	30	40.25	39.90	40.39	45.01	43.49	44.15		
2	3	45	120	54.63	53.93	52.08	59.01	57.72	56.11		
3	6.5	30	60	40.30	38.88	38.55	36.32	36.93	36.50		
4	6.5	30	60	38.50	38.88	38.55	35.72	36.93	36.50		
5	10	15	30	31.45	31.96	30.96	22.65	23.45	23.08		
6	10	15	120	33.01	31.73	32.80	25.03	23.97	24.32		
7	6.5	30	60	39.30	38.88	38.55	37.31	36.93	36.40		
8	6.5	30	60	40.01	38.88	38.55	36.65	36.93	36.40		
9	3	30	60	46.47	44.61	45.05	48.72	48.78	49.28		
10	6.5	30	60	39.40	38.88	38.55	37.02	36.93	36.40		
11	10	45	30	33.65	33.19	34.16	27.23	25.41	27.10		
12	3	15	120	45.42	45.95	46.54	47.65	48.80	50.31		
13	6.5	30	30	36.40	37.26	37.11	35.43	35.49	36.16		
14	10	45	120	36.40	36.87	37.34	27.74	28.75	29.33		
15	6.5	30	60	38.50	38.88	38.55	36.96	36.93	36.40		
16	6.5	45	60	41.03	40.86	40.44	40.67	39.41	38.96		
17	6.5	30	120	40.03	42.12	41.90	40.67	39.81	39.67		
18	6.5	15	60	35.50	36.90	36.22	34.14	34.44	33.71		
19	10	30	60	33.12	33.15	33.35	25.23	25.07	25.22		
20	3	45	30	42.32	43.98	45.90	49.24	49.60	50.76		

Table 2 CCD with experimental and predicted responses for Cr(VI) removal efficiency

Table 3

CCD with experimental and predicted responses for TSS removal efficiency

S. No.		Actual valu	e	%TS	%TSS removal efficiency for Al			%TSS removal efficiency for Fe		
	pН	Current density (mA/cm ²)	Operating time (min)	Exp.	ANOVA pred.	ANN pred.	Exp.	ANOVA pred.	ANN pred.	
1	10	15	120	76.3	77.84	79.08	76.8	76.50	79.14	
2	6.5	30	60	86.2	84.59	85.39	87.3	86.85	81.68	
3	3	15	120	94.6	94.98	92.50	76.4	75.75	80.56	
4	6.5	30	60	85.2	84.59	85.39	88.3	86.85	81.68	
5	10	45	30	75.4	75.65	75.12	78.9	79.19	83.64	
6	6.5	30	60	84.2	84.59	85.39	87.5	86.85	81.68	
7	10	15	30	72.3	73.51	73.15	74.2	73.64	78.48	
8	6.5	30	120	89.4	87.48	88.92	87.5	88.91	82.02	
9	6.5	15	60	82.8	83.52	84.19	81.5	83.23	79.57	
10	3	30	60	93.5	93.16	90.31	75.2	76.17	82.19	
11	10	45	120	77.2	79.98	80.95	80.3	79.90	83.90	
12	6.5	30	60	85.6	84.59	85.39	86.4	86.85	81.68	
13	6.5	45	60	91.4	85.66	86.36	89	89.21	84.44	
14	3	15	30	90.3	90.65	88.31	70.1	69.89	80.00	
15	10	30	60	74.5	76.02	75.90	76.8	77.77	80.83	
16	6.5	30	30	85.3	83.15	84.32	85.1	85.63	81.57	
17	6.5	30	60	86.4	84.59	85.39	88.3	86.85	81.68	
18	6.5	30	60	85.5	84.59	85.39	87.2	86.85	81.68	
19	3	45	30	86.2	92.79	90.29	77.8	77.74	84.83	
20	3	45	120	96.8	97.12	93.54	81.5	81.45	85.00	

Table 4	
Model selection	for Al electrode

Model	R ² -value	AdjR ² value	PredR ² value	Adeq. precision	<i>F</i> -value	Prob. $> F$	Model condition
Linear	0.9033	0.8852	0.7945	26.707	49.81	< 0.0001	Significant
Two factor interaction	0.9621	0.9446	0.8104	29.828	55.01	< 0.0001	Most significant
Quadratic	0.9738	0.9503	0.7063	26.334	41.33	< 0.0001	More significant
Cubic	0.9925	0.9763	-3.1438	33.773	61.25	< 0.0001	Aliased

Table 5

Model selection for Fe electrode

Model	R ² -value	Adj <i>R</i> ² value	Pred R^2 value	Adeq. precision	<i>F</i> -value	Prob. $> F$	Model condition
Linear	0.9752	0.9705	0.9420	47.62	209.47	< 0.0001	Significant
Two factor interaction	0.9900	0.9854	0.8982	51.58	215.03	< 0.0001	Most significant
Quadratic	0.9919	0.9845	0.8429	41.62	135.30	< 0.0001	More significant
Cubic	0.9990	0.9967	0.9232	81.39	442.82	< 0.0001	Aliased

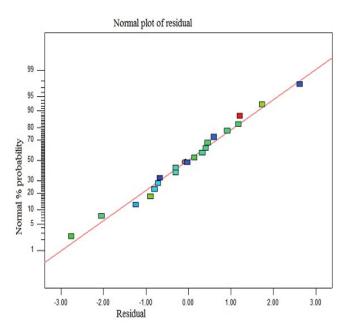


Fig. 2. Normal % probability vs. residual of %Cr(VI) removal for 2F interaction model for Al electrode.

Al and Fe electrode were shown in Figs. 3 and 5 which was not in a particular structure and normal % probability plot also show the normal distribution of residues for responses in Figs. 2 and 4.

4.2.3. Model selection for %TSS removal efficiency for *Al* and *Fe* electrodes

To develop a response surface regression model for %TSS for Al electrode a linear model was most significant and polynomial model as shown in Eq. (5) and Table 6.

% TSS removal by Al electrode =
$$+95.48 - 2.45 \times pH$$

+ 0.07 × current density + 0.048 × Operating time (5)

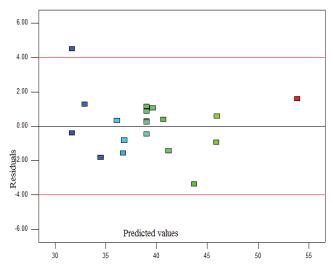


Fig. 3. Residual vs. predicted value of %Cr(VI) removal for 2F interaction model for Al electrode.

To develop a response surface regression model for %TSS for Fe electrode a quadratic model was most significant and polynomial model as shown in Eq. (6) and Table 7.

% TSS removal by Fe electrode = $+34.77 - 11.32 \times pH$

- $+0.49 \times \text{current density} + 0.102 \times \text{time}$
- $-0.0109 \times pH \times current \ density 4.76 \times pH \times time$
- $-7.97 \times \text{current density} \times \text{time} 0.80 \times \text{pH}^2$
- $-2.808 \times \text{current density}^2 7.138 \times \text{time}^2$ (6)

4.2.4. Validation of model for %TSS removal efficiency

The response surface model was selected for higher R^2 -value like 0.88 and 0.97 for Al and Fe electrode, respectively (Figs. 6–9).

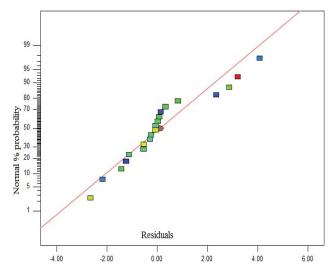


Fig. 4. Normal % probability vs. residual graph for %Cr(VI) removal for 2F interaction model for Fe electrode.

4.3. Analysis of variance for %Cr(VI) and %TSS removal for Al and Fe electrodes

The *p*-value was used as a tool to check the significant factors. The factors, which show the major effect for %Cr(VI) removal by Al and Fe electrodes were the linear effect of pH, current density and operating time, Having *p*-value of <0.0001 significant for each factor as shown in Table 8 and others interaction terms pH × operating time and current density × operating time are significant with *p*-value 0.0035 and 0.0449, respectively for Al electrode and significant interaction terms for Fe electrode is pH × current density and pH × operating time with p value 0.0215 and 0.0092, respectively. The lack of fit F-test predicts the variation in the data around the fitted model. If the model does not fit the data means, the lack of fit will be significant. Here for %Cr(VI) removal by Al and Fe electrode the *p*-value for the lack of fit equals 0.0721 and 0.0367, respectively, shows

Table 6 Model selection for Al electrode

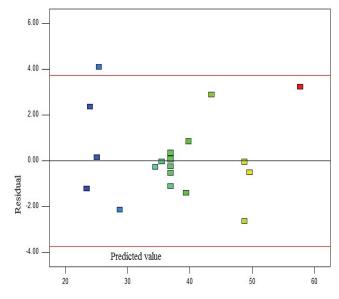


Fig. 5. Residual vs. actual value graph of %Cr(VI) removal for 2F interaction model for Fe electrode.

that for Al electrode lack of fit was insignificant. It implies that the significant model correlation between the factor variables and process response.

%TSS removal by Al and Fe electrode show in Table 9 in which the *p*-value for the lack of fit equals 0.0037 and 0.0727, respectively, shows that for Fe electrode lack of fit was insignificant.

4.4. Optimization analysis of responses

Table 10 shows the optimal parameters suggested by RSM. These optimized values was obtained at pH = 3, current density = 45 mA/cm² and operating time 120 min which produced overall desirability (*D*) 0.970 and 0.965 for Al and Fe electrode, respectively, for giving 53.930% by Al and 57.724% by Fe electrode. Table 11 show the optimal condition for %TSS removal efficiency.

Model	R ² -value	AdjR ² value	PredR ² value	Adeq. precision	<i>F</i> -value	Prob. > F	Model condition
Linear	0.8807	0.8583	0.7857	20.34	39.36	< 0.0001	Most significant
Two factor interaction	0.8957	0.8476	0.3774	14.94	18.61	< 0.0001	significant
Quadratic	0.9444	0.8943	0.4659	15.40	18.86	< 0.0001	More significant
Cubic	0.9892	0.9659	-1.19686	22.87	42.41	< 0.0001	Aliased

Table 7
Model selection for Fe electrode

Model	<i>R</i> ² -value	Adj <i>R</i> ² value	PredR ² value	Adeq. precision	<i>F</i> -value	Prob. > F	Model condition
Linear	0.1396	-0.0217	-0.4026	3.113	0.87	0.4792	Not significant
Two factor interaction	0.1547	-0.2354	-3.4621	2.502	0.40	0.8683	Not significant
Quadratic	0.9789	0.9599	0.8996	23.56	51.50	< 0.0001	Significant
Cubic	0.9838	0.9486	-20.3653	18.31	28.00	< 0.0001	Aliased

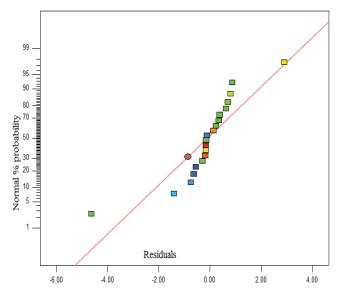


Fig. 6. Normal % probability vs. residual graph for linear model for Al electrode.

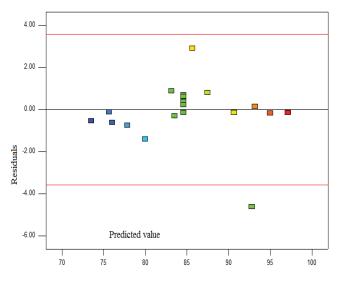


Fig. 7. Predicted value vs. residual graph of for linear model for Fe electrode.

These optimized value was obtain at pH = 3, current density = 45 mA/cm² and operating time = 120 min, which gives overall desirability (D) = 0.991 for Al electrode and for pH = 6.964, current density = 32.096 mA/cm², operating time 119.922 min gave desirability (D) = 1.000 for Fe electrode.

5. Summary and conclusions

Electrocoagulation is a best technique for tannery wastewater treatment or removal of heavy metals from contaminated water and produced less sludge, no chemical used in the processes. A central composite design (CCD) was executed for suitable and adequate measurement and predicted two factor interaction model was most significant for

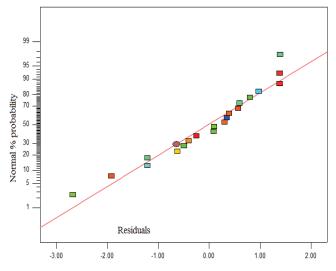


Fig. 8. Normal % probability vs. residual graph of quadratic model for Fe electrode.

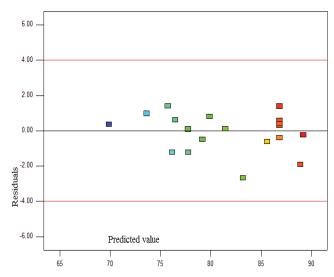


Fig. 9. Predicted values vs. residual graph of for quadratic model for Fe electrode.

%Cr(VI) removal efficiency for both aluminium and iron electrode and for %TSS removal efficiency, quadratic model was found suitable for Fe electrode and linear model for Al electrode. These models gave coefficient of determination *R*-squared value, adjusted *R*-squared value and predicted *R*-squared values (0.9621, 0.9446, 0.8104), (0.9900, 0.8583, 0.8982), (0.8857, 0.8583, 0.7857), (0.9789, 0.9599, 0.8996) for %Cr(VI) removal efficiency for Al and Fe electrodes and %TSS removal efficiency for Al and Fe electrodes, respectively, and *F*-value was 55.01, 215.03, 39.36 and 51.50, which was high enough. In multiple optimization for %Cr(VI) removal efficiency was found 53.930% and 57.724% for Al and Fe electrode, respectively, and Fe electrode, respectively, and Fe electrode, respectively.

Finally, this study concluded that Al electrode was best fitted for Cr(VI) removal efficiency over to Fe electrode in

Source	%Cr(VI) removal efficiency for Al		%Cr(VI) removal efficiency for Fe		
	F-value	Prob. $> F$	F-value	Prob. $> F$	
Model (2FI)	55.01	< 0.0001*	215.03	< 0.0001*	
A-pH	245.58	< 0.0001*	1,184.10	< 0.0001*	
<i>B</i> -current density	33.40	< 0.0001*	58.41	< 0.0001*	
C-operating time	39.42	< 0.0001*	39.05	< 0.0001*	
AB	2.56	0.1338	6.83	0.0215*	
AC	12.70	0.0035*	9.32	0.0092*	
BC	4.92	0.0449*	3.21	0.0965	
Residual					
Lack of fit	3.99	0.0721(NS)	5.62	0.0367*	

Table 8 ANOVA prediction of 2FI model for %Cr(VI) removal for Al and Fe electrode

Table 9

ANOVA prediction of linear and quadratic model for %TSS removal for Al and Fe electrode, respectively

Source	%TSS removal efficiency for Al		%TSS removal efficiency for Fe		
	F-value	Prob. > F	<i>F</i> -value	Prob. > F	
Model	39.36	< 0.0001*	51.50	<0.0001*	
A-pH	109.01	< 0.0001*	2.24	0.1657	
B-current density	1.70	0.2108	58.55	< 0.0001*	
C-operating time	7.36	0.0153*	19.99	0.0012*	
AB			1.97	0.1911	
AC			3.42	0.0942	
BC			1.76	0.2141	
A^2			199.62	< 0.0001*	
B^2			0.82	0.3876	
C^2			0.033	00.8600	
Residual					
Lack of fit	15.41	0.0037*	4.13	0.0727 (NS)	

*significant at $p \le 0.05$; NS = Not significant

Table 10	
Multiple response optimization with RSM and ANN prediction for %Cr(VI)	

S. No.	Parameters	Goal	Upper limit		Lower limit
1	рН	In range	10		3
2	Current density	In range	45		15
3	Operating time	In range	120		30
4	%Cr(VI) removal by Al	Maximize	54.63		31.45
5	%Cr(VI) removal by Fe	Maximize	59.01		22.65
Validation experiment	рН	Current density	Operating	%Cr(VI) removal	%Cr(VI) removal
		(mA/cm ²)	time (min)	efficiency by Al	efficiency by Fe
Validation at	3	45	120	53.930	57.724
optimize condition					
ANN prediction	3	45	120	52.08	56.11

Table 11

Multiple response optimizations with RSM and ANN prediction for %TSS

S. No.	Parameters	Goal	Upper limit	Lower limit
1	рН	In range	10	3
2	Current density	In range	45	15
3	Operating time	In range	120	30
4	%TSS removal by Al	Maximize	96.80	72.30
5	%TSS removal by Fe	Maximize	89.00	70.10
Validation experiment	pH	Current density (mA/cm ²)	Operating time (min)	%TSS removal efficiency by Al
Validation at optimize condition	3	45	120	96.586
ANN prediction	3	45	120	94.33
Validation experiment	pН	Current density (mA/cm ²)	Operating time (min)	%TSS removal efficiency by Fe
Validation at optimize	6.964	32.096	119.922	89.004
condition				
ANN prediction	6.964	32.096	119.922	86.025

all pH range but in acidic medium Fe electrode performed better than Al. For TSS removal Fe electrode was best fitted and gave better removal efficiency.

References

- S. Banuraman, T.P. Meikandaan, Treatability study of tannery effluent by enhanced primary treatment, Engineering (Semantic Scholar), 3 (2013) 119–122.
- [2] G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
- [3] M.S. Bhatti, A.S. Reddy, R.K. Kalia, A.K. Thukral, Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium, Desalination, 269 (2011) 157–162.
- [4] A. Deghles, U. Kurt, Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process, Chem. Eng. Process. Process Intensif., 104 (2016) 43–50.
- [5] I. Ilou, S. Souabi, K. Digua, Quantification of pollution discharges from tannery wastewater and pollution reduction by pre-treatment station, Int. J. Sci. Res., 3 (2014) 1706–1715.
- [6] C.A. Igwegbe, O.D. Onukwuli, J.O. Ighalo, C.J. Umembamalu, The process partially fitted to the theory of flocculation proposed by von Smoluchowski, Chem. Eng. J. Adv., (2021) 100107, doi: 10.1016/j.ceja.2021.100107.
- [7] J.-w. Feng, Y.-b. Sun, Z. Zheng, J.-b. Zhang, S. Li, Y.-c. Tian, Treatment of tannery wastewater by electrocoagulation, J. Environ. Sci., 19 (2007) 1409–1415.
- [8] S.S. Hamdan, M.H. El-Naas, Characterization of the removal of chromium(VI) from groundwater by electrocoagulation, J. Ind. Eng. Chem., 20 (2014) 2775–2781.
- [9] L. Szpyrkowicz, S.N. Kaul, R.N. Neti, S. Satyanarayan, Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater, Water Res., 39 (2005) 1601–1613.
- [10] M. Dehghani, S. Seresht, H. Hashemi, Treatment of hospital wastewater by electrocoagulation using aluminum and iron electrodes, Int. J. Environ. Health Eng., 3 (2014) 15, doi: 10.4103/2277-9183.132687.
- [11] H. Zheng, G. Zhu, S. Jiang, T. Tshukudu, X. Xiang, P. Zhang, Q. He, Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of flocs, Desalination, 269 (2011) 148–156.
- [12] V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sustainable Chem., 3 (2013) 89–121.
- [13] E.Ü. Deveci, C. Akarsu, Ç. Gönen, Y. Özay, Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective, Process Biochem., 84 (2019) 124–133.
- [14] L.S. Thakur, P. Mondal, Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation, J. Environ. Manage., 190 (2017) 102–112.

- [15] S. Vasudevan, J. Lakshmi, G. Sozhan, Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water, J. Hazard. Mater., 192 (2011) 26–34.
- [16] S. Aoudj, A. Khelifa, N. Drouiche, R. Belkada, D. Miroud, Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode, Chem. Eng. J., 267 (2015) 153–162.
- Fe-Al anode, Chem. Eng. J., 267 (2015) 153–162.
 [17] S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M.N. Pons, F. Lapicque, J.P. Leclerc, Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode, J. Hazard. Mater., 319 (2016) 69–77.
- [18] N. Galvão, J.B. de Souza, C.M. de Sousa Vidal, Landfill leachate treatment by electrocoagulation: effects of current density and electrolysis time, J. Environ. Chem. Eng., 8 (2020) 104368, doi: 10.1016/j.jece.2020.104368.
- [19] Y.A. El-Taweel, E.M. Nassef, I. Elkheriany, D. Sayed, Removal of Cr(VI) ions from waste water by electrocoagulation using iron electrode, Egypt. J. Pet., 24 (2015) 183–192.
- [20] A.N. Ghanim, Optimization of Pollutants Removal from Textile Wastewater by Electrocoagulation Through RSM, J. Babylon Univ., 2014.
- [21] A.D. Villalobos-Lara, F. Álvarez, Z. Gamiño-Arroyo, R. Navarro, J.M. Peralta-Hernández, R. Fuentes, T. Pérez, Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor, Chemosphere, 264 (2021) 128491, doi: 10.1016/j.chemosphere.2020.128491.
- [22] A.I. Khuri, S. Mukhopadhyay, Response surface methodology, WIREs Comput. Stat., 2 (2010) 128–149.
- [23] Y. Ait Ouaissa, M. Chabani, A. Amrane, A. Bensmaili, Integration of electro coagulation and adsorption for the treatment of tannery wastewater – the case of an Algerian factory, Rouiba, Procedia Eng., 33 (2012) 98–101.
- [24] J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
- [25] J. Lu, Z. Wang, X. Ma, Q. Tang, Y. Li, Modeling of the electrocoagulation process: a study on the mass transfer of electrolysis and hydrolysis products, Chem. Eng. Sci., 165 (2017) 165–176.
- [26] C. Lalanne, R Companion to Montgomery's Design and Analysis of Experiments, Cpdee. Ufmg. Br., 2005. Available at: http://scholar.google.com/scholar?hl=en&btnG =Search&q=intitle:R+Companion+to+Montgomery's+Design +and+Analysis+of+Experiments#0
- [27] M. Zakaria, M. Al-Shebany, S. Sarhan, Artificial neural network: a brief overview, Int. J. Eng. Res. Appl., 4 (2014) 7–12.
 [28] Z. He, X-t. Zhang, G.-q. Xie, Product Quality Improvement
- [28] Z. He, X-t. Zhang, G.-q. Xie, Product Quality Improvement Through Response Surface Methodology: A Case Study, Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management, 2013, pp. 120–130.