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a b s t r a c t
This paper investigated the removal of erythrosine (ER) and Fast Green FCF (FG) in binary samples 
by heterogeneous photocatalysis with ZnO and H2O2 and modeled the kinetics of the process by 
artificial neural networks. Initially, a set of assays were carried out and 93% and 77% degradation 
rates were achieved for aromatics and color, respectively, after 90 m in the ZnO/H2O2/UV-C pro-
cess. The initial concentrations of ZnO, H2O2, and pH were investigated in a 23-experimental design 
and the best removal rates were achieved at the central point conditions. Conventional modeling 
revealed a reasonable fitting by the pseudo-first-order kinetics model (R2 > 0.98) and the kinetic 
rate constants were estimated at 0.0296 and 0.0141 m–1 for color and aromatic content, respectively. 
An artificial neural network model presented a broader mathematical approach to the kinetics of 
the process with high R2 (0.98). A removal of 45% and 58% in total organic carbon and chemical 
oxygen demand, respectively, was observed. In toxicity assays with lettuce seeds, the absence of 
inhibition in root growth index (0.85) when exposed to treated samples pointed out the consid-
erable decrease in acute toxicity. Thus, ZnO/H2O2 under UV-C radiation was demonstrated to be 
efficient in removing synthetic dyes from binary samples.
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1. Introduction

Industrial development has been considered one of the 
main causes of current environmental issues. Commercial 
synthetic dyes are widely employed as raw materials in 
the manufacturing processes of textile, paper, food and 
in the pharmaceutical industries [1]. In the food industry, 
synthetic dyes are able to enhance the visual aspect of the 
products due to the presence of chromophore groups in 
their chemical structure. According to the nature of these 

groups, they may be azo, triarylmethane, indigoid, and 
xanthene dyes. Erythrosine from the group of the xan-
thenes, and Fast Green FCF, a triarylmethane, are widely 
employed in formulating candies, jams, and drinks, among 
other products [2,3].

Synthetic organic dyes normally display complex aro-
matic structures, high chemical stability, and low biode-
gradability, which make them difficult to be removed from 
residual waters [4]. The high loads of organic dyes in water 
bodies hinder solar light absorption, therefore, inhibiting 
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the growth of microorganisms by photosynthesis. Besides 
that, the rise of organic matter also alters the oxygen dis-
solution in water [5]. Synthetic dyes may also present car-
cinogenic and mutagenic properties to living beings [6].

Nowadays it is estimated that 10%–15% of dyes are 
released into the environment without proper treatment 
[7,8]. The coloration of wastewater is a consequence of pro-
cess inefficiency and has attracted the attention of research-
ers worldwide. These chemical complex structures may 
lead to resistance to aerobic treatments and the generation 
of hazardous by-products under anaerobic treatment. These 
by-products may present high toxicity and carcinogene-
sis. Thus, biological treatments have proven not to be an 
efficient approach to the mitigation of these substances in 
wastewater [9].

A range of physico-chemical techniques has been stud-
ied for the removal of color in aquatic samples. Adsorption 
and coagulation/flocculation, for example, are known as 
simple operations although they only alter the pollutants 
phase causing secondary pollution. Membrane processes 
are, in general, highly costly and have their efficiency 
limited when not combined with other techniques [6,10]. 
Advanced oxidation processes (AOPs) have emerged as a 
waste-free alternative that aid in complete mineralization 
of organic pollutants in aquatic media and it has reach in 
many cases. AOPs are characterized by the in-situ genera-
tion of highly reactive radicals (specially •OH), which are 
able to attack most of the recalcitrant organic pollutants 
[11,12]. A wide range of AOPs have been investigated in 
the removal of organic pollutants in these last few decades 
such as photoperoxidation [13], electrochemical pro-
cesses [14], Fenton and electro-Fenton reactions [15,16], 
sonochemical-assisted processes [17,18], and heteroge-
neous photocatalysis [12–19].

Among a diversity of advanced oxidation mechanisms, 
heterogeneous photocatalysis has gained attention by 
employing TiO2 [20,21], ZnO [22,23], and the combination 
of TiO2 and ZnO [24]. Other photocatalyst combinations 
for dye degradation have been reported, such as TiO2/
SiO2/Fe2O3 [25] and ZnO@SiO2 [26]. Titanium dioxide is 
still the favorite in photocatalysis due to its photochemical 
properties and low cost, followed by ZnO, which has also 
demonstrated high efficiency in pollutant degradation 
under UV light [27]. The application of mixed materials 
combined with water-soluble oxidizing agents, such as 
hydrogen peroxide, has been recently reported as present-
ing synergic effects in the removal of organic pollutants 
[28–30]. Aquino et al. [31] have reported an enhancement 
in photocatalytic activity of TiO2/UV-C by adding H2O2 at 
a certain dosage to remove green leaf dye from a water 
medium. Santos et al. [32] investigated the removal of 
Brilliant Blue FCF and erythrosine by combining H2O2 and 
immobilized TiO2 exposed to UV-C radiation. Kumawat 
et al. [22] studied the removal of nigrosin, an anionic dye, 
by photocatalysis with doped and non-doped zinc oxide.

Organic oxidation reactions may be complex and 
require the application of a variety of kinetic models to fit 
the wide range of degradation data in order to understand 
the mechanisms involved in the processes. Some recent 
works have reported artificial neural networks (ANNs) as 
a promising modeling technique for AOP reactions [30,31]. 

ANNs are able to learn the behavior of a phenomenon 
when variables are studied and correlate multiple inputs 
to outputs; it is possible to correlate several factors, such 
as pH, reactants’ initial concentrations, and time to obtain 
the concentration of pollutants under these given condi-
tions, which is not possible with conventional phenome-
nological models. ANNs can be used to analyze complex 
chemical phenomena and reaction patterns such as the 
oxidation of dye molecules in water [30]. Therefore, ANN 
is ideal to describe complex processes not fully under-
stood such as in this study. A lack of reports addressing 
the application of ANNs for the AOP treatment systems 
of multicomponent mixtures deserves to be highlighted, 
especially for pollutants from the food industry.

Thus, this work aimed to (1) evaluate the degradation of 
synthetic dyes such as erythrosine (ER) and Fast Green (FG) 
mixture samples in different AOP systems, (2) analyze the 
degradation data with usual kinetic models, and (3) com-
pare these models with ANNs. For the experimental design, 
hydrogen peroxide (H2O2), titanium dioxide, and zinc oxide 
were employed as oxidation agents under UV-C radiation. 
Finally, four toxicity assays were performed in order to com-
pare the acute toxicity of the samples before and after the  
treatment.

2. Experimental setup

2.1. Materials

The synthetic anionic dyes erythrosine (ER, CI 45430, 
C20H6I4Na2O5) and Fast Green (FG, CI 42053, C37H34N2O10S3) 
are commonly used in food industry processes. Those used 
in this study were purchased from F. Trajano Aromas & 
Ingredientes Ltda (Brazil). Titanium dioxide P-25 (80% ana-
tase phase and 20% rutile phase, specific area of 50 m² g–1) 
and ZnO (specific area of 5 m² g–1) were acquired from 
Evonik Degussa Ltda. (Brazil) and Biodinâmica Química 
e Farmacêutica Ltda. (Brazil), respectively. Hydrogen 
peroxide was purchased from Peroxidos Ltda. (Brazil).

2.2. Dye degradation

Samples of 10 mg L–1 of each dye were prepared for the 
experiments. The assays were carried out with 300 mL of 
sample in a photocatalytic batch reactor using a UV-C lamp 
(ILUMISAMPA, 30 W, λ = 254 nm). The lamp was heated 
for 30 m to stabilize the radiation emission before each 
experiment and the heterogeneous systems with a solid cat-
alyst dispersed in dye solution were pre-stirred for 30 min 
to dismiss the effects of adsorption onto the particles, as 
reported by Nascimento Júnior et al. [19]. Hydrogen per-
oxide concentration was 2.86 mmol L–1, which corre-
sponded to the stoichiometry amount needed to completely 
degrade all the dyes. Catalyst concentration was 0.33 g L–1.

Different processes were compared to select which one 
would cause the highest degradation rates and the results 
are displayed in Table S1, including operational costs on 
a laboratory scale. Kinetic degradation assays were per-
formed for 90 min with 4-mL sample withdrawal at 5, 15, 
30, 45, 60, 75, and 90 min. After collection, the samples were 
centrifuged for 30 min at 3,500 rpm to separate the solid 
catalyst. The resulting degraded sample was analyzed in 
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UV-vis SPECTROQUANT PHARO 300 spectrophotome-
ter. The wavelengths of maximum absorption occurred at 
254 nm for aromatic content in dyes and 527 and 622 nm, 
respectively, for ER and FG. The analytical parameters for 
the analyses are displayed in Table S2.

3. Experimental design

A 2³-experimental design evaluated the effects of the 
operational conditions on dye degradation. The parameters 
investigated in the study were catalyst mass (0.05, 0.1, and 
0.15 g), peroxide concentration (1.67, 2.86, and 4.29 mmol L–1), 
and pH (5, 7, and 9). The central point was performed in 
triplicate to determine the experimental error. Statistica 
Experimental Design 10© was used for data analyses. Each 
experiment lasted up to 120 min.

3.1. Kinetic and neural network modeling

An assay was performed using the selected conditions 
from the previous analyses to evaluate the temporal behavior 
of pollutant removal. The assays were carried out in dupli-
cate. The non-linear pseudo-first-order (PFO) kinetic model 
(Eq. (1)) was fit to the concentration data using OriginPro 
9.0 software.
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An ANN model was developed based on the exper-
imental results from experimental design assays. They 
were used to train the ANN model. The input data were 
normalized to the range [–1, 1] and the neural network 
structure was built with 4 input parameters, 3 neurons 
in the hidden layer, and 2 output parameters (type 4:3:2). 
The input set of data was characterized by the amount of 
ZnO (mg), the concentration of H2O2 (µL), pH, time (in 
minutes). The output data were generated in normalized 
values and taken to degradation rates of dyes (C.C0

–1) and 
aromatics (Ar.Ar0

–1). The software was developed in C# 
language in Unity 3D© and the adopted criteria were abso-
lute mean error and the R². A feedforward network type 
with a sigmoidal activation function between –1 and 1 was 
employed according to Eq. (2). All the degradation data fed 
in, to a total of nine experimental conditions and 81 points. 
The training method used a combination of techniques 
such as particle swarm optimization, genetic algorithm, 
and random search, in order to attain a network with mini-
mized error. The total training time lasted 7,600 s according 
to the requirements of stabilization of residual error.

3.2. Environmental parameters and toxicity of the degraded dyes

Chemical oxygen demand (COD) and total organic 
carbon (TOC) analyses were carried out for raw and 
post-treatment samples. COD measurements were per-
formed as in Standard Methods for Examination of Water 
and Wastewater [32] while TOC measurements were accom-
plished in a TOC-VCPN meter (SHIMADZU Co., Japan).

Toxicity assessment of raw and treated samples was 
carried out with Lactuca sativa (lettuce) seeds according to 

the methods proposed by Utzig et al. [33]. The seeds were 
purchased from Feltrin Sementes LTDA. (Brazil) and the 
negative and positive controls were made of distilled water 
and boric acid (3%), respectively. Germination index (GI) 
was calculated by the rates of germinated seeds regarding 
the total number of seeds and the relative growth index 
(RGI) was estimated by Eq. (2).

GI ARS
ARC

=  (2

where ARS is the average of root elongation when exposed 
to the samples and ARC is the average of root elongation 
when exposed to the negative control.

4. Results and discussion

4.1. Degradation of dyes using different methods

The assays performed in the absence of radiation did 
not reach significant dye degradation rates after 120 min. 
Santos et al. [32] have reported similar results in AOP sys-
tems with no UV radiation. This event indicates that the 
adsorption effects of catalysts and the degradation by raw 
oxidizing agents have minimum effect on degrading pol-
lutants. From Fig. 1a, it is possible to observe a reasonable 
degradation rate (42.5%) under photolysis. This result 
was related to the degradation of ER; no considerable 
removal of FG was attained after 90 min of reaction.

The results display a slighter increase in the removal 
rates by employing ZnO when compared with TiO2 as the 
photocatalyst. This can be explained by the broader range 
of the ZnO absorption spectrum, which facilitates the gen-
eration of radicals and maintenance of the electron–hole 
pair [34]. Other reports in the literature have also found 
superior degradation rates of dyes by employing ZnO in 
heterogeneous photocatalysis in comparison with TiO2 
[35,36]. According to the results, the best removal degrada-
tion rates were attained with the H2O2 and ZnO/H2O2 UV-C-
based systems (88.9% and 92.9% after 90 min, respectively). 
Neves et al. [20] observed 80% of degradation removal 
rates for a binary textile dye sample after 150 m in a TiO2/
H2O2 UV-C-based system, while Brahim et al. [37] observed 
similar rates in only 60 min in a ZnO/H2O2 system.

Regarding the ZnO system, the presence of H2O2 in het-
erogeneous systems was demonstrated to enhance the deg-
radation rates, corroborating the synergic effect observed in 
the process. As reported by Barbosa et al. [38], in addition 
to increasing free radicals •OH generation rates, H2O2 is 
also believed to suppress the recombination of the electron/
hole pair on photocatalyst. As a consequence of that, zinc 
oxide is able to be longer in the excited state enhancing the 
efficiency of the degradation.

Fig. 1b displays the degradation results for the aro-
matic content in ER and FG dyes. Low degradation 
rates (32.0%) were obtained in the H2O2/UV-C, despite 
the high efficiency in removing color. Nascimento et al. 
[39] obtained a low degradation rate for aromatics in the 
treatment of food dyes with a photoperoxidation process 
under UV-C light, corroborating the results achieved in 
this work. The other experiments demonstrated efficiency 



131M.D. Irineu et al. / Desalination and Water Treatment 280 (2022) 128–138

in degrading the aromatic content, especially TiO2/H2O2 
and ZnO/H2O2, reaching 71.3% and 76.7%, respectively. 
Thus, the presence of photocatalysts is believed to impact 
positively not only the removal of color but also the aro-
matics. According to the results, the best performance was 
observed in ZnO/H2O2 system (93% color removal and 
77% aromatics removal).

4.2. Experimental design using ZnO/H2O2/UV-C process

Statistical analysis of the previous assays was carried 
out from a central composite design followed by response 
surface methodology for data under different experimen-
tal settings. Fig. 2 presents a Pareto chart for the effect of 
the variables on aromatics and dye degradation using the 
UV-C/H2O2/ZnO process, with a confidence level of 95%. 
Fig. 2a shows that all the interactions among the parame-
ters exhibited statistical significance. In Fig. 2b, the pH val-
ues did not present a heavy influence on the degradation 
rates, although interactions of pH with the other variables 

did. At a low pH medium, the adsorption of ER and FG is 
favorable on the surface of the catalyst since these dyes are 
anionic in water media (pKa values of 4.1 and 3.5, respec-
tively), and ZnO is positively charged at a pH lower than 
9 [40]. When the catalyst is oppositely charged to the tar-
geted compounds, the efficiency of removal is enhanced 
since the electrostatic interaction is enhanced. At high pH 
values, the availability of OH– is greater, which enhances 
the generation of hydroxyl radicals in theory [41]. Thus, 
effective results for the removal of ER and FR can be 
observed for a range of pH values.

Peroxide concentration demonstrated a heavy positive 
influence on the removal rates, which indicates that the 
concentration used was not excessive, although H2O2 and 
ZnO were inferior to the other effects when combined. 
Higher concentrations of H2O2 favored the degradation 
reactions, but when excess was reached in the presence of 
ZnO, the incidence of radiation on the catalyst was inhib-
ited. The concentration of the photocatalyst was not exces-
sive, as can be seen in the results. When this is the case, 
the turbidity of the samples will hinder the scattering of 
radiation then, reducing the radical generation rate [42].

The surface response analysis (Fig. 3) displays the pre-
dicted averages of the interactions. The charts express the 
influence of the variables in the response variable. Results 
show that the parameters at intermediary levels displayed 
higher efficiency when compared with the range limits, 

Fig. 1. Degradation kinetics of (a) ER and FG dyes and 
(b) aromatics for binary dyes under UV-C radiation using pro-
cesses: photolysis, photocatalysis TiO2, ZnO, H2O2, TiO2/H2O2, 
ZnO/H2O2. [C0] = 10 mg L–1 each dye; [H2O2] = 2.86 mmol L–1; 
[TiO2] = 0.33 g L–1; [ZnO] = 0.33 g L–1; pH = 7.

Fig. 2. Effect of variables in the (a) aromatics and (b) dye degra-
dation with ZnO/H2O2/UV-C process.
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except for the chart in Fig. 3c, where the highest concen-
trations of hydrogen peroxide displayed higher levels of 
efficiency in degrading aromatic content at a lower pH. 
For this reason, the central level is the most adequate set of 
parameters for the degradation of both dyes and aromatic 
content.

Table 1 shows the analysis of variance (ANOVA) esti-
mation for the interactions of the investigated parameters. 
According to Table 1, parameters demonstrated that the 
fit was suitable to predict the experimental design at dif-
ferent levels within the investigated range since R² > 0.96 
and pure error was minimal. The influence of pH and 
its interactions did not present statistical significance in 
the degradation of the aromatics and dyes (p > 0.05). For 
color removal, it is possible to observe that the interactions 
between ZnO and pH, and H2O2 and pH were not statisti-
cally significant; however, the interaction between ZnO and 

H2O2 statistically altered the color and aromatics removal  
(p < 0.05).

Statistical analysis also provided an empirical linear 
model for the aromatics removal rate [Eq. (3)] and color 
[Eq. (4)] from the linear regression coefficients. The model 
describes the percentage removal D (%) according to the sta-
tistical significance of the variables and interactions studied.
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Fig. 3. Response surfaces of aromatics degradation: (a) [ZnO] × [H2O2], (b) [ZnO] × pH, (c) [H2O2] × pH and ER and FG dyes degrada-
tion, and (d) [ZnO] × [H2O2].
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In addition, the best degradation removal rate (98.29%) 
was attained when the experiment was performed in 
the central point condition, which is highlighted in 
Table S3. Thus, this condition was selected for further 
kinetic evaluation.

4.3. Kinetic study and neural network modeling

From the removal kinetic investigation, it is possi-
ble to determine reaction rate, one of the most important 
parameters in chemical processes [43,44]. Fig. 4 displays 
the kinetic profile and the PFO kinetic model fitted to the 
data. According to the kinetic data, 50% of dye degrada-
tion removal was attained within the first 30 min and 91% 
after 90 min. For aromatic content, 70% had been degraded 
and removed by the end of the experiment. Samarghandi 
et al. [4] found 89.3% removal rates of acid red 14 
(C0 = 100 mg L–1) by using UV radiation, H2O2, and zerova-
lent iron (nZVI). Rahmani et al. [45] attained 99.8% removal 
of acid blue 113 in an AOP-based electro/persulfate system.

The PFO kinetic model was fit to the data. The kinetic 
rate constant was in the order of 0.0266 ± 0.0003 m–1 for dye 
degradation and 0.0127 ± 0.0005 m–1 for aromatics degrada-
tion. As exhibited in Fig. 4a, the fitting was suitable with R² 
calculated at 0.986 and 0.999 for aromatic and dye removals, 
respectively, which points out to a first-order reaction.

The PFO model assumes a reaction rate that depends 
only on the dye concentration, considering an excess of 
H2O2 [19]. Many reports have suggested that advanced 
oxidation systems follow a first-order reaction to synthetic 
dye aqueous solutions, including systems with solid pho-
tocatalysts and oxidizing agents [30,31]. Tekin et al. [46] 
employed bismuth oxyhalide as a photocatalyst in the 
photo-Fenton reaction to remove tartrazine food dye from 
water with a 0.0027 m–1 kinetic rate at 30°C according to 
PFO modeling. Barbosa et al. [38] found a 0.0208 m–1 rate 
constant in removing Bordeaux red and tartrazine in binary 
systems in the TiO2/H2O2 AOP system and attained 97% 
of color removal in 180 min. The sum of the fitting resid-
ual squares (Fig. 4b) was estimated at 0.0084 and 0.0007 
for aromatics and dyes, respectively, similar to the results 

achieved by Santos et al. [32] in the degradation of eryth-
rosine and Brilliant Blue samples. The low residual error 
indicates that the PFO model is appropriate to describe the 
concentration profile.

Table 2 displays other results reported in the literature 
that investigated the photocatalytic degradation of synthetic 
food dyes by H2O2 and ZnO. These studies indicate that dye 
degradation could be easily attained even for single-dye 
samples. Low reaction times at neutral pH are another 
advantage of the process since these results aid feasibility for 
scaling-up projects.

The ANNs model for the degradation training data is 
exhibited in Fig. 5. The network parameters are represented 
by the weights and biases. The model was able to predict 
the concentration of dyes and aromatics concentration as 
output.

According to Fig. 5a, the network normalized the set 
of data in the range of [0,150] to [–1,1] for the input, and 

Table 1
Analysis of variance (ANOVA) for interactions of the pa-
rameters in aromatics and dye degradation

Aromatics Dyes

Factor F p* F p*

[ZnO] 17.28873 0.00104 47.54848 0.02039
[H2O2] 1.88667 0.00032 66.47974 0.01471
pH 0.02816 0.33778 9.17149 0.09392
[ZnO] × [H2O2] 1.26552 0.01395 23.47902 0.04005
[ZnO] × pH 8.13835 0.00221 11.88712 0.07481
[H2O2] × pH 1.26552 0.01395 3.64906 0.19628
R² 0.966 0.988
Pure error 0.583 2.303

*The interactions, which were not significant at a 95% confidence 
level, are in bold.

Fig. 4. (a) Pseudo-first-order kinetic fitting and (b) residual 
error of degradation of dyes and aromatics in ZnO/H2O2 system 
(mZnO = 100 mg; [H2O2] = 2.86 mmol L–1; pH = 7.0).
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Table 2
Background of the degradation of food dyes by ZnO and H2O2 photocatalysis

Food dye [H2O2] 
(mM)

[ZnO] 
(g L–1)

pH Dye degradation 
(%)

Time 
(min)

Reactant costs* 

(US$.m–3)
References

Acid Orange 7 12 0.16 7 80 20 25.2 [28]
Azophloxine 8 1.5 6 60 180 223.1 [29]
Tartrazine/Fast Green 9.8 – 7.2 70 240 0.3 [31]
Brilliant Blue/Erythrosine 11.2 – 6.5 92 240 0.4 [32]
Sunset Yellow/Tartrazine 1.5 – 5.5 90 120 0.04 [39]
Tartrazine – 0.2 6 95 120 29.8 [47]
Tartrazine – 0.1 6 60 90 14.9 [48]
Erythrosine Indigotine 147 2 5.3 80

85
60 303.2 [49]

Erythrosine/Fast Green 2.8 0.33 7 98 120 50.1 This work

*H2O2 cost: $5.47/gallon; ZnO cost: $149/kg (according to the Independent Commodity Intelligence Services e Inframat Advanced Materials).

Fig. 5. (a) Artificial neural network model for the degradation in the ZnO/H2O2/UV-C system, (b) erythrosine and Fast Green dyes 
mixture, and (c) aromatics from the dyes. ZnO (50 mg)/H2O2 (34 µL)/pH(5)/UV-C.
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as the output in the range of [–1,1] to [0.0349,1]. This aims 
to decrease error margins. The calculation of the resulting 
ANN may be executed in any software by 3-part pseudo-
code (input normalizing, network calculation, and output 
denormalization), as presented in Supplementary material.

Fig. 5b and c demonstrate the correlation between the 
ANN model and experimental data for one set of experi-
mental parameters. Similar behavior was observed in the 
simulation of other reaction conditions. The average error 
was estimated at 0.025 and the correlation coefficient at 
0.978. The neural network model is more general and broad 
in applicability because several factors are included in the 
model, such as pH, quantities of ZnO and H2O2, variables 
that are not possible to be comprised by the PFO kinetics. 
Due to the high differences in ANN structures and central 
composite design (CCD), such as strong non-linearity in 
ANNs and the use of many parameters, it is not possible to 
compare both once a polynomial model as CCD would be 
too simple to pair with ANNs. ANNs can interpolate, gen-
eralize and extrapolate better than an experimental design 
model as stated by Amato et al. [50]. For all these reasons, 
it can be considered that the application of ANN to model 
the degradation kinetic of erythrosine and Fast Green dyes 
and aromatics in a ZnO/H2O2/UV-C photocatalytic process 
as an adequate tool to simulate the process and design 
an enlarged-scale reactor.

4.4. Environmental parameters and toxicity assays

TOC and COD measurements were performed in raw 
samples and water treated in ZnO/H2O2/UV-C under the 
selected operating conditions. TOC measurements shrunk 
from 64.3 to 34.6 mg L–1, which represents a 45% reduction 
of organic carbon. Regarding COD, removal was estimated 
at 58.2% falling from 174.5 to 72.8 mgO2 L–1 after the oxida-
tion process. These results represent a considerable reduc-
tion in dissolved organic matter and partial mineralization 
of the AOP process in binary samples. Aquino et al. [31] 
found 66%, 73%, and 98% removal rates for TOC, COD, 
and color, respectively, when treating a binary sample with 
tartrazine and FG by TiO2/H2O2/UV-C for 240 min. Tekin 
et al. [46] treated tartrazine by employing metal-doped 
BiOCl in visible-light-assisted Fenton reaction and attained 
59% of TOC removal and 95% of color removal in 90 min. 
Other research also points out the efforts needed to achieve 
partial TOC removal, indicating the presence of organic 
by-products besides inorganic ions and CO2.

The GI and RGI values for raw dye samples and after 
120 min degradation are exhibited in Table 3. The positive 
control inhibited the growth of 100% of the seeds as expected.

According to Table 2, the negative control displayed 
high GI as well as root elongation rates. For the samples pre-
pared with raw dyes, these values were considerably lower. 
According to Luo et al. [49], when GI is superior to 80% it 
indicates that no significant toxicity has been inflicted by the 
samples. According to the results, the treated samples did 
not present severe effects on the germination of lettuce seeds. 
Regarding the growth of the roots, inhibitory effects are in 
the range of 0 < RGI > 0.8, no significant effects 0.8 < RGI < 1.2, 
and stimulative effects in RGI > 1.2 [33]. The results displayed 
in Table 2 imply that the by-products in the degraded dye 
solution (inorganic ions and possible small organic mol-
ecules) did not inhibit the growth of the lettuce roots, dif-
ferently from the raw samples. The decrease in acute toxic-
ity can be observed in some other reports in the literature 
[31,32–51] with the use of lettuce seeds, corroborating the 
efficacy of the treatment.

5. Conclusions

This work showed that photodegradation of erythro-
sine and Fast Green presented high degradation rates in a 
ZnO/H2O2/UV-C system, compared with TiO2/H2O2/UV-C. 
An experimental design indicated the best operational con-
ditions ([H2O2] = 2.8 mM, [ZnO] = 0.33 g L–1, pH 7), reach-
ing up to 98% of degradation rates after 120 min. Kinetic 
modeling of the degradation of dyes using the ZnO/H2O2/
UV-C process under the best operational condition well fit-
ted the PFO model. Artificial neural networks can develop 
a more general model to represent experimental kinetic 
data, making this an alternative modeling technique for 
describing AOP process efficiency. Toxicity tests via ger-
mination and relative growth index of Lactuca sativa seeds 
demonstrated a reduction of the inhibition effects after the 
process of the degradation of the dyes. The degradation of 
a solution of food dye mixtures via heterogeneous photo-
catalysis demonstrated a reduction in toxicity, indicating 
that this chemical oxidation process represents an encour-
aging method for the pre-treatment of conventional effluent 
treatment processes in the food industry.
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Supporting information

Computational ANN 3-part pseudocode (input normalizing, network calculation, and output denormalization), for pre-
dicting the concentration of dyes and aromatics:

//Normalization
Input(i) = 2 * (Input(i) – (0))/150 – 1;
//Network Computation
Output(1) = –1.777336 * (2/(1 + exp(–1 * (0.668507 * (2/(1 + exp(–1 * (0.07462409 * Input(1)–6.088518 * Input(2) + 1.082241 * 

Input(3) + 2.237552 * Input(4) + 2.289237))) – 1) + 0.708703 * (2/(1 + exp(–1 * (0.6660598 * Input(1) + 5.064867 * Input(2) +  
4.547126 * Input(3) + 2.543926 * Input(4) + 6.08423))) – 1) – 1.01852 * (2/(1 + exp(–1 * (0.05432883 * Input(1) – 1.349536 * 
Input(2) – 0.3866765 * Input(3) – 4.005919 * Input(4) – 4.912257))) – 1) – 1.062143))) – 1);

Table S1
Operation costs on a laboratory scale for the AOP-based processes investigated in this study

AOP Power costsa (US$·m–3) Reactant costsb (US$·m–3) Total operation costs (US$·m–3)

UV-C 2.5 – 2.5
UV-C/H2O2 2.5 0.2 2.7
UV-C/TiO2 2.5 136.7 139.2
UV-C/ZnO 2.5 50.1 52.6
UV-C/H2O2/TiO2 2.5 136.8 139.3
UV-C/H2O2/ZnO 2.5 50.3 52.8

aPower costs include radiation from UV-C lamp (30 W) and magnetic stirring (5 W) (1 kWh = $0.11).
bOperation conditions were considered: 120 min, 2.86 mmol L–1 of H2O2 ($5.47/gallon), 0.33 g L–1 of TiO2 ($410/kg) and ZnO ($149/kg).
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Output(2) = 1.098158 * (2/(1 + exp(–1 * (–1.209849 * (2/(1 + exp(–1 * (0.07462409 * Input(1) – 6.088518 * Input(2) + 1.082241 * 
Input(3) + 2.237552 * Input(4) + 2.289237))) – 1) – 0.9890119 * (2/(1 + exp(–1 * (0.6660598 * Input(1) + 5.064867 * Input(2) + 4.54
7126 * Input(3) + 2.543926 * Input(4) + 6.08423))) – 1) + 1.35969 * (2/(1 + exp(–1 * (0.05432883 * Input(1) – 1.349536 * Input(2) –

0.3866765 * Input(3) – 4.005919 * Input(4) – 4.912257))) – 1) + 2.927677))) – 1);
//Denormalization
Output(i) = 0.48257 * Output(i) + 0.51743;

Table S2
Parameters for the analyses of ER and FG in UV-vis spectrophotometer

Parameter ER FG

Limit of detection (mg L–1) 0.03 0.05
Limit of quantification (mg L–1) 0.10 0.12
Regression coefficient (R²) 0.998 0.999
Variance (%) 0.6 0.3

Table S3
Independent variables and response for dyes and aromatics for the factorial planning 2³

Experiment ZnO concentration  
(g L–1)

H2O2 concentration 
(mmol L–1)

pH Degradation (%)

Aromatics Dyes

1 0.15 4.29 9 65.3 94.1
2 0.15 4.29 5 52.1 90.3
3 0.15 1.67 9 61.9 93.7
4 0.05 4.29 9 34.7 89.3
5 0.05 4.29 5 58.3 90.7
6 0.05 1.67 9 36.1 76.3
7 0.15 1.67 5 53.5 83.6
8 0.05 1.67 5 36.8 75.8
9 0.1 2.86 7 77.7 96.5
10 0.1 2.86 7 78.2 94.6
11 0.1 2.86 7 79.2 97.6
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