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a b s t r a c t
Saltwater from the ocean constitutes 96.5% of the total water available on the Earth. The remaining 
3.5% is freshwater, which is a crucial resource for living organisms. Increasing population and activ-
ities related to climate change have led researchers to develop new methods to maximize freshwa-
ter resources. Solar desalination is an environment-benign method that can fulfil the requirement 
of freshwater. However, the efficiency of desalination cells is limited by the fouling phenomenon. 
The efficiency of the desalting process decreases because the pores of the membrane are clogged by 
fouling. Therefore, methods for detecting and diagnosing the fouling phenomenon by using math-
ematical models are required. We propose a machine learning modelling framework comprising of 
K-nearest neighbor, random forest, artificial neural network, and support vector machine algorithms
to monitor the onset of fouling in desalination cells individually. Permeate datapoints from the fil-
tration process were collected using a lab on a chip device. The datapoints were used to validate all
four models. Furthermore, model responses for permeate data points were used as an indicator or
soft sensor to grade the fouling level and potability of the treated water. The modelling framework
can be used to detect the onset of fouling and erosion in desalination cells with high precision.
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1. Introduction

The majority of the Earth’s 11.5 million m3 of freshwater
is in the form of glaciers. Water reservoirs, such as ponds, 
lakes, and underground aquifers, contain less than 5 mil-
lion cubic miles of freshwater. Approximately 1.74 million 
species in both terrestrial and marine environments require 
freshwater to survive. The irregular supply of drinking water 
is becoming a major problem. Major water sources, such 
as oceans and seas, cannot be used to fulfil the demand for 
drinking water [1]. Moreover, disruptive weather patterns 
caused by climate change have resulted in extreme condi-
tions that are exacerbating water scarcity and polluting water 
sources. Ingestion of sea water can be harmful for the mil-
lions of species, including humans. Although the kidneys 

can remove salt from water, the processing of salted water 
is substantially limited by cellular tissues and kidney func-
tioning. Therefore, producing fresh water from seawater is 
essential for the humankind. Most water treatment plants 
use state-of-the-art membrane filtration system that captures 
undesirable particles that build up with salt components.

Desalination by reverse osmosis (RO) has become ubiq-
uitous for producing freshwater from salt water. The operat-
ing cost of RO is lower than that of alternative methods, such 
as multistage flash. Pre-treated brackish water is pumped at 
high pressure through a thin microporous membrane com-
posed of polyamide rolls. Water molecules flow through the 
membrane and are purified. Potable water is collected on 
the permeate side, whereas salt is retained at the feed side 
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of the membrane. Many plants have been designed to pro-
vide million liters of freshwater based on the daily demand. 
The capital and maintenance cost of plants is high due to 
energy lost through evaporation. Adopting energy reuse 
strategies and installing state-of-the-art membranes that can 
withstand high pressure can reduce cost. Because the mem-
brane is the integral component of the desalination process, 
fouling or erosion of the membrane reduces process effi-
ciency. Microbial and bacterial adhesion, solute adhesion, 
and gel-layer formation are some of the predominant exam-
ples of fouling [2]. Bacterial adhesion is the severe form of 
membrane fouling because it requires chemicals to clean 
biofilms. Operating cells with fouling cause a decline in pres-
sure across the membrane and thus reduces the quality of 
the permeate flux and increases power consumption.

Apart from fouling, process efficiency is affected by the 
degradation of membranes caused by the addition of disin-
fectants such as chlorine. Disinfectants are mixed with feed 
water to remove water hardness. Chlorine in the disinfectant 
reacts with the polyamide membrane and erodes it. To differ-
entiate fouling from erosion, membrane autopsy is required. 
In this process, a small component of the membrane is 
removed from the membrane module and analysed using 
various techniques, such as nuclear magnetic resonance, 
scanning electron microscopy, and confocal laser scanning 
microscopy [3]. These techniques are invasive and require 
sophisticated equipment and trained personnel. The total 
cost incurred to produce desalinated water from saltwater 
has considerably increased in the last decade because of the 
high energy consumption and capital cost of the membrane. 
Increasing membrane efficiency and optimizing desalination 

cell components can reduce OEM spending in the plant. 
Thus, the mathematical modelling of the desalination pro-
cess can help in understanding and predicting the fouling 
process.

Robust mathematical models are required to examine 
the characteristics of various processes. Although two-di-
mensional mechanistic models provide details regarding 
the interaction between the membrane and water interfaces 
[4–6], models that can account for fouling mechanisms in 
industry-level plants [7,8] are yet to be developed. Factors 
such as changes in the feed composition, fouling mechanism, 
and diurnal variations should be included in deterministic 
or machine learning models. Thus, nonlinear equations are 
required to model desalination processes. These models 
should account for the decline in pressure and membrane 
permeability data so that it can auto adapt to changes in con-
ditions [9]. Developing a data-driven model or its algorithms 
can help to determine the corroboration behaviour of the 
plant. However, this approach needs information on plant 
history with process parameters [10]. Table 1 summarises 
data-driven models used to predict the performance and 
fouling of the plant. Several studies have used both steady 
and unsteady state models to predict or auto adjust plant 
parameters on the basis of extensively collected operational 
data. However, developing diagnosis systems to control the 
plant requires a comparison of various ML algorithms that 
can accurately assess or interfere with plant functioning. Such 
approach can be useful for developing model-based fault 
management techniques. This study (a) compared among 
four ML-based data-driven models to diagnose fouling 
based on the properties of permeates in a water desalination 

Table 1
Literature findings

Models and method Findings and research need References

Lab-on-a-chip Reports data related to chemical and biological contaminants and water quality 
parameters using a lab on a chip.

[11]

Lab-on-a-chip Reviews various lab on chip systems in this research, which are cost-effective, free 
of fouling, and clogging problems.

[12]

Deterministic models of RO 
plant behaviour

- Provides fundamental understanding on how to run desalination plants;
- Reports the working pattern of sensors and actuators must be captured;
- Uses predictive models to explain membrane fouling and scaling.

[13]

Mechanistic models - Reports flow behavior across membrane channel geometries using governing 
equations;
- Correlate the fouling with flow dynamics;
- Accounts plant hydraulics to assess fouling.

[14,16]

Data driven models - Describe nonlinearity in the desalination system;
- Effective to describe the plant behavior;
- Obtains process parameters from the deterministic model;
- Models need to be trained and auto-adjusted to operating conditions;
- Must be integrated with a control system.

[7,15–17]

Supervised machine learning - Develops protocols to assess water quality;
- Demonstrates how to estimate the water quality index.

[18]

Artificial neural networks Predicts water quality. [19]
SVM, artificial neural networks Compares the accuracy of different models for water quality. [6,20]
Membrane fouling Discusses factors affecting fouling and their diagnostic and mitigation techniques. [21]
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plant under different operating conditions; (b) used the fault 
detection approach to identify factors causing system fail-
ure induced by fouling; (c) determine how different mod-
els react to fouling when the properties of permeate water 
change in the desalination cell.

2. Materials and methods

2.1. Data collection

Data for training, testing, and validating the ML model 
were collected from the open-source database [22]. Python 
v.2.10.8 software was used to develop all the machine learn-
ing models developed in this study. The dataset includes 
pH, hardness, total dissolved solids, sulphates, conduc-
tivity, trihalomethanes, and turbidity as key features. The 
label for our model was the measure of potability in terms 
of binary 1 and 0, where 1 indicated potable and 0 indicated 
non-potable. The ratio of the training to testing dataset 
was 80:20.

2.1.1. Data pre-processing and scaling

The dataset collected had missing data points. These 
points were filled using the mean of that column instead 
of removing those rows. Removing those rows would have 
reduced the size of our dataset, thus affecting our results. 
The data were scaled using standard-scaling function, which 
was used to find the mean of features and scales to unit 
variance.

2.2. Machine learning model

Modelling scheme and methodology adopted is given 
in Fig. 1. Permeate water properties were used to formulate 
the model. The rationale for the formulation is given:

•	 Properties of feed water are not consistent. Therefore, 
we have not considered the feed water characteristics in 
the model formulation.

•	 We have used the potability of the water as a soft sen-
sor or indicator to assess the fouling which eliminates 
the need for input data related to fouling.

2.2.1. Support vector machine

The classifier was generated using the Lagrangian Eq. (1).
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where w vector is the weight, b vector is the bias, XSVi are 
the features, αi is the Lagrange multiplier, and YSVi are the 
labels. The aforementioned equation was deducted to for-
mulate the best-fit hyperplane. LSVM has an inbuilt ker-
nel function that can transform the vector space to feature  
space.
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where	σ	is	the	variance	and	the	hyperparameter	||X1 – X2||	
is the Euclidean distance between the data points X1 and 
X2. The hyperplane is created in support vector machine 
on the basis of the Lagrangian equation [23]. The aim is 
to maximize the distance between the support vector and 
hyperplane such that the maximum separation of features 
is possible. Support vectors are imaginary (dotted/dashed) 
lines and pass through the boundary. In our binary classifi-
cation model, the two classes are mainly binary 0 (non-po-
table) and binary 1 (potable); for simplicity, we can consider 
them as positive and negative sides, respectively. The posi-
tive side can be used to identify the most favourable features 
associated with the potability measurement. When a dataset 
is treated in batches, we can treat data points accumulated 
below the hyperplane or on the negative side of the plane 
as non-potable water. Once this hyperplane is created, test 
points are categorized on the basis of the location of these 
points in respect to the hyperplane. This is known as the 
predicted value of our model (the output provided by our 
model for the particular set of input features from the test 
set). Fig. 2 presents the working of the SVM model. The pre-
dicted value is compared with the true value (actual value), 
which we already had determined for the given test set, 
and its accuracy was calculated [18].

2.2.2. K-nearest neighbor

K-nearest neighbor (K-NN) is a supervised learning algo-
rithm where learning is based on how similar the data are.
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Fig. 1. Modelling scheme and methodology adopted.
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where xi and yi are the feature and label, respectively, of 
unclassified points and xj and yj are the feature and label, 
respectively, of classified points. The Euclidean distance is 
the most common method used to determine the point on 
the basis of the minimum distance between the unclassified 
and classified points. The unclassified point belongs to the 
class that appears the most (defined by parameter K) [24].

2.2.3. Random forest

A random forest comprises many individual decision 
trees that work collectively as an ensemble [25].

The technique of combining several models is known 
as an ensemble. Various models are used to produce fore-
casts instead of only one model. Each tree in the random 

forest produces a class prediction. The class with the most 
votes is the model’s prediction. Bagging and boosting are 
the two basic techniques for an ensemble; these techniques 
are used to transform poor learners into strong learners by 
developing continuous models with the best accuracy as 
the final model. In our model, we employed bagging. The 
branching of nodes in the decision tree was determined 
using entropy whose equation is provided as follows:

� � � �
�
� p pi i
i

C

log2
1

 (4)

where pi is the frequentist probability of an element/class i 
in data. In a random forest, n random records are selected 

 Fig. 2. SVM algorithm.
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from the dataset of k records. Then, for each sample, a dis-
tinct decision tree is created, generating a unique output. The 
result is based on the majority voting or averaging, respec-
tively. The higher the number of trees (in the forest) is, the 
higher is the accuracy; thus, the problem of overfitting can 
be avoided.

2.2.4. Artificial neural network

An artificial neural network is composed of numerous 
nodes that are identical to actual neurons in the brain [26]. 
The neurons are linked and interact with each other. Nodes 
can receive input data and perform simple operations. These 
activities produce a result, which is then transferred on to 
other neurons. Each node’s output is indicated as its node 
or activation value. An ANN consists of units and connec-
tions between units. The output of unit i is the input to 
unit j. Unit i is considered the predecessor of j. Each con-
nection is assigned a weight wij. Each node has an activa-
tion threshold. The negation of the threshold is termed 
bias (b for node j = bj). The weighted inputs are summed 
together with the bias.

w a bij i j� � �� 0  (5)

The output of unit j is calculated as:

a f w a bj ij i j� � �� �  (6)

where f is the Relu activation function.
The predicted results are compared with actual data, 

and the error is measured. This error is backpropagated, 
and weights are adjusted depending on how much they 
contribute to inaccuracy. We update weights on the basis of 
the learning rate [19].

2.3. ML procedures

The dataset was pre-processed, which involved filling 
missing datapoints and scaling the dataset. After pre-pro-
cessing, a heatmap was plotted to determine the correlation. 
Feature selection was performed, which involved removing 
columns. Then, the dataset was split in an 80:20 ratio, where 
80% of randomly selected data were used as the training set 
for the models and the remaining 20% were used as the test-
ing set. Hyperparameters and kernel function of the models 
were finetuned by using the GridSearchCV function, and 
the best fit values were inputted in the model. These models 
were trained using the training set. Finally, the accuracy of 
the models was calculated using the test set. The accuracy of 
all the four models (SVM, KNN, random forest, and ANN) 
was calculated using various matrices, namely confusion 
matrix, precision recall, and receiver operating character-
istics. The results of these models are presented in Table 2, 
and the accuracy was compared among the four models.

3. Results and discussion

3.1. Comparison of four ML-based data-driven models

The values of activation functions and hyperparameters 
were fed, and from those, the best value was determined 

and used for building the model. The radial base function 
(RBF) was used as the kernel for the SVM model. For the 
KNN model, 35 nearest neighbors were selected, and the 
Euclidean distance metrics were used. A total of 500 trees 
were used for the random forest method. The sequential 
modular approach was employed for the ANN model. The 
number of parameters for input, hidden 1, and hidden 2 
layers was 52,130. Relu was selected as the activation func-
tion for input and hidden layers and SoftMax for the out-
put layer. Adam’s optimizer was used, and binary cross-en-
tropy loss was determined. To evaluate the accuracy of ML 
models, various matrices (measures) were used, namely the 
F1-score, accuracy, recall, precision, and receiver operating 
characteristic (ROC) curve [27]. The model’s accuracy can be 
calculated as the number of predictions made by the model 
over observed values.

Accuracy TP TN
TP FP TN FN

�
�

� � �
 (7)

Precision can be calculated as the proportion of the accu-
rately classified instances of a positive class out of the total 
classified instances of that class.

Precison TP
TP FP

�
�

 (8)

The results of precision and recall ensure that the frac-
tions of actual positives are classified accurately. The pro-
portion of the instances of a specific positive class that 
was correctly identified is known as recall or sensitivity.

Recall TP
TP FN

�
�

 (9)

True positive (TP), false positive (FP), false negative 
(FN), and true negative (TN) values were calculated using 
the test dataset. Specificity refers to the number of instances 
of a specific negative class that were accurately identified. 
The F1 score is the harmonic mean of precision and recall 
because precision and recall do not cover all the aspects of 
accuracy. Table 2 presents the comparison of all the four 
models.

The random forest model outperformed among all the 
models because instead of searching for the most crucial 
dataset feature, it searches for the best feature in a given 
random subset of features. Additional randomness is thus 
added to the model, making it more robust. The accuracy 
of the random forest model was the highest, followed by 

Table 2
Comparison of all four models

Model Accuracy Precision Recall F1 score

SVM 0.70 0.68 0.63 0.64
KNN 0.66 0.66 0.56 0.54
Random forest 0.88 0.89 0.84 0.86
ANN 0.70 0.68 00.66 0.67
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that of the SVM, KNN, and ANN models. The ROC curve 
can be used to measure the separability of a model and to 
determine how accurately a model can quantify between 
the water being potable and non-potable in our case. The 
trade-off between the TP and FP rates as the criterion for 

positivity is changed. The concave nature of the curve 
(Fig. 4) can be due to the monotonically increasing likeli-
hood ratio (distribution of the separator variable in pota-
ble and non-potable water) [28]. The area under the curve 
is the combined measure of specificity and sensitivity that 

 
Fig. 3. Schematic of modelling and data analysis approaches employed to investigate the use of ML methods.

 
Fig. 4. Receiver operating characteristic curves for all the models.
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indicates whether water is potable. The greater the area 
under the ROC curve is, the better is the model. The area 
under the curve for the random forest model was the high-
est among all the models. A higher value of the area under 
the curve represents higher separability, indicating the 
suitability of model classification.

As presented in Fig. 4, the random forest model had a 
greater discrimination capacity than did the other models. 
The random forest was the optimal model because it has 
the highest accuracy and required less computational time.

3.2. Use of the fault detection approach to determine factors 
causing system failure induced by fouling

To examine the fault, one of the four models can be 
employed to obtain the property matrix. We adopted the 
support vector classification (SVC) method. The property 
matrix obtained from the dataset using the SVC model is 
presented in Fig. 5. The precision recall value (Table 2) and 
ROC-AUC are plotted in Fig. 4 to indicate their correlation 
with the property matrix. Because the SVC model is based 
on structural risk minimization, all data points converge 
near the local minima and prevent overfitting (Fig. 5). The 
main aim of the SVC model is to determine the deviation in 
the function (caused by fouling) with respect to changes in 
permeate conductivity, such as TDS and other parameters. 
Thereby this model can be used as the precursor to minimize 

or eliminate the use of the anti-scalant chemicals when the 
membrane shows no sign of fouling. This will reduce the 
OEM cost and increase the durability of the membrane. 
Potability can be effectively gauged using the predictive data 
science model using only the parameters that are readily 
available, that is, already measured without the need of any 
additional tests.

A kernel function (rbf in our case) was used to map 
nonlinear to linear trends for converting the vector space 
to feature space that can be separated using a hyperplane. 
Nonlinear data points related to properties can be obtained 
by mapping process variables. Fouling could be identified by 
changes in the hardness of water and the number of solids 
present in the feed and permeate water. Fig. 5 predicts the 
fouling with an acceptable error. A nonlinear optimization 
method was used to maximize the accuracy to 70%. Slack 
variables were added within the SVC formula to minimize 
the error.

3.3. Determine how different models react to fouling when the 
properties of permeate water change in the desalination cell

Our data-driven models detected fouling when changes 
in modelling parameters, namely pH, conductivity, hard-
ness, solid, surface, and carbon content, were not in accor-
dance with water quality standards (IS 10500:2012). To 
determine the potability of water, we use colour coding in 

 
Fig. 5. Property matrix.
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Fig. 6. Although all the four modelling algorithms were 
applied to evaluate the deductive nature of individual 
models with respect to permeate parameters, the random 
forest model exhibited less average absolute relative errors 
(Table 2). This model provided a long-term response to 
notify potability but did not reveal any details related to a 
short or sudden surge in the feed flow rate. We will focus on 
this in our future study and detect faults in operating plants 
in real time.

4. Conclusion

This study demonstrates the development of supervised 
learning data-driven models by using the SVM, KNN, ran-
dom forest, and ANN modelling approaches. Models were 
developed on the basis of permeate property data obtained 
from the literature. The random forest model developed 
for fouling by using pH, solid, carbon, and conductivity 
of permeate streams as features exhibited a high accuracy 
(88%). The random forest model could predict the potability 

of water with a precision and recall score of 0.89 and 0.84, 
respectively. The F1 score of the random forest model sug-
gests that property-based performance forecasting mod-
els can be used as a diagnosis tool for desalination plants. 
Furthermore, the model can help to purge faulty data points. 
The data-driven models used in the study are directly 
applicable to distributed control systems in the plant, and 
strategies employed for model training can yield higher 
performance when new permeate property data are applied. 
However, the models cannot predict the retentate properties. 
The model uses classifiers to assess the potability using the 
permeate water characteristics. This model can further be 
improved if fouling layer formation over time is included 
as a parameter. Moreover, a time series model can more 
accurately predict membrane fouling and erosion.

Acknowledgements

The authors would like to acknowledge the contribution 
provided by VIT undergraduate interns: G Pareek, M Singh, 

 
Fig. 6. Identifying the portability of water when fouling occurred.



J. Zaveri et al. / Desalination and Water Treatment 286 (2023) 64–7272

S Naik, D Kabra, K Kumari and Dr. Asha Srinivasan, 
University of British Columbia, Vancouver, Canada. Lalit 
Bansal would like to acknowledge funding from DST SERB 
via file number SRG/2020/002159.

Abbreviation

ANN — Artificial neural network
AUC — Area under curve
FN — False negative
FP — False positive
KNN — K-nearest neighbor
LSVM — Lagrangian support vector machine
ML — Machine learning
OEM — Original equipment manufacturer
RBF — Radial basis function
RO — Reverse osmosis
ROC — Receiver operating characteristic
SVM — Support vector machine
TDS — Total dissolved solids
TN — True negative
TP — True positive
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