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a b s t r a c t
To address the issue of precise control of dissolved oxygen (DO) concentration and nitrate nitrogen 
level in wastewater treatment processes (WWTPs) under the premise of low energy consumption, a 
multivariable event-triggered model predictive control (ETMPC) strategy based on recursive bilin-
ear subspace identification (RBSI) is proposed in this paper. Since WWTPs have strong non-linear, 
multivariable coupling and large delay characteristics, the RBSI algorithm with a forgetting factor 
is used to build the model predictive control (MPC) in this paper. In RBSI-ETMPC, first, to over-
come the difficulties in establishing an accurate mathematical model due to the complex reaction 
mechanism in WWTPs, the BSI algorithm with linear and non-linear advantages and the RBSI algo-
rithm with adaptive updating of parameters are utilized to establish the state space identification 
model of the wastewater biochemical reaction process. Then, the RBSI predictor equation obtained 
by the data-driven method is utilized as the MPC prediction model. Under the condition of meet-
ing the event triggering strategy, the sequential quadratic programming algorithm is adopted to 
solve the quadratic performance function and update the control input at the next time. Finally, 
four experimental verifications under three working conditions, including a constant setpoint, vari-
able setpoint and variable setpoint with input or output pulse interference, are carried out using 
international benchmark simulation model no. 1. The experimental results demonstrate that the 
values of the integral of absolute error, integral of square error and maximal deviation from set-
point of the RBSI-ETMPC decreased by 82.81%, 96.62% and 71.89%, respectively, for the variable 
setpoint control of the DO concentration under rain weather conditions compared with the recur-
sive linear subspace identification (RLSI)-MPC. Furthermore, the longest trigger interval of the 
proposed RBSI-ETMPC is 0.8 h, which can save considerable computing resources.

Keywords:  Wastewater treatment processes; Recursive bilinear subspace identification; Multivariable 
control; Model predictive control; Event-triggered scheme

1. Introduction

Wastewater treatment processes (WWTPs) can purify 
wastewater and maintain freshwater resources, which 
effectively alleviate the contradiction between urban fresh-
water supply and demand [1]. Since the main pollutants 
of wastewater are easily degradable organic matter, aer-
obic biological treatment methods are adopted in most 
wastewater treatment plants. Among these methods, the 

activated sludge process (ASP) is one of the most mature 
processes [2]. The flow of ASP is composed of primary 
treatment, secondary treatment and tertiary treatment. 
Secondary treatment, also known as biochemical treat-
ment, is the main process of an activated sludge WWTP. 
Secondary treatment generally includes biochemical reac-
tion tanks, secondary sedimentation tanks, sludge return 
systems, and excess sludge discharge systems. The main 
task of secondary treatment is to remove colloidal and dis-
solved organic pollutants and plant nutrients in wastewater 
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by a large margin. The biochemical reaction tank is divided 
into an aerobic tank and an anaerobic tank. The biologi-
cal treatment process of wastewater is carried out in the 
biochemical reaction tank, which uses the organic matter 
of wastewater as the nutrient for microorganisms. With 
the help of biological oxidation, decomposition and trans-
formation functions, the microbial metabolism process is 
carried out in an artificially created controllable reaction 
environment to degrade and convert pollutants in waste-
water to achieve wastewater purification [3]. To ensure 
the effect of wastewater treatment, it is necessary to use 
the blower and lift pump for aeration and reflux opera-
tions to control the dissolved oxygen (DO) concentration 
in the aerobic tank and the nitrate nitrogen (NN) level in 
the anaerobic tank at the predetermined expected value.

At present, the control methods of the bottom loop in 
WWTPs are mainly divided into two categories: the first 
category is post-control methods, and the second category 
is pre-control methods. The former mainly includes switch 
control, Proportional-Integral-Derivative (PID) control [4,5], 
fuzzy logic control (FLC) [6], neural network direct control 
[7], decoupling control [8], auto disturbance rejection control 
[9], model free adaptive control [10], and adaptive sliding 
mode control [11]. However, since WWTP is a typical complex 
process industrial system, its internal biochemical reaction 
has serious non-linearity, greater uncertainty, multivariable 
coupling, and longtime lag, the switch control accuracy 
is low, the control parameter tuning of PID is difficult, and 
the post-controller that does not rely on the model has diffi-
culty achieving a satisfactory control effect, and cannot meet 
the increasingly stringent wastewater discharge standards. 
The latter mainly includes model predictive control (MPC). 
MPC decomposes the optimal control problem into several 
short time spans over a longtime span, which is essentially 
an optimal controller. MPC can well handle multivariable and 
multi-constrained industrial process control problems [12].

Over the past two decades, many researchers have 
devoted themselves to using MPC to solve the control prob-
lem of WWTPs. Holenda et al. [13] used a sufficiently low 
sampling time to capture the dynamic characteristics of the 
system and built a continuous time state space prediction 
model to achieve constant value control and step change 
control of DO. Brdys et al. [14] adopted the grey box model 
of the biochemical reaction process as a prediction model 
and designed a layered control framework for DO from 
three different time scales: slow, medium and fast. Shen et 
al. [15] constructed an MPC controller based on a quadratic 
dynamic matrix and used the nonlinear quadratic pro-
gramming algorithm (NLPQL) method to find the non-lin-
ear solution of the control rate. Mulas et al. [16] utilized a 
dynamic matrix predictive control strategy to achieve online 
control of effluent ammonia nitrogen concentration. Shen 
et al. [17] designed a linear dynamic matrix control strat-
egy and a quadratic dynamic matrix control strategy to 
achieve accurate control of ammonia nitrogen concentra-
tion in WWTPs. However, the prediction models relied on 
by the above MPC controllers are mainly linear models, 
where their parameters are generally not adjusted in the 
control process. Thus, it is difficult to accurately describe 
the non-linear mapping relationship between the inputs and 
outputs in WWTPs. In addition, control quantities should be 

calculated at each execution step in the above MPC control-
lers, which inevitably wastes computational resources.

During the past two decades, compared with time-
driven MPC, event-triggered MPC has aroused great inter-
est among researchers. In the application of time-driven 
control, continuous signals are sampled at evenly spaced 
measurement times, and control signals are applied to the 
controlled object in a periodic manner. However, strict peri-
odic control is generally not required in practical engineer-
ing applications. Therefore, computing resources are wasted 
in time-driven control. To improve computational efficiency 
and save limited computing resources, researchers have 
proposed a variety of event-triggered MPCs. Boruah and 
Roy [18] proposed an event-triggered non-linear model 
predictive control (ETNMPC) controller based on a sim-
plified system model to achieve the control of DO and NN 
in WWTPs. The triggering condition of ETNMPC is con-
structed using the deviation of error. Compared with a tradi-
tional NMPC and PI controller, the proposed ETNMPC can 
enhance effluent quality and reduce computational burden. 
Du et al. [19] developed a fourth-order state space model 
as the prediction model and constructed an event-triggered 
model predictive control (ETMPC) controller for DO and 
NN in WWTPs. The system output error and the predicted 
step are utilized to develop the triggering mechanism. 
Compared with MPC, the number of control updates for 
ETMPC is reduced by up to 60%. Han et al. [20] consider-
ing that the delay interference caused by hydraulic retention 
time would reduce the control accuracy of DO concentra-
tion, Han et al. [20] proposed an event-triggered recursive 
least squares-based sliding mode control (ETRLS-SMC) 
method with delay disturbance variables. The above-men-
tioned event-triggered MPC controllers do not need to cal-
culate the control quantity at each execution step. In other 
words, the control quantity is calculated only when certain 
triggering conditions are met. In principle, event-triggered 
MPC can yield more accurate sampling and control actions, 
saving computing and communication resources.

Furthermore, considering the strong non-linear system 
identification ability of neural networks, researchers pro-
posed a variety of neural network-based MPC controller 
design methods and used them to solve the control prob-
lems in WWTPs. Han & Qiao [21] and Han et al. [22] used 
self-organizing radial basis function (RBF) neural networks 
to build prediction models for the control of DO and NN, 
in which the gradient descent algorithm and multi-objective 
gradient descent algorithm are adopted to obtain the input 
sequence of control quantities. Han et al. [23] proposed an 
MPC controller based on a fuzzy neural network (FNN), 
where a complex multi-objective optimization algorithm 
is utilized to obtain the control rate online. Han et al. [24] 
presented a hierarchical MPC controller using two FNNs 
to control DO and NN, where an adaptive gradient descent 
algorithm is used to acquire the control rate. The above 
neural network-based MPC controllers with stronger 
non-linear mapping ability can obviously provide higher 
prediction accuracy. However, solving the control rate 
efficiently is still a challenging problem for non-linear MPC.

At present, the data-driven subspace identification 
method is still one of the most widely used modelling meth-
ods for complex industrial systems with complex reaction 
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mechanisms as it is difficult to establish accurate mathemat-
ical models for these systems [25–27]. The principle of the 
subspace identification method is to use the input and out-
put data of the system to construct a Hankel matrix and use 
state estimation technology, orthogonal triangular decompo-
sition, singular value decomposition, and the least squares 
algorithm to establish an identification model without any 
prior knowledge of the controlled object [28]. In recent 
years, based on subspace identification methods, research-
ers have proposed algorithms such as numerical subspace 
state space system identification (N4SID), linear subspace 
identification (LSI) and bilinear subspace identification 
(BSI). These methods have shown superior control perfor-
mance in blast furnace ironmaking [29], nuclear reactors [30], 
power grids [31], aeroengines [32], metallurgy bioreactors 
[33], and other fields. Li et al. [34] proposed a data-driven 
subspace predictive control method with event triggering 
and used a 2-tank flow system for experimental verifica-
tion. Ahmadipour et al. [35] used a subspace identification 
method based on orthogonal decomposition to identify 
multi-input multi-output (MIMO) systems with time delays, 
and the results showed that it can effectively estimate the 
time delay of the system and the order of the model. Zhou 
et al. [36] established a prediction model of the blast furnace 
(BF) ironmaking process using a data-driven subspace iden-
tification method, developed a predictive controller to real-
ize hot metal quality control, and used actual industrial field 
data for performance verification. Patel et al. [37] and Patel 
et al. [38] utilized a subspace identification approach with 
first principles-based knowledge to construct a state-space 
identification model and used a chemical stirred tank reac-
tor process to show superior performance. Ghosh et al. [39], 
considering the mismatch between the outputs generated by 
the first-principles model and the plant outputs, Ghosh et al. 
[39] adopted a subspace model identification algorithm to 
develop a model for the residuals and addressed the issue 
of synergizing first-principles models with data-driven 
models. Experimental results show that the control perfor-
mance of hybrid MPC is improved and the computational 
complexity is reduced compared with traditional MPC.

The superiority and effectiveness of subspace predic-
tive control in industrial process control have been verified 
by the studies described above. However, the complexity of 
WWTPs makes it difficult for subspace identification meth-
ods to achieve satisfactory modelling results. The bilinear 
subspace, which is an extension of the traditional linear 
subspace, has both linear and non-linear variable structure 
characteristics. Since WWTPs are a typical complex process 
industrial system with severe non-linearity, large uncer-
tainty, multivariable coupling, and long-time delay in its 
internal biochemical reactions, bilinear subspace identifica-
tion can accurately describe the system model of WWTPs. 
To address the above issues, a data-driven recursive bilinear 
subspace identification method is used to design a predic-
tion model of the event-triggered MPC controller to achieve 
the accurate tracking control of DO and NN with low energy 
consumption in WWTPs. The main contributions of this 
paper are summarized as follows:

• To improve the modelling accuracy, adaptive learning 
ability and anti-interference ability of the prediction 

model, a recursive bilinear subspace identification 
model with an adaptive parameter updating strategy is 
developed.

• To reduce the number of controller actions while ensur-
ing system performance, an event-trigger mechanism is 
designed and integrated into MPC controller. Meanwhile, 
the sequential quadratic programming method is used 
to solve the quadratic performance index function and 
obtain the optimal real-time control quantity.

• The international benchmark simulation model no. 1 
(BSM1) is used to carry out algorithm performance com-
parison experiments under different working condi-
tions and different settings, including dry weather, rain 
weather and storm weather, as well as constant setpoints, 
variable setpoints, and variable setpoints with pulse 
interference.

The remainder of this paper is organized as follows. The 
description of the WWTP is given in Section 2 – Wastewater 
treatment process. The detailed design process of the RBSI-
ETMPC controller is presented in Section 3 – Recursive 
bilinear subspace identification-event-triggered model 
predictive control. The effectiveness of RBSI-ETMPC was 
verified by simulation experiments, as described in Section 4 
– Experimental study. Finally, Section 5 concludes this paper.

2. Wastewater treatment process

To facilitate algorithm research, performance comparison 
and engineering verification of WWTPs, the International 
Water Quality Association launched the activated sludge 
benchmark simulation model No. 1 (BSM1). In BSM1, the 
biochemical reactor is composed of five units, of which unit 
1 and unit 2 are anoxic units and unit 3 to unit 5 are aer-
ated units. The anoxic units undertake the nitrification task, 
while the aerated units undertake the denitrification task. 
The specific layout of the BSM1 plant is shown in Fig. 1 [40].

BSM1 includes 8 biochemical reaction processes, such 
as microbial growth, attenuation and hydrolysis, and 13 
state variables and follows the following mass balance rule:

Input Output Formation Accumulation�� �� � �� �� � �� �� � �� ��  (1)

where “+” represents material accumulation and “–” rep-
resents material consumption. According to Eq. (1), the 
mass balance equation of each unit is presented as follows:

Unit 1 (k = 1):

dZ
dt V

Q Z Q Z Q Z rV Q Za a r r
1

1
0 0 1 1 1 1

1
� � � � �� �  (2)

Q Q Q Qa r1 0� � �  (3)

where Z1 is the concentration of each component in the first 
unit, V1 is the volume of the first unit, Q1 is the flow rate of 
each component in the first unit, r1 is the reaction rate of each 
component in the first unit, Qa is the internal recycle flow 
rate, Za is the concentration of each component in the inter-
nal recycle nitrification liquid, Qr is the external recycle flow 
rate, Zr is the concentration of each component in the sludge 
refluxing liquid, Q0 is the influent flow rate, and Z0 is the 
concentration of each component in the influent water.
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Units 2–5 (k = 2~5):

dZ
dt V

Q Z r V Q Zk

k
k k k k k k� � �� �� �

1
1 1  (4)

Q Qk k� �1  (5)

where Zk is the concentration of each component in the kth 
unit, Vk is the volume of the kth unit, Qk is the flow rate 
of each component in the kth unit, and rk is the reaction 
rate of each component in the kth unit.

The mass balance equation of DO is special, and its 
change is not only related to the flow rate but also related 
to the aeration rate. The specific description is given as 
follows:

dS
dt V

Q S r V K V S S

Q S
k

k

k k k k k k

k k

DO DO Lak DO sat DO

DO

, , , ,

,

�
� � �� �

�
� �1 1 1

��

�
�
�

�

�
�
�

 (6)

where SDO,k is the DO concentration of the kth unit, KLak 
is the oxygen transfer coefficient of the kth unit, and SDO,sat 
is the concentration value when dissolved oxygen is 
saturated, which is set as SDO,sat = 8 mg/L.

Other equations are given as follows:

Z Za = 5  (7)

Z Zf = 5  (8)

Z Zw r=  (9)

Q Q Q Q Q Qf a e r w� � � � �5  (10)

where Zf and Zw are the concentrations of each component 
of the effluent and discharged sludge in the biochemi-
cal reactor, respectively, and Qf, Qe and Qw are the effluent 
flow rate, supernatant flow rate and sludge discharge in the 
biochemical reactor, respectively.

In the BSM1 model, the volumes V1 and V2 of the two 
anoxic units are 1,000 m3, and the volumes V3, V4 and V5 of 
the three aerobic units are 1,333 m3. From Fig. 1, the bottom 
layer of BSM1 mainly has two control loops. One controls 
the DO concentration SDO,5 of the fifth unit by adjusting the 

oxygen transfer coefficient KLa,5, and the other controls the 
NN concentration SNN,2 of the second unit by adjusting the 
internal recycle flow rate Qa. The oxygen transfer coefficients 
KLa3 and KLa4 of the third and fourth units are both set to a 
constant value of 240 d–1, and the oxygen transfer coeffi-
cient KLa5 of the fifth unit needs to be dynamically adjusted 
to maintain the DO concentration SDO,5 of the fifth unit at a 
constant value of 2 mg/L. In addition, in the BSM1 model, 
it is also possible to maintain the NN concentration SNN,2 
of the second unit by adjusting the internal recycle flow 
rate Qa to a constant value of 1 mg/L.

However, WWTPs show strong non-linearity, strong 
coupling, a large time delay and serious uncertainty due 
to the complex biochemical reaction mechanism. Thus, the 
tuning of control parameters is difficult, and the PID con-
trol precision needs to be improved [41,42]. Therefore, to 
realize the low energy consumption control of the water 
purification process, a recursive bilinear subspace identi-
fication (RBSI) algorithm with a forgetting factor is used 
to build a multivariable event-triggered model predictive 
controller (ETMPC) for DO and NN in this paper.

3. Recursive bilinear subspace identification-event- 
triggered model predictive control

To enhance the control accuracy and save control 
resources, the RBSI-ETMPC is proposed to establish the 
multivariable controllers of SDO,5 and SNN,2. In traditional sub-
space identification, with the increase in the number of row 
blocks of the Hankel matrix, the computational complex-
ity of the algorithm increases exponentially, which makes 
it difficult to update the system matrix online. To improve 
the adaptive learning ability of the model and achieve 
better prediction accuracy and control performance, the 
recursive least squares method is introduced to adjust the 
model parameters online.

3.1. Recursive bilinear subspace identification

3.1.1. Hankel matrix construction

Consider using the following MIMO bilinear system to 
describe the dynamic change process of SDO,5 and SNN,2 in 
WWTPs:

Uint 1 Unit 2 Unit 3 Unit 4 Unit 5

Biological reactor

m=10

.

.

.

.

.
m=1

KLa- oxygen transfer coefficient

SDO

 Internal recycle flow
Qa,Za

 External recycle flow
Qr,Zr

Sludge discharge
Qw,Zw

Effluent

Secondary clarifier

wastewater
 Q0,Z0

KLa

Qu,Zu

Qe,Ze

Qf,ZfSNN

Controller

Controller

Anoxic section Aerated section

Fig. 1. Layout of the BSM1 plant.
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x x Kt t t t t t� � � � � �1 Ax Nu Bu �  (11)

yt t t t� � �Cx Du �  (12)

where ut∈Rm, yt∈Rl, and xt∈Rn represent the input vector, 
output vector and state vector of the system, respectively; 
δt∈Rl represents the zero mean white noise sequence, 
which has the covariance matrix E[δtδt

T] = Sl×l; K∈Rn×l rep-
resents the Kalman filter gain; N∈Rn×nm represents the bilin-
ear characteristic matrix of the system; A, B, C and D rep-
resent the system matrix, input matrix, output matrix and 
direct feedback matrix, respectively; and a⊗ b = [a1bT,a2bT,…
,apbT]∈Rpq represents the Kronecker product of the 
vector, where a∈Rp, b∈Rq [29,36].

According to Eq. (12), the state vector at time t is given 
as follows:

 † Dut t t tx C y     (13)

where C† represents the pseudoinverse matrix of C.
Taking Eq. (13) into the Kronecker product of the con-

trol vector ut and the state vector xt expressed in Eq. (11), 
the following equation is obtained:

  † † †, Dut t t t t t t tf u y u C y u C u C        (14)

Simplifying Eq. (14), we can obtain:

  †, Qu Rut t t t t t t tf u y y u u C        (15)

where diagonal matrices Q∈Rmn×ml and R∈Rmn×mm are 
respectively expressed as follows:

†

†

†

0 0 0

0 0 0

0 0 0

0 0 0

C

C
Q

C

 
 
 
 
 
 
 
 

O
 (16)

†

†

†

0 0 0

0 0 0

0 0 0

0 0 0

C D

C D
R

C D

 
 
 
 
 
 
 
 

O
 (17)

Substituting Eq. (15) into Eq. (11), the state vector x at 
time t+1 can be obtained:

 
1

†

Ax NQu NRu

Bu Nu
t t t t t t

t t t

x y u

K C
     

      (18)

To simplify the calculation process, some variables 
in Eq. (18) are defined as follows:

�u

u

u y

u u

t

t

t t

t t

� �

�

�

�

�
�
�
�

�

�

�
�
�
�

 (19)

�B B� ��� ��NQ NR  (20)

†NutK K C    
%  (21)

Then, Eq. (18) can be rewritten as follows:

x Bu Kt t t t� � � �1 Ax � � ��  (22)

Thus, the state space form of the bilinear system can be 
expressed as:

x Bu K
y
t t t t

t t t t

� � � �
� � �
1 Ax
Cx Du

� � ��
�

 (23)

Eq. (23) shows that the bilinear system has the same state 
space form as the linear state space, but their constituent 
elements are essentially different. The input of the bilinear 
system is composed of the input ut, the Kronecker prod-
uct of the input and the output ut ⊗ yt, and the Kronecker 
product of the input and the input ut ⊗ ut. Therefore, it is 
necessary to consider the effects of different inputs when 
using linear subspace identification to address the bilinear 
subspace identification process.

For the bilinear system expressed in Eq. (13), without 
considering noise interference, Eq. (22) is brought into Eq. 
(12) for the forwards iterative operation, and the results 
are written in the following matrix form:

y y

y y
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k k j

k j k j i i
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B

u

k k k j

i
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 (24)

Eq. (24) can be defined as follows:

M
CB

B B
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i i

�

�
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�
�
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�
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where Mi represents the lower triangular Toeplitz matrix 
and Mi

d represents a diagonal block matrix. Assuming 
{A,C} is observable and {A,B} is controllable, the general-
ized observable matrix Γi and the generalized controllability 
matrix Δi can be expressed as:

�i

i

C

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
��

CA

CA

�

1

 (27)

� � �� ��
� �

i
i iA B A B B1 2� � � �  (28)

Let k = 0, and the input Hankel matrix blocks are 
defined as follows:

U

u u u

u u u

u u u

p

j

j

i i j i

�
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�
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�
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�
�
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 (29)
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�

 (30)

where Up and Uf represent the input Hankel matrix blocks 
at the current time and the future time, respectively. 
Similarly, the output Hankel matrix blocks Yp and Yf at the 
current time and the future time can be defined. In addi-
tion, the generalized input Hankel matrix blocks �Up  and 
�U f  can be defined by replacing the input vector u with 

a generalized input vector �u . The state matrices Xp and 
Xf are defined as follows:

X x x xp j� �� ���0 1 1�  (31)

X x x xf i i i j� �� ��� � �1 1�  (32)

The input and output equations can be obtained as 
follows:

Y X MU M Up i p i p i
d

p� � �� �  (33)

Y X MU M Uf i f i f i
d

f� � �� �  (34)

X A X Uf
i

p i p� � � �  (35)

3.1.2. Model solution

The input Xp of the system can be obtained by deriving 
Eq. (33):

 † d
p i p i p i pX Y MU M U   %  (36)

By introducing Eq. (36) into Eq. (35), the future input 
Xf of the system can be obtained:

 † † †i i d i
f i i i p i i p i pX A M U A M U A Y       %  (37)

By introducing Eq. (37) into Eq. (34), the future output Yf 
of the system can be obtained:

 †

† †

i
f i i i i i p i f

i d i d
i i i p i i p i f

Y A M U MU

A M U A Y M U

     

      

% %

 (38)

Eq. (38) can be abbreviated as follows:

Y L W L W L Wf v v p p u u� � �  (39)

The parameters in Eq. (39) are defined as follows:
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Eq. (40) can be used as the subspace predictor. The 
RBSI prediction model with an adaptive update scheme 
is expressed as:

ˆ ˆ ˆˆ f v v p p u uy L w L w L w    (41)

To realize the adaptive updating of model parameters, 
the recursive least squares algorithm with forgetting factor 
(RLS-FF) is used to estimate the values of ˆ ˆ ˆ, andv p uL L L , as 
follows:

 1 1 1 1
ˆ ˆ ˆT T
k k k k k kL L v y L        (42)

v p Pk k k k
T

k k� � � �

�
� �� �1 1 1 1

1
� � � �  (43)

P
I v P

k
k k

T
k

�

� ��
�� �

1
1 1�

�
 (44)

where kp ku kv
ˆ ˆ ˆ ˆ, ,

T

kL L L L     represents the subspace matrix 
parameter matrix at time k, �k

T T Tw w w� �� ��kp ku kv, ,  represents 
the input and output data vector at time k, vk represents 
the gain vector, Pk represents the covariance matrix, and 
λ represents the forgetting factor.

3.2. Event-triggered model predictive control

Fig. 2 shows the architecture diagram of RBSI-ETMPC, 
which is mainly composed of an RBSI-based prediction 
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model, an adaptive update mechanism of model parameters, 
feedback correction, rolling optimization and an event-trig-
gering mechanism. From Fig. 2, the controlled variables are 
the DO concentration in the fifth unit (SDO,5) and the NN 
concentration in the second unit (SNN,2). Correspondingly, 
the manipulated variables are the oxygen transfer coeffi-
cient in the fifth unit (KLa5) and the internal recycle flow rate 
(Qa). The proposed RBSI-ETMPC is used to obtain optimal 
KLa,5 and Qa to control SDO,5 and SNN,2 to track the setpoints 
[SDO,sp, SNN,sp]. The ETM can effectively reduce the num-
ber of controller actions while ensuring excellent control 
performance of the system [41,42].

3.2.1. Prediction model

The RBSI algorithm proposed in Section 2.1 is used 
to establish the prediction model of SDO,5 and SNN,2, where 
the input variables are KLa,5 and Qa, respectively, and the 
output variables are SDO,5 and SNN,2. According to Eqs. 
(32)–(34), the estimated values of the subspace matrices 
ˆ ˆ ˆ, andv p uL L L  can be obtained, and the RBSI prediction model 
is obtained by substituting them into Eq. (31).

3.2.2. Event-triggering mechanism

Since the traditional MPC controllers of DO and NN 
need to solve the quadratic programming problem at each 
iteration step, the calculation burden is large. In this paper, 
an event-triggering mechanism is designed. Only when the 
event-triggering conditions are met should the control input 
at the next time be updated using the sequential quadratic 
programming (SQP) method. The proposed ETM effec-
tively reduces the number of controller actions and saves 
the energy consumption required for aeration and pumping.

The ETM is mainly composed of an event generator, buf-
fer area, and controller [18,19]. The event generator is utilized 
to monitor whether a trigger event is formed. The control 
sequence of the last time is stored in the buffer area. When 
the control strategy is triggered, the SQP method is used to 
calculate the control input at the next time by the controller. 
Otherwise, the next control quantity of the control sequence 
in the buffer area will continue to be used as the next 
control input. The trigger strategy is designed as follows:

      set ˆ or cY t y t J u t N         (45)

where yset(t) and ŷ(t) are the setpoint and the actual output 
value of the controlled variable at time t, respectively, β is 
the threshold of control error, J is the index of the current 
control increment Δu(t) in the control sequence, and Nc is 
the control length of the control increment Δu(t). Obviously, 
the smaller the value of β is, the higher the probability of 
the ETM being triggered; conversely, the higher the value 
of β is, the smaller the chance of the ETM being triggered. 
A value of Nc that is too small may result in control fail-
ure; conversely, an excessively high value of Nc will cause 
significant computational overhead.

3.2.3. Rolling optimization

The control rate of MPC is acquired by solving the 
rolling optimization problem in the finite time domain, 
which is defined as follows:
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where yr(t+k) and yp(t+k) are the predicted output and the 
expected output at time t+k, respectively, ∆u(t+k) is the con-
trol increment at time t+k, Np and Nc are the prediction hori-
zon and the control horizon, respectively, and Q and R are 
weighted positive matrices on tracking error and control 
increment, respectively. In the developed MPC, the oxy-
gen transfer coefficient KLa5 in the fifth unit and the inter-
nal circulation flow rate Qa are considered as control input 
u, while the DO concentration in the fifth unit SDO,5 and the 
NN concentration in the second unit SNN,2 are considered 
as controlled output y.

In this paper, the SQP algorithm is adopted to solve 
the quadratic performance index given in Eq. (46). In the 
traditional MPC, only the first control increment ∆u(t+1) 
in a group of control sequences obtained is applied to 
the controlled object (described in Eqs. (11) and (12)) to 

[SDO,SP, SNN,SP] [KLa,5, Qa] [SDO,5, SNN,2]
MPCΣ WWTP

RBSI

Σ
[ŜDO,5, ŜNN,2] - +

+

- ETM

 

Fig. 2. Architecture of RBSI-ETMPC.
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ensure the timeliness of control. For the designed ETMPC 
in this paper, only the event-trigger conditions are met, 
and the rolling optimization algorithm is used to obtain 
the control increment ∆u(t+k). If no control action is trig-
gered in some control steps, the control increment in the 
previous control sequence will be used as the current 
control increment ∆u(t) in turn.

3.2.4. Feedback correction

Due to the problems of interference and model mis-
match in WWTPs, the error of the prediction model will 
gradually increase with the reaction. If the model output is 
not corrected in time, the prediction model will be unable to 
identify the dynamic response process, resulting in model 
failure. To acquire the ideal control effect, feedback correc-
tion is usually used to correct the output of the predictive 
model in MPC. The methods of feedback correction mainly 
are mainly the compensation method and online correction 
method. To improve the accuracy of the prediction model, 
these two correction methods are comprehensively used 
to design the feedback correction link in this paper [28,35]. 
The compensation scheme for the prediction output is 
presented as follows:

e t y t y t

y t k y t k e t
m

p f

� � � � � � � �
�� � � �� � � � �

�
�
�

�� �
 (47)

where y(t) is the real output of the controlled object at time 
t, ym(t) is the predicted output of the predictive model at 
time t, yf(t+k) is the output of the non-linear predictor at 
time t+k, and yp(t+k) is the model corrected output of the 
controlled object at time t+k. α is the compensation coeffi-
cient, which can be set and adjusted according to the actual 
control effect. In the proposed RBSI-ETMPC, the recursive 
least squares algorithm with a forgetting factor is used to 
modify the model parameters online according to the latest 
input and output data while compensating for the output 
of the prediction model.

3.3. Algorithm process

The algorithm flow of the RBSI-ETMPC is described 
in Algorithm 1. First, the RBSI model is built in Steps 1–3. 
Then, the process data are used to train the model and test 
its predictive performance in Step 4. During the real-time 
control process described in Steps 5–7, the controller needs 
to continuously detect whether the ETM is triggered. If 
the ETM is triggered, the SQP algorithm is used to solve 
the performance index function to obtain real-time control 
quantities. Otherwise, the next control quantity is obtained 
directly from the control sequence without complex calcu-
lations. To adapt to the dynamic changes of the system, it is 
also necessary to update the parameters of the RBSI model 
in real time in Step 8. Steps 5–8 are repeatedly executed 
until the entire control process is completed.

Algorithm 1: RBSI-ETMPC

Step 1: Construct the Hankel data matrices for input U and output Y;
Step 2: Estimate the values of the subspace matrix according to Eqs. (42)–(44);
Step 3: Establish the RBSI-based prediction model according to Eq. (41);
Step 4: Train and test the model, and adjust the parameters of the model if necessary;
Step 5: Judge whether the ETM is triggered according to Eq. (45);
Step 6: Solve the rolling optimization problem using SQP algorithm if the ETM is triggered;
Step 7: Execute the next control increment in the control sequence if the ETM is not triggered;
Step 8: Update the parameters of RBSI model using RLS algorithm according to Eqs. (42)–(44);
Step 9: If stopping conditions are met, then stop. Otherwise, go to Step 5.

The flow chart of the RBSI-ETMPC is shown in Fig. 3.

4. Experimental study

4.1. Experimental data

The predictive control performance of the designed 
RBSI-ETMPC is verified using the BSM1 platform in this 
paper. The acquisition duration of the experimental data is 
14 d. The variation ranges of the oxygen transfer coefficient 
KLa,5 and the internal recycle flow rate Qa are [0, 240 d–1] 
and [0, 92,230 m3/d], respectively. The data mainly include 
dry weather, rain weather and storm weather. The per-
formance of the RBSI-ETMPC algorithm is verified on 
the 8th to 12th days since these 3 d have obvious weather 
changes. The random step changes of KLa,5 and Qa are used 
to obtain the corresponding data samples of SDO,5 and 
SNN,2. The changes of SDO,5 and SNN,2 under the three work-
ing conditions are irregular since step changes are used. 

A total of 960 data samples were collected using BSM1. 
Fig. 4 shows the change trends of KLa,5, Qa, SDO,5 and SNN,2 
under the three working conditions.

To make the training dataset reflect the characteristics 
of different working conditions as much as possible, the 960 
samples collected are divided into 192 groups which with 5 
samples in each group. The first three observations of each 
group are selected as the training dataset, and the last two 
observations are chosen as the testing dataset. Therefore, 
there are 576 training samples and 384 testing samples.

4.2. Performance index

To fairly compare the performance of different control-
lers, three indicators, including the integral of absolute error 
(IAE), integral of square error (ISE) and maximal deviation 
from setpoint (DEVmax), are defined in the BSM1 model. 
Their expressions are given as follows:
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e dt
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Devmax max� �� e  (50)

where e represents the error between the setpoint and 
the true value. IAE, ISE and DEVmax can reflect the tran-
sient response, stability and anti-interference ability of the 
control system, respectively.

4.3. Result analysis

4.3.1. RBSI model validation (Experiment 1)

To verify the identification capability of the RBSI model, 
simulation tests are conducted using the real data of dry 
weather, rain weather and storm weather. Fig. 5 shows 
the comparison of the prediction results between the RBSI 
model and the recursive linear subspace identification 
(RLSI) model. From Fig. 5, the RBSI model has a superior 
prediction accuracy over the RLSI model. Thus, the RBSI 
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Fig. 3. Flow chart of the RBSI-ETMPC algorithm.

 

 

 
Fig. 4. Change trends of KLa,5, Qa, SDO,5, and SNN,2 under three working conditions.
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Fig. 5. Test results of the RBSI and RLSI models under three working conditions.
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model is effective enough to establish prediction models 
for SDO,5 and SNN,2.

To more clearly show the prediction results of the 
RBSI, the RMSE values of RBSI, RLSI and LSI are given in 
Table 1. Compared with the RLSI and LSI, the proposed 
RBSI has a smaller RMSE value, which indicates that it has 
better prediction accuracy. For example, compared with 
the LSI, the prediction accuracy of RBSI for SDO,5 and SNN,2 
in storm weather is improved by 8.42% and 8.40%, respec-
tively. The modelling results demonstrate that the bilin-
ear system and recursive strategy can address the strong 
non-linear changes caused by complex working conditions 
and enhance the prediction accuracy of the model.

4.3.2. Constant setpoint control (Experiment 2)

In the experiment with constant setpoint control for 
the WWTP, the concentrations of SDO,5 and SNN,2 are set to 2 
and 2.5 mg/L, respectively. The time range of constant set-
point control is 0–25 h. The control parameters of the RBSI-
ETMPC are set as follows: prediction horizon Np = 10, con-
trol horizon Nc = 10, error weighting matrix Q = 15 × I2×2, 
compensation coefficient α = 0.92, softening coefficient 
γ = 0.06, and initial covariance matrix P = 106 × I14×14. Under 
dry weather conditions, the control weighting matrix 
R = 0.001 × I2×2, and the forgetting factor λ = 1. Under rainy 
weather and storm weather conditions, the control weighting 
matrix R = 0.013 × I2×2, and the forgetting factor λ = 0.98.

Fig. 6 demonstrates the control performance of the 
RBSI-ETMPC controller with constant setpoints under 
three working conditions. Fig. 6 shows that RBSI-ETMPC 
has small overshoot and high control accuracy. The results 
show that RBSI-ETMPC can adapt to different working 
conditions. Compared with RBSI-ETMPC, RLSI-MPC has 
difficulty tracking the setpoints in the initial control stage, 
and there is also a large control deviation during the con-
trol process. Meanwhile, the longest trigger interval of the 
RBSI-ETMPC is 0.6 h, which shows that the event trigger 
strategy can reduce the number of control actions.

To demonstrate the advantages of the developed RBSI-
ETMPC, Table 2 shows the values of the IAE, ISE and 
DEVmax for different control strategies under three working 
conditions. Compared with RLSI-MPC and LSI-MPC, the 

proposed RBSI-ETMPC has the best IAE, ISE and DEVmax. 
Taking dry weather conditions as an example, for the con-
trol of SDO,5, compared with RLSI-MPC, the values of IAE, ISE 
and DEVmax of RBSI-ETMPC decreased by 92.91%, 99.00% 
and 68.14%, respectively. For the control of SNN,2, com-
pared with RLSI-MPC, the values of IAE, ISE and DEVmax 
of RBSI-ETMPC decreased by 56.12%, 72.10% and 19.23%, 
respectively. Table 2 shows that the proposed RBSI-ETMPC 
has superior control performance.

4.3.3. Variable setpoint control (Experiment 3)

In the variable setpoint control experiment for the 
WWTP, the concentration of SDO,5 is set to 2, 2.1 and 2 mg/L 
in the ranges of 0~5 h, 5~15 h and 15~25 h, respectively. The 
concentration of SNN,2 is set to 2.5, 2.6 and 2.5 mg/L within 
the ranges of 0~10 h, 10~20 h and 20~25 h, respectively. 
The control parameter settings of RBSI-ETMPC in this 
experiment are the same as those in Experiment 2.

The control results of the RBSI-ETMPC controller with 
variable setpoints under three working conditions are rep-
resented in Fig. 7. From Fig. 7, it takes a long time (approx-
imately 5 h) for RLSI-MPC to track the setpoints under the 
three working conditions. Compared with RLSI-MPC, the 
proposed RBSI-ETMPC not only has a short rise time and 
small overshoot but also has high steady-state control accu-
racy. In particular, when the setpoints change step by step, 
RBSI-ETMPC can quickly respond to the change to stabi-
lize the system output near the setpoints in a short time. 
Under the complex working conditions of rain weather and 
storm weather, RBSI-ETMPC has a slight oscillation phe-
nomenon for the control of SNN,2 due to the introduction of 
the event-triggering strategy. However, under the action of 
the event-triggering strategy, the developed RBSI-ETMPC 
effectively save the control resources while ensuring the 
control quality. The longest trigger interval is 0.8 h, showing 
that the energy consumption can be effectively reduced.

Table 3 shows the values of the IAE, ISE and DEVmax for 
different control strategies. Compared with RLSI-MPC and 
LSI-MPC, the proposed RBSI-ETMPC has a smaller IAE, ISE 
and DEVmax under the three working conditions, which indi-
cates that it can adapt well to the variable setpoints. Taking 
rain weather conditions as an example, for the control of 
SDO,5, compared with RLSI-MPC, the values of IAE, ISE and 
DEVmax of RBSI-ETMPC decreased by 82.81%, 96.62% and 
71.89%, respectively. For the control of SNN,2, compared with 
RLSI-MPC, the values of IAE of RBSI-ETMPC decreased 
by 13.31%. Due to the introduction of the event-trig-
gering mechanism, the values of ISE decreased slightly, 
and the values of DEVmax increased slightly.

4.3.4. Variable setpoint control with input pulse interference 
(Experiment 4)

In the experiment of variable setpoint control with 
input pulse interference for the WWTP, the settings of the 
concentration of SDO,5 and the level of SNN,2 are the same 
as those in Experiment 2. However, input pulse interfer-
ences are added to KLa5 at 6 h and to Qa at 15 h. The control 
parameter settings of the RBSI-ETMPC in this experiment 
are the same as those in Experiment 2.

Table 1
RMSE values of different models under three working 
conditions

Working 
condition

Model RMSE of 
SDO,5 (mg/L)

RMSE of 
SNN,2 (mg/L)

Dry weather
RBSI 0.8697 0.6820
RLSI 0.8834 0.6914
LSI 1.0470 0.6538

Rain weather
RBSI 0.6428 0.6896
RLSI 0.6620 0.6933
LSI 0.7642 0.6345

Storm weather
RBSI 0.5852 0.6301
RLSI 0.6351 0.6406
LSI 0.6390 0.6879
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Fig. 6. Control effects of RBSI-ETMPC with constant setpoints under three working conditions.
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Table 2
Control accuracy of different control strategies with constant setpoints under three working conditions

Working condition Variable Controller IAE (mg/L) ISE (mg/L) DEVmax (mg/L)

Dry weather

SDO,5

RBSI-ETMPC 3.65 × 10–3 2.88 × 10–5 3.10 × 10–2

RLSI-MPC 5.15 × 10–2 3.00 × 10–3 9.73 × 10–2

LSI-MPC 8.49 × 10–2 1.14 × 10–2 2.61 × 10–1

SNN,2

RBSI-ETMPC 5.66 × 10–3 5.86 × 10–5 2.73 × 10–2

RLSI-MPC 1.29 × 10–2 2.10 × 10–4 3.38 × 10–2

LSI-MPC 7.48 × 10–2 1.36 × 10–2 3.61 × 10–1

Rain weather

SDO,5

RBSI-ETMPC 3.05 × 10–3 1.49 × 10–5 1.51 × 10–2

RLSI-MPC 2.04 × 10–2 7.30 × 10–4 7.65 × 10–2

LSI-MPC 3.54 × 10–2 2.95 × 10–3 1.59 × 10–1

SNN,2

RBSI-ETMPC 5.88 × 10–3 6.56 × 10–5 4.37 × 10–2

RLSI-MPC 6.34 × 10–3 6.70 × 10–5 2.50 × 10–2

LSI-MPC 1.30 × 10–2 2.67 × 10–4 4.80 × 10–2

Storm weather

SDO,5

RBSI-ETMPC 3.48 × 10–3 2.71 × 10–5 2.45 × 10–2

RLSI-MPC 3.64 × 10–2 2.09 × 10–3 1.15 × 10–1

LSI-MPC 5.09 × 10–2 5.15 × 10–3 2.04 × 10–1

SNN,2

RBSI-ETMPC 5.92 × 10–3 5.75 × 10–5 2.34 × 10–2

RLSI-MPC 5.20 × 10–3 4.10 × 10–5 1.70 × 10–2

LSI-MPC 1.39 × 10–2 3.33 × 10–4 3.89 × 10–2

 

 

 

Fig. 7 (Continued)
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Fig. 8 shows the control effect of the RBSI-ETMPC 
with variable setpoints and input pulse interference under 
three working conditions. Fig. 8 demonstrates that RBSI-
ETMPC can not only track the setpoints in a short time but 
also respond to step changes quickly. In addition, when 
input pulse interference is applied, RBSI-ETMPC can over-
come the interference and quickly stabilize at the setpoints. 
Compared with RLSI-MPC, the proposed RBSI-ETMPC 
has high steady-state control accuracy. Under the action 
of the event-triggering strategy, the longest trigger inter-
val is 0.3 h, showing that the proposed RBSI-ETMPC can 
effectively reduce the number of control actions.

Table 4 gives the values of the IAE, ISE and DEVmax for 
different control strategies. Compared with RLSI-MPC 
and LSI-MPC, the proposed RBSI-ETMPC can significantly 

reduce the number of actions and save the limited control 
resources without reducing the control performance. Taking 
storm weather conditions as an example, for the control of 
SDO,5, compared with RLSI-MPC, the values of the IAE, ISE 
and DEVmax of RBSI-ETMPC decreased by 85.09%, 76.82% 
and 29.62%, respectively. For the control of SNN,2, com-
pared with RLSI-MPC and LSI-MPC, the values of IAE and 
ISE of RBSI-ETMPC decreased slightly.

4.3.5. Variable setpoint control with output pulse interference 
(Experiment 5)

In the experiment of variable setpoint control with out-
put pulse interference for the WWTP, the settings of the 
concentration of SDO,5 and the level of SNN,2 are the same as 

 

 

 

Fig. 7. Control effects of RBSI-ETMPC with variable setpoints under three working conditions.

Table 3
Control accuracy of different control strategies with variable setpoints under three working conditions

Working condition Variable Controller IAE (mg/L) ISE (mg/L) DEVmax (mg/L)

Dry weather

SDO,5

RBSI-ETMPC 3.99 × 10–3 4.01 × 10–5 4.31 × 10–2

RLSI-MPC 5.14 × 10–2 2.96 × 10–3 1.18 × 10–1

LSI-MPC 7.71 × 10–2 7.25 × 10–3 2.65 × 10–1

SNN,2

RBSI-ETMPC 5.70 × 10–3 7.70 × 10–5 4.98 × 10–2

RLSI-MPC 1.27 × 10–2 2.20 × 10–4 6.74 × 10–2

LSI-MPC 7.34 × 10–2 1.46 × 10–2 3.74 × 10–1

Rain weather

SDO,5

RBSI-ETMPC 3.61 × 10–3 2.40 × 10–5 2.19 × 10–2

RLSI-MPC 2.10 × 10–2 7.10 × 10–4 7.79 × 10–2

LSI-MPC 6.28 × 10–2 7.24 × 10–3 2.32 × 10–1

SNN,2

RBSI-ETMPC 6.45 × 10–3 9.20 × 10–5 5.06 × 10–2

RLSI-MPC 7.44 × 10–3 9.20 × 10–5 4.25 × 10–2

LSI-MPC 3.29 × 10–2 1.85 × 10–3 9.72 × 10–2

Storm weather

SDO,5

RBSI-ETMPC 3.37 × 10–3 2.18 × 10–5 2.09 × 10–2

RLSI-MPC 3.61 × 10–2 2.00 × 10–3 1.13 × 10–1

LSI-MPC 8.04 × 10–2 1.14 × 10–2 2.83 × 10–1

SNN,2

RBSI-ETMPC 6.50 × 10–3 9.59 × 10–5 4.87 × 10–2

RLSI-MPC 6.45 × 10–3 8.90 × 10–5 5.74 × 10–2

LSI-MPC 2.54 × 10–2 1.34 × 10–3 9.13 × 10–2
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Fig. 8. Control effects of RBSI-ETMPC with variable setpoints under three working conditions.
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Fig. 9. Control effects of RBSI-ETMPC with variable setpoints under three working conditions.
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those in Experiment 2. However, output pulse interferences 
are added to SDO,5 at 6 h and to SNN,2 at 18 h. The control 
parameter settings of the RBSI-ETMPC in this experiment 
are the same as those in Experiment 2.

Fig. 9 shows the control effect of the RBSI-ETMPC con-
troller with variable setpoints and output pulse interference 
under three working conditions. Fig. 9 shows that RBSI-
ETMPC has superior control performance. In particular, 

when pulse interference occurs in the output, RBSI-ETMPC 
can suppress the adverse effects of interference by adap-
tively adjusting the control quantity. Compared with RLSI-
MPC, the control stability and accuracy of the proposed 
RBSI-ETMPC have been significantly improved. Under the 
complex working conditions of storm weather, the designed 
RBSI-ETMPC controller has a slight oscillation phenom-
enon for the control of SNN,2 due to the introduction of an 

Table 4
Control accuracy of different control strategies with variable setpoints under three working conditions

Working condition Variable Controller IAE (mg/L) ISE (mg/L) DEVmax (mg/L)

Dry weather

SDO,5

RBSI-ETMPC 8.96 × 10–3 3.35 × 10–3 6.53 × 10–1

RLSI-MPC 6.22 × 10–2 5.47 × 10–3 5.63 × 10–1

LSI-MPC 1.09 × 10–1 1.41 × 10–2 3.86 × 10–1

SNN,2

RBSI-ETMPC 1.28 × 10–2 3.52 × 10–4 1.09 × 10–1

RLSI-MPC 1.60 × 10–2 4.00 × 10–4 1.07 × 10–1

LSI-MPC 1.28 × 10–1 2.49 × 10–2 3.69 × 10–1

Rain weather

SDO,5

RBSI-ETMPC 7.29 × 10–3 1.60 × 10–3 4.21 × 10–1

RLSI-MPC 2.86 × 10–2 2.85 × 10–3 5.66 × 10–1

LSI-MPC 6.91 × 10–2 9.22 × 10–3 6.44 × 10–1

SNN,2

RBSI-ETMPC 1.24 × 10–2 3.78 × 10–4 1.21 × 10–1

RLSI-MPC 1.03 × 10–2 3.20 × 10–4 1.20 × 10–1

LSI-MPC 7.42 × 10–2 7.18 × 10–3 3.22 × 10–1

Storm weather

SDO,5

RBSI-ETMPC 6.47 × 10–3 9.55 × 10–4 4.04 × 10–1

RLSI-MPC 4.34 × 10–2 4.12 × 10–3 5.74 × 10–1

LSI-MPC 7.83 × 10–2 1.25 × 10–2 6.42 × 10–1

SNN,2

RBSI-ETMPC 1.48 × 10–2 4.27 × 10–4 1.06 × 10–1

RLSI-MPC 8.60 × 10–3 2.20 × 10–4 1.29 × 10–1

LSI-MPC 9.11 × 10–2 1.26 × 10–2 2.66 × 10–1

Table 5
Control accuracy of different control strategies with variable setpoints under three working conditions

Working condition Variable Controller IAE (mg/L) ISE (mg/L) DEVmax (mg/L)

Dry weather

SDO,5

RBSI-ETMPC 5.14 × 10–3 3.21 × 10–4 2.34 × 10–1

RLSI-MPC 5.30 × 10–2 3.47 × 10–3 3.06 × 10–1

LSI-MPC 2.73 × 10–2 2.54 × 10–3 2.62 × 10–1

SNN,2

RBSI-ETMPC 9.00 × 10–3 4.01 × 10–4 2.11 × 10–1

RLSI-MPC 1.48 × 10–2 5.20 × 10–4 2.19 × 10–1

LSI-MPC 8.80 × 10–2 1.39 × 10–2 3.73 × 10–1

Rain weather

SDO,5

RBSI-ETMPC 4.43 × 10–3 2.86 × 10–4 2.32 × 10–1

RLSI-MPC 2.19 × 10–2 1.09 × 10–3 2.90 × 10–1

LSI-MPC 1.17 × 10–1 2.22 × 10–2 4.32 × 10–1

SNN,2

RBSI-ETMPC 7.14 × 10–3 4.02 × 10–4 2.36 × 10–1

RLSI-MPC 8.70 × 10–3 4.40 × 10–4 2.43 × 10–1

LSI-MPC 1.67 × 10–1 3.79 × 10–2 3.75 × 10–1

Storm weather

SDO,5

RBSI-ETMPC 4.36 × 10–3 2.95 × 10–4 2.35 × 10–1

RLSI-MPC 3.76 × 10–2 2.52 × 10–3 3.34 × 10–1

LSI-MPC 1.23 × 10–1 2.86 × 10–2 4.65 × 10–1

SNN,2

RBSI-ETMPC 8.05 × 10–3 4.26 × 10–4 2.36 × 10–1

RLSI-MPC 9.24 × 10–3 4.50 × 10–4 2.25 × 10–1

LSI-MPC 1.77 × 10–1 5.16 × 10–2 5.07 × 10–1
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event-triggering strategy. From Fig. 9, the longest trigger 
interval is 0.4 h, which shows that the event trigger strategy 
can effectively save computing resources.

Table 5 presents the values of the IAE, ISE and DEVmax 
for different control strategies. Compared with RLSI-MPC 
and LSI-MPC, the proposed RBSI-ETMPC has a smaller IAE, 
ISE and DEVmax under the three working conditions, which 
indicates that it can adapt well to the variable setpoints and 
output pulse interference. Taking rain weather conditions 
as an example, for the control of SDO,5, compared with RLSI-
MPC, the values of IAE, ISE and DEVmax of RBSI-ETMPC 
decreased by 79.77%, 73.76% and 25.00%, respectively. For 
the control of SNN,2, compared with RLSI-MPC, the values of 
IAE, ISE and DEVmax of RBSI-ETMPC decreased by 21.85%, 
8.64% and 2.88%, respectively.

5. Conclusion

Aiming at the precise control of dissolved oxygen 
and nitrate nitrogen in the biochemical reaction process of 
municipal wastewater treatment, this paper proposes an 
event-triggered predictive control strategy based on recur-
sive bilinear subspace identification. The designed recursive 
bilinear subspace identification method with a forgetting 
factor can not only obtain the precise state space model of 
the controlled object but also update the model parame-
ters recursively online to enhance the adaptability of the 
model. The predictive control strategy with an event-trig-
gering mechanism can not only overcome the defect that 
the post-event control cannot actively suppress the control 
error but also avoid unnecessary control operations, thus 
enhancing the control performance and reducing the con-
trol energy consumption. In this paper, the BSM1 model is 
used for simulation verification. Four experimental cases, 
including multivariable constant value control, multivari-
able variable setpoint control, variable setpoint control with 
input pulse interference, and variable setpoint control with 
output pulse interference, are designed under three com-
plex working conditions. The predictive performance verifi-
cation of the RBSI model and the control performance ver-
ification of the RBSI-ETMPC controller are completed. The 
experimental results clearly show the superior performance 
of the proposed RBSI-ETMPC, which lays a foundation 
for its successful application in wastewater treatment plants.

To enhance the capability of the model to depict complex 
dynamic systems, the next step is to establish a prediction 
model for MPC using neural networks. Structural identifi-
cation and parameter estimation are two critical issues that 
need to be addressed carefully for neural network-based 
prediction models. Therefore, the introduction of a param-
eter adaptive learning mechanism and a structure self-or-
ganization adjustment mechanism can improve the identi-
fication ability of neural networks. In addition, combining 
advanced algorithms such as deep learning, reinforcement 
learning, and brain-like computing can improve the learn-
ing ability of the model. It is worth mentioning that the 
computational complexity of real-time control rates for neu-
ral network-based MPC will increase greatly. Researchers 
can attempt to acquire control rates online using gradi-
ent descent algorithms, LM and its variants, and neural 
dynamics optimization methods.

At the same time, to break through the basic theories 
and methods required for the construction of unattended 
wastewater treatment plants, optimization algorithms, 
such as multi-objective optimization, constrained multi-ob-
jective optimization, and dynamic multi-objective opti-
mization, can be used to obtain the optimal setpoints of 
dissolved oxygen and nitrate nitrogen.
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