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a b s r t a c t
This work aims to explore the anti-cyanobacterial potentialities of the weed Oxalis pes-caprae L. on 
Microcystis aeruginosa growth. In the current study, the aqueous extract of the aerial parts of Oxalis 
pes-caprae L. (AEOP) was tested to assess its activity on M. aeruginosa growth in an experimental 
bioassay. The anti-cyanobacterial effect of AEOP against M. aeruginosa was assessed in a batch cul-
ture experiment where several morphological and physiological indicators, and inhibition param-
eters were assessed. To reveal the potentially allelochemicals, phenolic compounds were analyzed 
in AEOP. Furthermore, the results from the bioassay demonstrated that AEOP inhibit the growth 
of M. aeruginosa in a concentration dependent way. Microcystis cell densities were significantly 
reduced during the bioassay period at the different tested concentrations (0.25, 0.5, 0.75, and 1 mg/
mL). Under both highest concentration of AEOP (0.75 and 1 mg/mL), the inhibitory rate (IR) reaches 
63% and 74 only after 4 d of experimentation, respectively. The highest IR (86%) was achieved on 
10 d at the highest concentration (1 mg/mL). Additionally, during the 12-d experimental period, 
all four-treatment groups (0.25–1 mg/mL) demonstrated a significant decrease in the content of 
chlorophyll-a and carotenoids compared to the control. Overall, the obtained results demon-
strate the anti-cyanobacterial effect of AEOP to control Microcystis growth. Moreover, the invasive 
weed Oxalis pes-caprae L. might be proposed as a potential ecofriendly alternative algaecide to 
control Microcystis blooms in the eutrophic water bodies.

Keywords:  Microcystis aeruginosa; Blooms; Cyanobacterial inhibition; Algaecide; Terrestrial invasive 
plant; Morphological; Physiological alterations; Green approach

1. Introduction

Harmful cyanobacterial blooms (CyanoHABs) have 
become a serious problem for drinking water sources and 
recreational purposes worldwide. Microcystis spp. are the 
cyanobacterial species most involved in CyanoHABs [1]. 

Microcystis blooms are often toxic and produce hepatotoxins 
(Microcystins) that contaminate drinking water and cause 
adverse effects on the health of several living organisms [2].

To control the proliferation of toxic cyanobacteria in situ 
and/or in water treatment plants, diverse solutions have been 
used such as artificial mixing and thermal destratification 
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[3,4], filtration, ultraviolet, ultrasound techniques [5,6], 
and coagulation and flocculation chemicals [7,8]. However, 
these conventional techniques generate secondary pol-
lution, which directly or indirectly affects the health of 
both ecosystems and humans [9–11].

Therefore, plant-based alternatives as green approaches 
to control Microcystis aeruginosa growth have widely used 
macrophytes [12,13] and medicinal plants [14–17]. Recently, 
the use of the allelopathic potentialities of invasive plants 
in bioassays to control harmful algal blooms has received 
the interest of scientists as a two-fold innovative solution; 
first one, to solve the problem of invasive plant biomasses; 
and thus to eliminate the proliferation of toxic cyanobacte-
ria by a natural agent [13,18,19]. However, the use of inva-
sive alien plants remains little limited; despite the benefits 
that can offer in eradicating Microcystis blooms [13,19].

Otherwise, in terrestrial ecosystems, the phenomenon 
of invasive plants is one of the major emerging problems, 
often in agroecosystems where they cause crop damage. 
The excessive biomasses generated by invasive plants con-
stitute a challenge for the agroecosystem managers [20]. 
Turning a supposedly “useless” biomass towards an eco-
nomic and/or ecological valorization could constitute a real 
alternative [18].

Bermuda buttercup (Oxalis pes-caprae L.) is a perennial 
herb, which belongs to the Oxalidaceae family. It is indig-
enous of South Africa, now found in numerous countries 
worldwide [21], and commonly spread in Mediterranean 
region as one of the most invasive weeds [22,23]. O. pes-
caprae L. is often invaded in disturbed and agricultural 
areas and can occur in all soil types [24] due to its high 
competition potential, which using the release of allelo-
chemicals as the main invasion factor [25–27]. Furthermore, 
O. pes-caprae L. is widely recognized as an undesirable inva-
sive species in agricultural production, especially in olive 
groves [28] and citrus orchards [29]. Moreover, its allelo-
pathic effects on various plants has been demonstrated 
in bioassays, in particular on tomato, oat, lettuce [25], 
and on Trifolium repens [30].

Plant allelochemicals are considered as the source of 
green algaecides because both of their biodegradability 
and efficiency in the inhibition of neighbor plant growth 
[31]. The phytochemical characterization of Oxalis pes-
caprae aqueous and organic extracts indicated that the 
main chemical compounds of this plant are luteolin and 
apigenin flavonoid derivatives [32], and several common 
phenolic acids, phenols and their derivatives [18,26]. The 
most of these bioactive compounds belong to the common 
allelochemicals and were known by their antioxidant and 
antimicrobial activities [18,32]. However, no indication in 
the literature has reported its allelopathic potential in the 
biocontrol of harmful algae.

This work aims to present, for the first time, the anti- 
cyanobacterial potentialities of the weed Oxalis pes-caprae L. 
on M. aeruginosa growth. in an experimental bioassay.

2. Material and methods

2.1. Biological materials

M. aeruginosa was isolated from the eutrophic Lalla 
Takerkoust Reservoir, Morocco, (31°21’36” N; 8°7’48” W) 

in August 2020, and was grown in laboratory cultures at 
25°C ± 1°C under light intensity of 70 µE/m2·S, with a light/
dark cycle of 15 h/9 h.

O. pes-caprae L. was collected in May 2021 from a pri-
vate garden in Khouribga city (32°52’51” N; 6°54’22” W). 
Aerial parts were rinsed several times with distilled water 
to remove debris, dried away from sunlight at ambient 
temperature (25°C), and then crashed into powder prior to 
extraction.

2.2. Preparation of plant extracts

The aqueous extraction of the aerial plants was car-
ried out according to the method described by Chen et al. 
[33], with small modifications. Briefly, 10 g of dried bio-
mass powder leaves were placed in 100 mL distilled water 
under agitation (45°C; 48 h). The macerate was then auto-
claved and kept at 4°C as aqueous extract.

2.3. Quantification of total phenolic and total flavonoids in 
extracts

Total phenolics (TPs) concentration was determined 
with the Folin–Ciocâlteu method [34]. Total flavonoids 
(TFs) content concentration were determined by the 
method described by Kim et al. [35].

2.4. Anti-cyanobacterial bioassay

5 groups of Erlenmeyer flasks (500 mL) containing 
Z8 medium to a final volume (300 mL) were used to con-
tain 5 concentrations (0 (control), 0.25, 0.5, 0.75, 1 V/V%) 
of the aerial parts of Oxalis pes-caprae L. (AEOP) which are 
equivalents to 0, 0.25, 0.5, 0.75, 1 mg·DW/mL, respectively. 
Each flask was inoculated by a volume of M. aeruginosa, 
in exponential growth phase, to make an initial density 
(0.73 × 106 cell/mL). Flasks were incubated in a culture room 
at 25°C ± 1°C, illuminated in 15 h/9 h light-dark cycle with 
fluorescent tubes (70 µE/m2·S) within 12 d. All the exper-
iments were conducted in triplicate. Microcystis growth 
under different treatments was quantified using Malassez  
hemocytometer.

2.5. Inhibition parameters

The effects of the AEOP on Microcystis growth were 
expressed using three parameters: inhibitory rate (IR), the 
half-maximal inhibitory concentration (IC50) and the IC90. 
IR of Microcystis growth was determined according to the 
following Eq. (1): IR (%) = N0 – N/N0 × 100; where N0 and 
N (cells/mL) are the cell density in the treatment and con-
trol cultures, respectively. IC50 and IC90 were calculated 
based on the concentration range (X) used according to 
the inhibition rates (Y) recorded at the end of the experi-
ment. The calculation equation derived from the drawing 
graph is as follows: Y = 96.8X – 0.8.

2.6. Morphological modification

During the experiment, Microcystis morphology was 
observed using an optical microscope with a camera (Motic 
BA210). Several morphological criteria (cell diameter, form 
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and condensation of colonies, pigmentation, and vacuoles 
density) were elucidated.

2.7. Pigments determination

The concentrations of chlorophyll-a and carotenoids 
were measured by spectrophotometry according to Lichten-
thaler and Wellburn [36]. They extracted with ethanol 95% 
at 4°C for 48 h, and then determined using a spectropho-
tometer (TOMOS V-1100) at 470, 649, and 665 nm. The fol-
lowing formulas were used to calculate the concentrations 
(µg/mL): [Chlorophyll-a] = 13.95xDO665 – 6.88xDO649; 
[Carotenoids] = [(1,000xDO470) – (2.05·Chl-a)]/229.

2.8. Statistical analysis

Data with three replicates were statistically analyzed 
by two-way analysis of variance (ANOVA two-way) with 
Tukey’s test to assess differences between exposure con-
centrations and control at p = 0.05. Correlation coefficients 
were calculated between cellular density and TPs and 
TFs, concentrations in the end of experimentation.

3. Results

3.1. Inhibitory effect on growth of M. aeruginosa

Fig. 1 shows the concentration-dependent inhibi-
tion of M. aeruginosa growth by the AEOP. In control 

group, the cell densities remained between 0.73 × 106 and 
154.2 × 106 cell/mL as un optimum value at 10-d. In con-
trast, Microcystis cell densities were significantly reduced 
(p < 0.05) during the bioassay period at the different tested 
concentrations (0.25, 0.5, 0.75, and 1 mg/L).

The inhibition rate (IR) appeared to be dose-dependent,  
with an overall IRs exceeding globally 52% after 2 d at 
the three tested concentrations (0.5, 0.75 and 1 mg/mL) 
(Table 1). Under both highest concentration of AEOP (0.75 
and 1 mg/mL), the IR reach 63% and 74 only after 4 d of 
experimentation, respectively. The highest IR (86%) was 
achieved on 10 d at the highest concentration (1 mg/mL).

Thus, the bioassay results were expressed in terms 
of the inhibitory concentrations. Both the IC50 and IC90 
were calculated. In the end of the experimentation, the 
IC50 and IC90 mentioned two values 0.52 and 0.94 mg/mL, 
respectively (Fig. 2).

3.2. Effects on morphological changes in M. aeruginosa

To elucidate the morphological changes in M. aerugi-
nosa cultures under treatments, a series of pictures were 
taken (Fig. 3). In control groups, it can be seen that the 
M. aeruginosa cells were clearly structured with regular 
surfaces. For these last, cell forms were rounded and pig-
mented, with cell diameter between (2.1–2.7 µm) in the end 
of the treatment period (Fig. 3. C, C.I). However, under 
high concentrations (0.75 and 1 mg/mL), M. aeruginosa 

Fig. 1. Effects of the different concentrations of AEOP on Microcystis aeruginosa growth. Errors bars represent the standard 
deviation (n = 3). *<0.05 indicate significant differences compared to the untreated culture (ANOVA two-way).

Table 1
Inhibitory effects expressed as inhibitory rate (%) of AEOP on Microcystis aeruginosa growth

Treatments (mg/mL) 0 2 4 6 8 10 12

0.25 0 29 ± 0.13 16 ± 0.06 6 ± 0.07 7 ± 0.01 12 ± 0.93 6 ± 0.01
0.5 0 52 ± 0.07 55 ± 0.28 65 ± 0.11 67 ± 0.08 53 ± 0.26 70 ± 1.35
0.75 0 53 ± 0.16 63 ± 0.15 75 ± 0.04 76 ± 0.04 80 ± 0.07 76 ± 0.15
1 0 63 ± 0.21 74 ± 0.06 77 ± 0.16 78 ± 0.24 86 ± 0.02 86 ± 0.03
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cells lose their standard and regular form to a cell clus-
ters (1.5–1.8 µm cell diameter), forming sediment aggre-
gates, with uniform, destroyed and shrinking, especially, 
in the end of the test period (Fig. 3. T, T.I). These mor-
phological changes are accompanied by the coagulation 
and sedimentation of cyanobacterial cells, especially after 
4 d of exposure, with yellowing colors.

3.3. Effects on photosynthetic pigments

In order to assess the physiological modification, two 
photosynthetic pigments were measured (Chl-a and carot-
enoids) as physiological indicators of Microcystis growth 
in the bioassay. During the 12 d experimental period, all 
four-treatment groups (0.25–1 mg/mL) demonstrated a 

significant decrease (p < 0.05) in the content of Chl-a and 
carotenoids compared to the control. With the increase in 
extract concentrations, the pigment contents appear to be 
strongly inhibited.

After 8 d of bioassay, Chl-a and carotenoid contents at 
both the highest concentration treatment (0.75–1 mg/mL) 
decreased by 53% and 50%, respectively (Fig. 4).

3.4. Phytochemical characterization

The results of the phytochemical characterization are 
shown in Table 2 AEOP exhibited important values on TPs, TFs. 
As well, a high significant correlations have been well obtai-
ned between the IRs of the three high concentration (0.5%–1%) 
and TPs, and TFs concentrations (0.95 and 0.93), respectively.

Fig. 3. Visual and microscopic observations of Microcystis aeruginosa cells in the control (C, C.I) and treatment groups (T, T.I) 
(1 mg/mL) of Oxalis pes-caprae L. aqueous extracts (Gr. x 40), with sedimented cells, completely devacuolated and decomposed.

Fig. 2. Inhibitory concentrations recorded according to the inhibition rates during the bioassay.
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Fig. 4. Effects of AEOP on Chl-a (A) and carotenoids (B) in Microcystis aeruginosa cultures, respectively. Each value is the 
mean ± SD of three replicates, a, p < 0.05 indicate significant differences compared to the untreated culture (ANOVA two-way).
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4. Discussion

This study is the first report of the anti-cyanobacterial 
activity of O. pes-caprae L. on M. aeruginosa. As is obtained, 
AEOP act negatively on the M. aeruginosa growth where 
the inhibitory effect appeared dose dependent (Fig. 1). 
The highest inhibition rate (IR) exceeds 74% on day 4 of 
experimentation; and it was achieved (86%) on 10-d under 
the highest concentrations of extract (1 mg/mL) (Table 1). 
Thus, the inhibition rates are confirmed by very powerful 
IC50 and IC90 values (0.52 and 0.94 mg/mL), respectively 
(Fig. 2 and Table 1). This strong inhibition demonstrated 
the high anti-cyanobacterial potential of AEOP on M. aeru-
ginosa. The obtained results remain globally similar to 
those observed in other previous works that studied certain 
plants: Ailanthus altissima (66.3%–91.8%) on 5 d [37], Thalia 
dealbata (92.7%) on 7 d [38], Nymphaea tetragona, Typha ori-
entalis, Nelumbo nucifera and Iris wilsonii, (75%–82%) during 
19 d [33]. Tebaa et al. [15–17] showed that the growth of 
M. aeruginosa was effectively inhibited by aqueous extracts, 
with strongest inhibition rates for Thymus satureioides, 
Achillea ageratum, Artemisia herba-alba, Origanum compactum 
(IR values between 88% and 95%) after 8 d.

Moreover, in our experimental study, the growth inhi-
bition is amply supported by the decrease of the two pho-
tosynthetic pigments (Chl-a and carotenoids), as well as 
by morphological changes in treatments groups (Figs. 3 
and 4). The growth inhibition accompanied by photosyn-
thetic pigments reduction and morphological changes of 
M. aeruginosa, were mainly indicators of physiological alter-
ations occurring in a stressful environment. Additionally, 
some studies specifically demonstrated the negative effect 
of the extracts on Chl-a content [15,16,39]. Their decrease 
demonstrates the disturbance of the photosynthesis, which 
affect the growth and reproduction of M. aeruginosa [40].

This inhibitory effect could be related to the poten-
tial allelochemicals released by O. pes-caprae L. In various 
works devoted to the research of the algicidal and allelo-
pathic potentialities of plants, plant-derived polyphenolics 
were the most common allelochemicals in HABs control 
[17,39,41]. The phytochemical investigation of extracts 
allowed the identification of several compounds. They are 
mainly flavonoids, glycosides, terpenoids, saponins and 
several phenolic acids [33,40,42].

The Phytochemical characterization of Oxalis pes-caprae 
aqueous and organic extracts indicated that the main chem-
ical compounds of this plant are luteolin and apigenin 
flavonoid derivatives [43], and several common phenolic 

acids and phenols and their derivatives such as the couma-
ric acid, cinnamic acid, benzoic acid, methoxyphenol and 
hydroxyethyl phenol [18,26,44,45]. The most of these bio-
active compounds belong to the common allelochemicals 
and were known by their antioxidant and antimicrobial 
activities [18,32].

From he obtained results, the relatively high values of 
TPs and TFs seem to play a greater role in the inhibitory 
activity (Table 2). These results agreed with previous works 
showing the effect of TPs and TFs, in the M. aeruginosa 
inhibition [39,46,47].

In various previous studies, there is ample evidence 
that the allelochemical compounds inhibited the growth of 
the cell by altering both the physiological state and cellular 
structure [46,48]. Phenolic acids exhibit cell-permeability  
features because of their amphiphilic and lipophilic nature 
[49]. According to Wang et al. [50], p-coumaric acid and 
ferulic acid disrupted the cell membrane integrity of M. 
aeruginosa. Furthermore, reactive oxygen species (ROS) act 
on cell membranes during stressful situations by degrad-
ing unsaturated phospholipids, which increases the per-
meability of the membranes [37]. Thus, the perturbations 
of antioxidant defence system cause the inhibition of pho-
tosynthesis and oxygen evolution due to interactions with 
components of PS II [51], which ultimately induce the  
cell death [38].

5. Conclusion

This study demonstrates the AEOP plant’s ability to 
suppress the growth of M. aeruginosa. This effect is dose- 
dependent. The highest inhibition rate (IR) exceeds 74% 
on day 4 of experimentation; and it was achieved (86%) 
on 10 d under the highest concentrations of extract (1 mg/
mL). Thus, the inhibition rates are confirmed by very pow-
erful IC50 and IC90 values (0.52 and 0.94 mg/mL), respec-
tively. Furthermore, during the 12-d experimental period, 
all four-treatment groups (0.25–1 mg/mL) demonstrated 
a significant decrease in the content of chlorophyll-a and 
carotenoids compared to the control. TPs, TFs, characterized 
might be the main responsible allelochemicals.

Consequently, oxalis plant can be recommended in 
the treatment of the waters contaminated by M. aeruginosa 
blooms. Other approaches in the future will be required to 
identify the dominant and specific allelochemicals, as well 
as to study its potential effects on the aquatic ecosystems 
in its different dimensions.
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Table 2
Total phenolic, total flavonoids, amounts in AEOP and cor-
relations between all amounts and inhibition rates of the three 
high concentration (0.5%, 0.75%, and 1%) after 10 d of exposure

TPa TFb

Concentrations 803 ± 0.03 3,690 ± 0.49
Coefficient of correlation 0.95 0.93

aµg gallic acid equivalent/mL aqueous extract;
bµg catechin equivalent/mL aqueous extract.
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