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a b s t r a c t

Water distribution systems consistently supply high-quality water at suitable pressure and volume 
for human and industrial consumption. Meticulous water quality management is vital to these sys-
tems. South Korea, having established legal standards for water distribution in 1963, operates the 
National Auto Water Quality Monitoring System for real-time water quality monitoring and contam-
ination warnings when levels exceed legal thresholds. The U.S. Environmental Protection Agency 
(EPA) points out that fixed thresholds can trigger an abundance of false-positive alarms, causing 
irregular hydraulic changes, and false-negative errors. This could potentially lead to a failure in 
detecting initial instances of pollution or micropollution that fall below the established threshold. 
To address this, our study developed an proactive contamination warning method for South Korea’s 
monitoring system, utilizing long short-term memory (LSTM) for water quality prediction. We also 
employed ensemble empirical mode decomposition (EEMD) in feature engineering to enhance 
LSTM’s prediction performance. Additionally, we devised an optimal water quality prediction 
model development methodology by comparing short- and long-term prediction performances. Our 
findings revealed that using EEMD for feature engineering improved the stability and reduced the 
prediction lag of LSTM, outperforming traditional methods. This refined approach offers a more 
reliable and efficient means of monitoring and managing water quality in distribution systems.

Keywords:  Contamination warning; Ensemble empirical mode decomposition; Feature engineering; 
Long short-term memory; Water distribution system; Water quality

1. Introduction

A water distribution system (WDS) is a facility that 
continuously supplies high-quality water at an appropri-
ate water pressure and quantity for human and industrial 

activities. Therefore, strict water quality (WQ) management 
is a key technical element of a WDS.

South Korea established legal management standards 
for WDSs in 1963 and has since been continuously moni-
toring and managing various properties that determine the 
WQ (e.g., pH, dissolved oxygen (DO), turbidity, and total 
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organic carbon). Furthermore, the National Auto Water 
Quality Monitoring System (NAWQMS) has been estab-
lished as a comprehensive system for real-time monitoring, 
protecting water resources, and issuing contamination warn-
ings (CWs) in WDSs [1–3]. South Korea’s NAWQMS provides 
the advantage of delivering real-time and continuous WQ 
measurement results by combining a telemonitoring sys-
tem and supervisory control and data acquisition (SCADA). 
A CW is triggered when real-time WQ measurements 
exceed the established legal threshold. However, the U.S. 
Environmental Protection Agency (EPA) has identified a sig-
nificant issue with this approach—a tendency for this thresh-
old-based system to generate an abundance of false-positive 
alerts in the WDS, leading to unnecessary repairs and unex-
pected, sudden shifts in hydraulics; even more troubling is 
the risk of catastrophic false-negative errors. These errors 
can have serious implications as they can lead to the unno-
ticed beginnings of pollution or micro-contamination that 
sits below the established thresholds. Essentially, this flaw 
in the system could allow substantial water contamination 
to remain undetected, failing to set off the necessary CW 
[4,5], which is a critical issue that demands urgent attention 
and emphasizes the need for additional research to devise 
more effective solutions.

Numerous studies have been conducted based on the 
prediction models for WQ changes to compensate for the 
limitations of issuing CWs using the thresholds in WDSs. 
The EPA developed a linear prediction-correction filter 
(LPCF) model based on the autoregressive model—a tra-
ditional time-series model—and presented a WQ predic-
tion methodology. Park et al. [6] applied the autoregressive 
integrated moving average (ARIMA) model to improve the 
LPCF model. Recently, the development of WQ prediction 
models using artificial neural networks (ANNs) has also 
been actively performed. Zhao et al. [7] and Salami et al. 
[8] used ANNs to predict the WQ of wastewater treatment 
plants and rivers.

Among the ANNs, recurrent neural networks (RNNs) 
are suitable for time-series prediction and can accurately 
predict the WQ. Wang et al. [9] conducted a study on the 
prediction of heavy metal content in rivers using long 
short-term memory (LSTM), which is a type of RNN. Liu 
et al. [10] applied LSTM for the prediction of DO in a WDS, 
and Liang et al. [11] used an LSTM for the prediction of 
chlorophyll a (Chl-a) in water streams.

Research on improving the performance of RNNs for 
WQ prediction has been largely conducted using two meth-
ods, that is, combining different ANNs and using feature 
engineering techniques. Yang et al. [12] and Barzegar et al. 
[13] combined a convolutional neural network and LSTM 
models to predict the pH and NH3–N in mangrove areas 
and the DO and Chl-a in lakes. They reported that the pre-
diction performance of the combined model was signifi-
cantly improved compared with that of the LSTM model.

Feature engineering is a technique used for transform-
ing the original data into appropriate features by utilizing 
the domain knowledge of the original data to improve the 
prediction performance of an ANN. In the case of an RNN, 
univariate or multivariate time-series data are used as orig-
inal data; consequently, feature engineering is applied by 
decomposing or synthesizing the time series into multiple 

frequencies. Traditional time-series decomposition method-
ologies include the fast Fourier transform (FFT) and wave-
let transform, which have limitations in managing abnormal 
time series or time series that exhibit nonlinear fluctuations. 
By contrast, empirical mode decomposition (EMD), which 
was proposed by Huang et al. [14], has the advantage of 
improved robustness compared with the FFT and wavelet 
transform as it decomposes nonlinear nonstationary time 
series into a finite number of intrinsic mode functions (IMFs). 
However, EMD has a disadvantage: when discontinuous 
signals, such as impact signals, are distributed in the origi-
nal data, a modal mixing occurs in which the signals are not 
separated into appropriate IMFs but rather get mixed within 
multiple IMFs. To compensate for this shortcoming of a con-
ventional EMD, Wu and Huang [15] proposed ensemble 
empirical mode decomposition (EEMD), in which Gaussian 
noise is added to the original data and EMD is repeated. In 
a study on WQ prediction using EEMD and LSTM, Zhang 
et al. [16] decomposed the observed DO in a river into the 
IMFs using EEMD and inputted each IMF to an indepen-
dent LSTM model. In addition, Sha et al. [17] proposed 
converting the decomposed IMFs into two-dimensional 
images and inputting them into a single LSTM model.

This study aimed to formulate a preemptive CW method 
for the real-time WQ observed at the NAWQMS in South 
Korea by employing a strategy of feature engineering based 
on EEMD and LSTM networks to minimize false-nega-
tive errors, that is, the critical challenge in the CW process. 
Through feature engineering, different features were estab-
lished by reconstructing the IMFs decomposed via EEMD, 
with a synthesized component created from these IMFs. 
Considering the unique characteristics of each developed 
feature, an LSTM model was designed. This research sought 
to compare short-term and long-term predictive perfor-
mances for WQ and ultimately aimed to propose a meth-
odology for developing the most effective WQ prediction  
model.

2. Theoretical background

2.1. Ensemble empirical mode decomposition

EMD is a technique used for decomposing nonlinear 
and nonstationary time-series data into a finite number of 
IMFs, wherein the IMFs must satisfy two conditions: (1) the 
number of extrema in the entire time-series data must be 
equal to the number of zero crossings or differ by at least 
one; and (2) at any point, the mean value of the envelope 
defined by the local maxima and minima must be zero. If 
the raw time series is x(t), we can obtain the upper enve-
lope u1(t) and the lower envelope l1(t) by connecting all the 
maxima and minima, and the mean value m1(t) for these 
envelopes is given as:

m t
u t l t

1
1 1

2
� � � � � � � �

 (1)

The m1(t) obtained from Eq. (1) is subtracted from the 
raw time series x(t) to obtain the initial h1(t) as follows:

h t x t m t1 1� � � � � � � �  (2)
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If h1(t) obtained from Eq. (2) satisfies the two conditions 
for the IMFs, it becomes the first IMF c1(t); otherwise, the 
shifting process is repeated j times until h1(t) satisfies the 
IMF conditions as follows:

h t h t m tj j1 1 1, ,� � � � � � � �  (3)

Once the first IMF c1(t) is determined through the 
above process, it can be subtracted from the raw time 
series x(t) to obtain the first residue r1(t) as follows:

r t x t c t1 1� � � � � � � �  (4)

The above process is repeated for r1(t) obtained from 
Eq. (4) until ri(t) becomes a monotone function or the num-
ber of extrema is less than one or equal to one such that no 
more IMFs can be extracted. Finally, when n IMF cn(t) val-
ues are obtained, the raw time series x(t) is equal to Eq. (5), 
which is the result of EMD.

x t c t r tn
i

n

n� � � � � � � �
�
�

1
 (5)

However, as mentioned in the previous section, simply 
applying EMD to time-series decomposition leads to modal 
mixing, where the signal components of each IMF are mixed 
with each other. Therefore, Wu and Huang [15] proposed 
an EEMD technique in which white noise w(t) is added 
to the raw time series x(t) as follows:

X t x t w t� � � � � � � �  (6)

The EEMD technique can solve the problem of modal 
mixing by adding white noise w(t) k times in the process, as 
given by Eq. (6), and repeating the EMD process to obtain 
an IMF by considering the ensemble average as follows:

c
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2.2. Long short-term memory

Traditional statistical techniques such as ARIMA and 
deep-learning models, including RNNs, are commonly 
used to forecast the time series.

In particular, RNNs are characterized by a recurrent 
structure of interconnected units. In contrast to the con-
ventional feedforward neural networks, an RNN can effec-
tively process time-series data by using an internal hidden 
state to pass the output value of the hidden state at a certain 
timestep (t) to the hidden state at the next timestep (t + 1).

Eq. (8) indicates how the output value ht–1 of the hid-
den state at a certain timestep is passed to the hidden state 
at the next timestep.

h h W x W h bt t t h� � �� ��tan hx hh 1  (8)

where xt is the input value at the current timestep t; ht–1 is 
the output value of the hidden state at the previous timestep 

t – 1; Whx and Whh are the weights multiplied by the input 
value at the current timestep and the output value of the 
hidden state at the previous timestep, respectively; bh is the 
bias; and tanh is an activation function called the hyperbolic 
tangent.
However, the RNNs have the inherent problem of gradi-
ent vanishing, whereby the gradient of each timestep is 
multiplied as the sequence time of the time series increases 
and long-term information is lost.
Therefore, LSTM was proposed to improve the gradient 
vanishing problem of the RNN. LSTM introduces the con-
cepts of cell state, input gate, forget gate, and output gate in 
RNNs, as shown in Fig. 1. Thus, it can alleviate the gradi-
ent vanishing problem by learning how much to forget and 
fully remember the information of the previous timestep.

3. Study area and procedures

3.1. Study area

The target area of this study was the G_water treatment 
plant (G_WTP) located in the Gyeonggi province, South 
Korea. The G_WTP uses sand filtration processes, and its 
water treatment capacity is 250,000 m3/d. In each process 
of the G_WTP, the turbidity, residual chlorine, water tem-
perature, pH, and electrical conductivity (EC) are mea-
sured in real time, and the data are automatically managed 
using a remote-control system and SCADA.

In this study, an LSTM was developed targeting the 
pH and EC among the five WQ indicators being measured 
at G_WTP. To improve the predictive performance of the 
LSTM, feature engineering using EEMD was applied. The 
measurement point for the pH and EC was the outlet of the 
filtration process of the G_WTP. The measurement interval 
for each WQ indicator was 1 min, and the data collection 
period and statistical characteristics are presented in Table 1.

3.2. Study procedures

In this study, EEMD-based feature engineering was per-
formed to improve the performance of the LSTM model 
for pH and EC prediction. A flowchart of our methodology 
is shown in Fig. 2.

First, the original pH and EC data collected by the G_WPT 
were decomposed into n IMFs and residues by performing 
EEMD after adjusting the number of ensemble members 
and the amplitude of white noise.

 
Fig. 1. Memory cell structure of the long short-term memory.
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Second, the original data of each WQ, along with the 
IMFs and residues decomposed via EEMD, were utilized as 
input features of the LSTM model. Data splitting was per-
formed for training, validation, and testing, as shown in 
Fig. 2. The observation period for the pH and EC was from 
1 January 2019, 00:00, to 30 July 2021, 23:00 (Table 1), and 
the measurement interval was 1 min; thus, the total num-
ber of data samples was 22,608. From these data, 18,288 
samples (1 January 2019, 00:00–31 January 2021, 23:00, 80% 
of the total) were used for training and validation, and 
4,320 samples (1 February 2021, 00:00–30 July 2021, 23:00, 
20% of the total) were used for testing.

Third, considering the batch, the feature input into 
each LSTM consisted of the tensors expressed by the fol-
lowing equation:

X Rw v b∈ ,� ,�  (9)

where X is a tensor for the feature of LSTM; w represents the 
window size (or sequence time); v represents the number 
of features; and b represents the batch size.

To evaluate the effectiveness of feature engineering 
using EEMD, four types of input features were developed 
in addition to the original data for each WQ. The charac-
teristics of each feature and the development process of 
the LSTM are as follows:

•	 Model 1: the original WQ data were composed of fea-
tures, which were input into a single LSTM. As each 
WQ was a one-dimensional (1D) time series, the input 
feature was a tensor with dimensions of w × 1 × b 
(X ∈  Rw,1,b).

•	 Model 2: the n IMFs and residues decomposed using 
EEMD constituted one feature and were input into a 
single LSTM. As the n IMFs and residues were both 1D 
time series, the input feature was a tensor with dimen-
sions of w × (n + 1) × b (X ∈  Rw,n+1,b).

•	 Model 3: the n IMFs and residues decomposed via 
EEMD were organized into independent features and 
input into each LSTM. As the IMFs and residues input 
into each LSTM were 1D time series, each input feature 
was a tensor with dimensions of w × 1 × b (X ∈  Rw,1,b). 
Thus, the final WQ prediction was calculated by sum-
ming the predictions from (n + 1) independent LSTM  
models.

•	 Model 4: the average period of n IMFs and the correla-
tion coefficient for the original data were calculated. 
Subsequently, according to the average period and cor-
relation coefficient, the IMFs were categorized into K 
groups and summed to create new components. In 
model 4, the K components and residuals were organized 
into one feature and input into a single LSTM model. 
As the K components and residuals were 1D time-se-
ries data, the input feature was a tensor with dimen-
sions of w × (K + 1) × b (X ∈  Rw,n+1,b).

•	 Model 5: each of the K components and residues was 
composed of independent features and input into 
an individual LSTM. As the components and resi-
dues input into each LSTM were 1D time series, the 
input feature was a tensor with dimensions of w × 1 × b 
(X ∈  Rw,1,b). The final WQ prediction was then cal-
culated by summing the predictions from (K + 1)  
independent LSTM models.

Finally, for training and validating the LSTM model, 
feature scaling was performed using min–max normaliza-
tion as follows:

min

max min

ˆ x x
x

x x





 (10)

where x̂ represents normalized data; xmax represents the 
maximum value of the data; and xmin represents the mini-
mum value.
In addition, the hyperparameters of the LSTM were opti-
mized through the training and validation processes. The 
mean squared error (MSE), expressed in (11), was used 
as the loss function for fitting the LSTM.

 

Fig. 2. Research flowchart for feature engineering and building 
the long short-term memory model.

Table 1
Descriptive statistics of water quality data

Water quality Observation dates Number of 
data samples

Minimum Median Maximum Mean Standard 
deviation

pH Jan/01/2019, 00:00–Jul/30/2021, 23:00 22,608 6.04 7.21 7.88 7.19 0.22
Electrical 
conductivity (µS/cm)

Jan/01/2019, 00:00–Jul/30/2021, 23:00 22,608 87.21 187.68 304.69 192.34 36.9
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Time-series prediction using LSTM can be categorized into 
one-step prediction, that is, predicting the next timestep 
(t + 1) from the current timestep (t), and multistep predic-
tion, that is, predicting the time after m hours (t + m). In this 
study, we utilized a sliding window methodology for both 
single-step and multi-step forecasts, enabling a detailed 
examination of the influence of feature engineering on the 
LSTM model’s short-term and long-term predictive per-
formances. The performance of each model was evaluated 
using four test criteria: the root-mean-square error (RMSE), 
mean absolute error (MAE), mean absolute percentage 
error (MAPE), and Pearson’s correlation coefficient (CC), 
which are expressed as follows:
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where To
i and Tp

i represent the original and predicted WQ 
data at time i, respectively; Ti

o  and Ti
p  represent the mean 

values of the original and predicted WQ data at time i, 
respectively; and n represents the number of data sample  
points.

4. Results

4.1. Feature engineering using EEMD

In this study, the original data of the pH and EC col-
lected from the G_WTP were utilized as input features of 
the LSTM. For further feature development, EEMD was per-
formed with the number of ensembles set to k = 1,000 and 
the amplitude of white noise w(t) set to 0.2 times the stan-
dard deviation of the original data. All the original data 
were decomposed into IMFs and residues.

Fig. 3a and b show the EEMD results for the pH and 
EC, respectively. The original data were decomposed into 
nine IMFs and residues. Among the decomposed IMFs, 
IMF 1 represents the highest frequency signal, whereas 
IMF 9 represents the lowest frequency signal.

Each IMF and residue decomposed using EEMD was 
arranged as a tensor and utilized as an input feature for the 
LSTM. Additionally, to develop additional features using 
the partial synthesis of the IMFs, we calculated the average 
period for each IMF as well as the CC between each IMF 
and the original data. The results are presented in Table 2.

An analysis of the characteristics of the pH-decom-
posed IMFs revealed that IMFs 1–3 were the components 

that	 represented	 short-term	periods	of	≤24	h,	 and	 the	CCs	
for	 the	 original	 data	 were	 ≤0.10.	 Whereas	 IMFs	 4–7	 rep-
resented the periods ranging from 88 h (3.7 d) to 1,025 h 
(42.7 d), and the correlation coefficients for the original 

 

Fig. 3. Original water quality time series and components decom-
posed via ensemble empirical mode decomposition: (a) pH and 
(b) electrical conductivity.
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data were 0.22–0.37. Furthermore, IMFs 8 and 9 represented 
long-term periods of 2,382 h (99.2 d) and 7,350 h (306.3 d), 
and their correlation coefficients for the original data were 
0.60 and 0.80, respectively.

As with the pH, the EC was decomposed into nine 
IMFs, and the average periods of the IMFs were similar. 
IMFs	 1–3	 had	 average	 periods	 of	 ≤25	 h,	 and	 the	 correla-
tion	 coefficients	 for	 the	original	data	were	 ≤0.12.	The	 aver-
age periods of IMFs 4–7 ranged from 59 h (2.4 d) to 900 h 
(37.4 d), and the correlation coefficients for the original data 
ranged from 0.18–0.31. IMFs 8 and 9 had average periods 
of 2,260 h (94.16 d) and 5,130 h (213.8 d), and their correla-
tion coefficients for the original data were 0.23 and 0.48,  
respectively.

Herein, a novel input feature was developed by par-
tially synthesizing the IMFs of the pH and EC from the 
average period and correlation coefficient of each IMF pre-
sented in Table 2. The results are shown in Fig. 4.

Fig. 4a shows the partial synthesis of IMFs of the pH 
decomposed via EEMD and the input features developed 
using the residue. Component 1 was generated by synthe-
sizing IMFs 1–3, which represented short-term periods of 
<1 day. Component 2 was generated by synthesizing IMFs 
4–7, which represented periods of <3 months. Components 
3–5 were generated from IMFs 8 and 9 and the residue, 
respectively, which represented long-term periods of 
≥3	months.	 Fig. 4b shows the partial synthesis of IMFs of 
the EC decomposed via EEMD and the composition of input 
features developed using the residue. Each component 
was generated using the same method that was used for  
the pH.

4.2. Development of LSTM and validation results

Hyperparameter tuning, such as determining the size 
of the hidden layer and the learning rate, is required to 
develop the LSTM model. Herein, a single hidden layer was 
used to simplify the LSTM model. The hyperparameters 
are presented in Table 3.

As described previously, five features were constructed 
via the partial synthesis of IMFs, residues, and IMFs decom-
posed using EEMD along with the original data of each WQ, 
and these were input into an independent LSTM model. The 
training and validation data (18,288 samples from 1 January 
2019, 00:00 to 31 January 2021, 23:00) classified by the input 
features were used to optimize the hyperparameters of the 
LSTM model presented in Table 3. The window size, that 
is, the sequence time of the input feature, had an optimal 
value of 24, the average number of neurons in the hidden 
layer had an optimal value of 100, and the learning rate and 
batch size had optimal values of 0.01 and 64, respectively. 
Subsequently, the MSE was applied as the loss function for 
fitting each LSTM model.

Fig. 5a shows the validation results of models 1–5 devel-
oped for predicting the pH at each prediction step, wherein 
the RMSE was used instead of the MSE. In model 1, the 
original pH data were organized into a tensor with dimen-
sions of 24 × 1 × 64 (w × v × b) and input into a single LSTM 
model. Through validation, the RMSE was calculated to 
be 0.003–0.042 for prediction steps of 1–48 h. In model 2, 
the 10 signals decomposed via EEMD were organized into 
a tensor with dimensions of 24 × 10 × 64 and input into a 
single LSTM model; the RMSE for each prediction step was 

Table 2
Decomposition results for the pH obtained using ensemble empirical mode decomposition

Water quality Signal Minimum Median Maximum Mean period (h) CC

pH

IMF 1 –0.005 0.000 0.007 3 0.01
IMF 2 –0.005 0.000 0.004 9 0.01
IMF 3 –0.021 0.000 0.011 22 0.09
IMF 4 –0.394 0.000 0.259 88 0.22
IMF 5 –0.214 0.001 0.152 159 0.30
IMF 6 –0.176 0.001 0.141 402 0.34
IMF 7 –0.155 –0.002 0.192 1,025 0.37
IMF 8 –0.178 –0.004 0.148 2,382 0.60
IMF 9 –0.244 0.017 0.230 7,350 0.80
Residue 7.143 7.162 7.295 – –

Electrical 
conductivity

IMF 1 –0.543 0.000 0.298 9 0.04
IMF 2 –7.090 0.000 4.826 15 0.07
IMF 3 –19.819 0.000 19.758 25 0.12
IMF 4 –21.036 0.000 18.907 59 0.18
IMF 5 –27.234 0.001 27.346 159 0.26
IMF 6 –25.361 0.001 25.425 450 0.27
IMF 7 –23.032 –0.002 25.972 900 0.31
IMF 8 –16.872 –0.004 21.952 2,260 0.23
IMF 9 –16.396 0.017 18.427 5,130 0.48
Residue 150.438 7.162 237.996 – –
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calculated to be 0.010–0.071. In model 3, the nine IMFs and 
residues decomposed via EEMD were each organized into 
a tensor with dimensions of 24 × 1 × 64 and fed into 10 inde-
pendent LSTM models; the RMSE for each prediction step 
was calculated to be 0.004–0.020. In model 4, the five com-
ponents generated by the partial synthesis of IMFs were 
organized into a tensor with dimensions of 24 × 5 × 64 and 
fed into a single LSTM model; the RMSE for each predic-
tion step was calculated to be 0.004–0.044. In model 5, the 

 

Fig. 4. Results of the partial synthesis using intrinsic mode 
functions: (a) pH and (b) electrical conductivity.

Fig. 5. Validation results of the long short-term memory models 
at each prediction step: (a) pH and (b) electrical conductivity.

Table 3
Hyperparameters for long short-term memory development

Hyperparameter Long short-term memory Model

Model 1 Model 2 Model 3 Model 4 Model 5

Number of hidden layers 1
Number of neurons 10–150
Gate activation Sigmoid
Recurrent activation Tanh
Learning rate 0.1–0.001
Batch size 32–256
Number of epochs 100–500
Window size 6, 12, 24, 48, 60, 168
Optimizer Adam
Loss function MSE
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five components generated by partial synthesis were each 
organized into a tensor with dimensions of 24 × 1 × 64 and 
fed into five independent LSTM models; the RMSE for 
each prediction step was calculated to be 0.003–0.038.

Fig. 5b shows the validation results of each model devel-
oped for EC prediction for each prediction step, wherein 
the MSE was recalculated as the RMSE. The EC data were 
decomposed into nine IMFs and residues using EEMD, sim-
ilar to the pH, and the average period of the IMFs was sim-
ilar to that for the pH. Thus, the input features and LSTM 
configuration for the EC were identical to those for the pH. 
Subsequently, the validation of models 1–5 was performed 
at each prediction step, and the RMSE was calculated as 
0.309–13.865, 1.849–11.409, 1.968–7.306, 0.388–14.388, and 
0.277–10.807 for models 1–5, respectively.

4.3. Test results

To evaluate the prediction performance of models 1–5 
for each WQ fitted through training and validation, a test 
was performed. The test data were applied to 4,320 samples 
from the period of 01 February 2021, 00:00–30 July 2021, 
23:00 among the original data of each WQ indicator.

In addition, the four test criteria defined by Eqs. (15)–(18) 
were used to evaluate and compare the prediction perfor-
mance of the LSTM developed for different input features. In 
general, the RMSE, MAE, and MAPE are used to measure the 
difference between the predicted and measured values. These 
values being close to 0 indicates a small difference between 
the predicted and measured values, thus suggesting that the 
model has a high prediction accuracy. CC represents a linear 
relationship between the predicted and measured values; CC 
close to 0 indicates a meaningless correlation between the 
predicted and measured values. CCs close to –1 and 1 indicate 
strong positive and negative correlations, respectively.

The test results for models 1–5 developed for predict-
ing the pH are presented in Table 4. In the prediction step 
of 1 h, which involved predicting the next timestep (t + 1) 
from the current timestep (t), the CCs of models 1–5 were 
all >0.90. This indicates that the predicted values had strong 
positive correlations with the measured values. For models 
1, 3, and 5, their RMSE was between 0.003 and 0.004, MAE 
was between 0.002 and 0.003, and MAPE was between 0.03 
and 0.05, thus exhibiting similar results. In comparison, for 
models 2 and 4, the RMSE (0.011, 0.006), MAE (0.011, 0.005), 
and MAPE (14.8, 7.5) were relatively large.

The m-step prediction, which involves predicting m 
hours from the current timestep t, was performed with 
prediction steps of 3, 6, 12, 24, and 48 h for convenience. 
The results revealed that, as the prediction step increased, 
the RMSE, MAE, and MAPE increased, whereas the CC 
decreased for models 1 and 5. For the prediction step of 
48 h, the RMSE (0.030–0.155), MAE (0.022–0.148), and MAPE 
(0.29–2.06) of each model were maximized, whereas the 
CC was reduced to 0.85–0.98.

Overall, models 3 and 5 exhibited better prediction 
performance than the other models for all the prediction 
steps. Additionally, the changes in the test criteria as the 
prediction step increased were the smallest for these mod-
els. Overall, models 2 and 4 exhibited a lower prediction 
performance than model 1.

Table 5 presents the test results for models 1–5 developed 
for EC prediction. For the prediction step of 1 h, the CCs of 
models 1–5 were all >0.90, thus indicating a strong positive 
correlation with the measured values. For models 1, 4, and 
5, the RMSE, MAE, and MAPE ranged from 0.207–0.277, 
0.149–0.265, and 0.09–0.14, respectively, thus exhibiting sim-
ilar results. However, for models 2 and 3, the RMSE (1.229, 
1.968), MAE (1.182, 0.707), and MAPE (0.63, 0.39) were rel-
atively large. For prediction steps of 3–48 h, as the predic-
tion step increased, the RMSE, MAE, and MAPE of each 
model increased, whereas the CC decreased, similar to the 
results for the pH. For the prediction step of 48 h, the RMSE, 
MAE, and MAPE were maximized, whereas the CC was 
minimized for all the models.

A comparison of the models with different prediction 
steps revealed that models 3 and 5 had relatively good 
prediction performance and exhibited minor changes in 
the test criteria, except for the prediction steps of 1 and 
48 h. By contrast, models 1, 2, and 4 exhibited relatively 

Table 4
RMSE, MAE, MAPE, and CC calculation results in the case 
of pH data for each Long short-term memory model and pre-
diction step

Prediction step (h) Model RMSE MAE MAPE CC

1

1 0.003 0.002 0.03 1.00
2 0.011 0.011 0.15 1.00
3 0.004 0.003 0.05 1.00
4 0.006 0.005 0.07 1.00
5 0.003 0.002 0.03 1.00

3

1 0.006 0.005 0.06 1.00
2 0.039 0.037 0.50 1.00
3 0.002 0.002 0.02 1.00
4 0.009 0.006 0.09 1.00
5 0.003 0.002 0.03 1.00

6

1 0.031 0.029 0.39 1.00
2 0.029 0.028 0.38 1.00
3 0.003 0.002 0.03 1.00
4 0.013 0.009 0.12 1.00
5 0.008 0.007 0.10 1.00

12

1 0.015 0.011 0.15 1.00
2 0.030 0.016 0.23 0.98
3 0.007 0.006 0.08 1.00
4 0.029 0.016 0.22 0.98
5 0.006 0.004 0.06 1.00

24

1 0.035 0.023 0.31 0.97
2 0.072 0.069 0.93 0.99
3 0.019 0.014 0.20 0.99
4 0.067 0.050 0.68 0.93
5 0.021 0.013 0.17 0.99

48

1 0.076 0.048 0.66 0.87
2 0.155 0.148 2.06 0.94
3 0.030 0.022 0.29 0.98
4 0.081 0.049 0.66 0.85
5 0.064 0.041 0.56 0.92



S. Yoon et al. / Desalination and Water Treatment 303 (2023) 48–5856

large changes in the test criteria as the prediction step  
changed.

The test results for the pH and EC revealed that mod-
els 3 and 5, which decomposed the original data via EEMD 
and input each signal into an independent LSTM to obtain 
the final prediction value, demonstrated relatively good 
prediction performance. No significant degradation was 
observed in the prediction performance with an increase in 
the prediction step. Furthermore, models 2 and 4, in which 
each signal decomposed via EEMD was organized into a 
single tensor and input into a single LSTM model, did not 
exhibit a significant improvement in prediction perfor-
mance compared with model 1, in which the original data 
were input into a single LSTM model.

To further analyze the improvement in the prediction 
performance of the LSTM in models 3 and 5, the actual 
test data and the predicted values from each model were 
compared as shown in Figs. 6 and 7.

Fig. 6 shows the measured values of the pH test data 
for the prediction step of 48 h along with the predicted 
values of models 1, 3, and 5. As shown in Fig. 6a, the pre-
dicted values of model 1 captured the overall fluctuation 
of the measured values well but exhibited strong high-fre-
quency variability. Furthermore, as reported by Zhang et 
al. [16], Kratzert et al. [18], and Xiang et al. [19], a distinct 
delay was observed between the measured and predicted 
values for model 1, in which the original data were fed 
into a single LSTM model. By contrast, model 3 (Fig. 6b), in 
which the IMFs and residues decomposed via EEMD were 

Table 5
RMSE, MAE, MAPE, and CC calculation results in the case of 
electrical conductivity data for each Long short-term memory 
model and prediction step

Prediction step (h) Model RMSE MAE MAPE CC

1

1 0.207 0.149 0.09 1.00
2 1.229 1.182 0.63 1.00
3 1.968 0.707 0.39 1.00
4 0.276 0.200 0.12 1.00
5 0.277 0.265 0.14 1.00

3

1 1.196 0.901 0.51 1.00
2 1.012 0.599 0.38 1.00
3 0.859 0.666 0.37 1.00
4 0.862 0.658 0.38 1.00
5 0.512 0.387 0.22 1.00

6

1 2.700 1.965 1.11 1.00
2 1.881 1.297 0.77 1.00
3 0.709 0.549 0.31 1.00
4 3.377 2.722 1.55 1.00
5 1.183 0.922 0.51 1.00

12

1 9.475 7.101 4.03 0.95
2 2.554 1.805 1.03 1.00
3 2.213 1.502 0.88 1.00
4 5.317 4.012 2.25 0.98
5 2.522 1.916 1.10 1.00

24

1 15.038 11.145 6.32 0.87
2 11.124 7.647 4.33 0.95
3 10.431 6.254 3.45 0.93
4 12.706 9.502 5.30 0.91
5 9.387 7.153 4.03 0.95

48

1 20.549 15.353 8.61 0.74
2 11.637 8.643 4.71 0.94
3 11.032 8.181 4.61 0.93
4 17.346 13.789 7.69 0.82
5 17.047 13.294 7.53 0.83

 

Fig. 6. Simulation results for 48-h-ahead forecasting using 
ensemble empirical mode decomposition and long short-term 
memory for the pH test data: (a) model 1, (b) model 3 and 
(c) model 5.

Fig. 7. Simulation results for 48-h-ahead forecasting using 
ensemble empirical mode decomposition and long short-term 
memory for the electrical conductivity test data: (a) model 1, 
(b) model 3 and (c) model 5.
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input into each independent LSTM, did not exhibit large 
high-frequency fluctuations in the predicted values owing 
to cancel-out, and the delay between the measured and 
predicted values was resolved. Model 5 (Fig. 6c), in which 
the components generated by the partial synthesis of IMFs 
were fed into each independent LSTM, did not exhibit large 
high-frequency fluctuations in the predicted values owing 
to cancel-out, similar to model 3. However, the problem of 
delay in the predicted values remained.

Fig. 7 shows the measured values of the EC test data for 
the prediction step of 48 h, along with the predicted values 
of models 1, 3, and 5. Similar to the pH test results, model 
1 exhibited larger fluctuations in the high-frequency com-
ponents compared with models 3 and 5 along with a delay 
in the predicted value (Fig. 7a). Model 3 simulated the 
fluctuation of the measured values well (Fig. 7b), whereas 
model 5 exhibited large differences between the measured 
and predicted values.

5. Conclusion

In this study, we developed a proactive CW plan for 
the WQ observed in real time at NAWQMS in South Korea. 
LSTM was used to predict the pH and EC observed in real 
time at the G_WTP. To improve the prediction performance 
of LSTM, feature engineering using EEMD was applied. 
The original data of the pH and EC were 1D time series and 
were decomposed into IMFs and residues through EEMD. 
Subsequently, four additional features were developed 
using EEMD, along with the features composed of the orig-
inal data. The LSTM models were developed according to 
the configuration of each feature. The main results of this 
study are as follows:

•	 In model 1, the original 1D data were organized into 
features using a conventional method, and they were 
input into a single LSTM model. The final analysis using 
the test data indicated that, for the prediction step of 
1 h, which involved predicting the next timestep (t + 1) 
from the current timestep (t), the prediction perfor-
mance of model 1 did not differ significantly from that 
of models 2–5 to which feature engineering was applied. 
However, the overall prediction performance deterio-
rated and fluctuated significantly as the prediction step  
increased.

•	 In models 2–5, the original data were decomposed into 
nine IMFs and residues for feature engineering using 
EEMD. Model 2 organized each decomposed signal 
into a single tensor and fed it into a single LSTM model. 
Model 3 organized each decomposed signal into inde-
pendent features and fed them into individual LSTM 
models. By contrast model 4 organized the five compo-
nents generated by the partial synthesis of IMFs into a 
single tensor, which was fed into a single LSTM model. 
In the final analysis using the test data, models 2 and 
4 with a single LSTM model did not exhibit significant 
improvements in the prediction performance compared 
with model 1. As the prediction step increased, the pre-
diction performance deteriorated and fluctuated sig-
nificantly. By contrast, models 3 and 5, in which each 
feature generated through EEMD was input into an 

independent LSTM model, exhibited higher prediction 
performance compared with the other models for all the 
prediction steps. The prediction performance did not 
change significantly as the prediction step increased.

•	 To further analyze the improvement in the prediction 
performance for models 3 and 5, their predicted values 
were compared with the measured values of the test 
data, along with the predicted values of model 1, for the 
prediction step of 48 h. The predicted values of model 1 
simulated the fluctuations of the measured values well 
but exhibited a strong high-frequency variability. This 
resulted in a prediction delay, which has been reported 
as a drawback of conventional LSTM models. However, 
for models 3 and 5, strong high-frequency fluctuations 
did not occur in the predicted values owing to can-
cel-out, which occurred during the process of summing 
the predicted results of independent LSTM models to 
obtain the final predicted value. Furthermore, model 
3, which was composed of more LSTM models than 
model 5, was analyzed to mitigate the problem of pre-
diction delay.

Based on the results of this study, we conclude that LSTM 
is useful for the prediction of the observed WQ in WDSs. 
Furthermore, the application of EEMD-based feature engi-
neering is expected to improve the stable prediction perfor-
mance and reduce the prediction delay compared with the 
conventional method of inputting 1D WQ data to a single 
LSTM model. However, the process of developing inde-
pendent LSTM models for IMFs and residues decomposed 
from EEMDs increases the computational cost. Therefore, 
in the future, we aim to develop a methodology to mini-
mize the computational cost for EEMD-based feature engi-
neering and further improve the LSTM model by apply-
ing the partial synthesis of IMFs attempted in model 5 in  
various ways.
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