Heavy metal adsorption efficiency magnetic porous composites Fe₃O₄–SiO₂–APTES

Leila Karimi Takanlou^{a,b}, Mahdi Farzadkia^{a,b,*}, Amir Hossein Mahvi^{c,d}, Ali Esrafili^{a,b}

^aResearch Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran, Tel. +98-21-88779118; emails: farzadkia.m@iums.ac.ir (M. Farzadkia), lkarimi21@yahoo.com (L.K. Takanlou), a_esrafily@yahoo.com (A. Esrafili)

^bDepartment of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran ^cSchool of Public Health, Tehran University of Medical Sciences, Tehran, Iran

^dCenter for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran, email: ahmahvi@yahoo.com (A.H. Mahvi)

Received 27 March 2019; Accepted 13 December 2019

ABSTRACT

Heavy metals such as Cd2+ and Ni2+ in water have been a major issue for many years. This study presented heavy metal adsorption efficiency by Fe₃O₄–SiO₂ and Fe₃O₄–SiO₂–APTES. Fe₃O₄–SiO₂ synthesized by sol-gel method and was modified with APTES. Characteristics of adsorbents, including particle structure, composition and size were determined using analytical devices such as XRD, scanning electron microscopy, Fourier transform infrared spectra. In order to design experiments and analyse the results, the Software Design-Expert 7 and Taguchi method was used. Physical and chemical parameters such as pH, contact time, and adsorbent dosage under various conditions were studied. The result shows that in pH \ge 5.5–6.5, initial Cd²⁺ and Ni²⁺ with 10 mg/L concentration, 20 mg adsorbent dosage, and 20 min contact time, resulted in 75.5% cadmium and 70.5% nickel removal by Fe₃O₄-SiO₂. Moreover, the maximum capacity of cadmium and nickel adsorption was achieved 18.88 and 17.63 mg/g of adsorbent, respectively. In optimal condition (pH \ge 6.5–7, 10 mg/L initial cadmium and nickel concentrations, 20 mg adsorbent dosage, 10 min contact time), 95.5% of cadmium and 83.5% of nickel were removed from solutions, respectively. In addition, the maximum adsorption capacity of Fe₂O₄-SiO₂-APTES for cadmium and nickel adsorption was 22.63 and 20.88 mg/g, respectively. While, Fe₃O₄@SiO₂ shows the maximum adsorption capacity of 18.88 and 17.63 mg/g for cadmium and nickel, respectively. The adsorption isotherm follows both of the Langmuir and Freundlich models ($R^2 > 0.97$). Finally, Fe₃O₄-SiO₂-APTES have more ability than Fe₃O₄-SiO₂ to quickly and efficiently adsorb nickel and cadmium ions. In addition, modified magnetic silicon nanoparticle can be industrially used as reusable and environment friendly adsorbent.

Keywords: Adsorption; Cadmium; Nickel; FeSO,@SiO,; Ligand

* Corresponding author.

1944-3994/1944-3986 © 2020 Desalination Publications. All rights reserved.