

High-efficient capture of C.I. Basic Blue 3 by carboxymethyl-β-cyclodextrin conjugated magnetic composite

Baowei Hu^{a,*}, Qingyuan Hu^b, Jun Hu^{c,d}, Chengguang Chen^b

^aSchool of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China, Tel./Fax: +86-575-88341820; emails: baoweihusxu@sina.cn, hbw@usx.edu.cn

^bDepartment of Architectural Engineering for Shaoxing University Yuanpei College, Shaoxing 312000, China,

emails: qingyuanhusxu@sina.cn (Q. Hu), chengguangchensxu@163.com (C. Chen)

^cSchool of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China, email: junhudongguan@126.com ^dNAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Received 1 November 2016; Accepted 2 May 2017

ABSTRACT

In the present study, carboxymethyl- β -cyclodextrin (CM-CD) molecules were introduced onto the surfaces of Fe₃O₄ nanoparticles via chemical co-precipitation approach. The synthesized Fe₃O₄/CM-CD composite exhibited high magnetism and could be easily separated from the aqueous phase by exposing to an external magnetic field. In addition, the composite was stable in solution over a wide pH range. The effects of contact time, solution pH, ionic strength, solid dosage and temperature on the removal performance of Fe₃O₄/CM-CD toward a cationic dye named C.I. Basic Blue 3 (BB3) were evaluated by using the batch technique. The sorption kinetic process achieved equilibrium within a contact time of 90 min. The sorption isotherm data were simulated by the Langmuir model well and the maximum sorption capacity was calculated to be 203.54 mg/g at 298 K. The Fe₃O₄/CM-CD composite exhibited favorable removal performance toward BB3 in both the single-solute system and the simulation effluent. After sorption equilibrium, the BB3-loaded composite could be easily regenerated and reused for multiple sorption/desorption cycles. The experimental findings herein proposed the feasibility of adopting Fe₃O₄/CM-CD composite for the decontamination of BB3 from the polluted water systems.

Keywords: Fe₃O₄/CM-CD composite; C.I. Basic Blue 3; Simulation effluent; Magnetic separation; Renewable performance

* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.