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a b s t r a c t
Humic acid (HA) is considered as a ubiquitous natural resource around the globe and a common 
pollutant in the aqueous environment. In this case, HA was modified via simple etherification 
reaction and a new hydrophobic adsorbent (HAEE) was synthesized for removal of chlornitrofen 
pollutants (COPs) from aqueous solutions. The adsorption behaviors of HAEE toward COPs, 
including chlornitrofen (CNP), 2,4,6-trichlorophenol (2,4,6-TCP) and p-nitrophenol (PNP) from 
aqueous solutions were investigated. As a result, the HAEE adsorbent exhibited excellent adsorption 
performances for both single pollutant and multi-component COPs (removal efficiency > 95%). 
Meanwhile, the negligible pH influence (pH 4~8), short equilibrium time (8 h) and satisfactory 
reusability were also observed. Desorbed pollutants were completely degraded by a fluorine-based 
titanium dioxide-based photocatalyst under visible-light irradiation for the innocuous treatment. 
Furthermore, it is revealed that the hydrophobic interaction is a dominant force during adsorption 
process. These results suggest that hydrophobic HAEE adsorbent is expected to be a promising option 
for the treatment of various COPs in water/soil environment.
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1. Introduction

Chlornitrofen (CNP), a persistent organic pollutant, 
has been widely used during the 1970s and 1990s. It has 
been confirmed that not only chlornitrofen but also its 
degradation products namely 2,4,6-trichlorophenol (2,4,6-
TCP) and p-nitrophenol (PNP) have poor water solubility 
with high toxicity, which are difficult to be decomposed in 
natural aqueous/soil environment and can easily accumulate 
in fatty tissues of organs, causing potential health threats 

[1–3]. Although the use of CNP with extreme toxicity has 
been banned in most of the countries for more than 20 years, 
CNP, 2,4,6-TCP and PNP are still detected in aqueous and soil 
environment [4,5]. Dreadfully, these residual chlornitrofen 
pollutants (COPs) inevitably generate a large amount of 
polluted soil sites due to their strong stability. Currently, the 
problem of highly COPs-polluted soil has becoming one of the 
most concerned issues. In addition, soil washing is one of the 
most efficient technologies for removing organic pollutions, 
including COPs, from polluted soil. Consequently, further 
issues emerged following the collected COPs-contained 
waste washing solution.



S.L. Zhao et al. / Desalination and Water Treatment 175 (2020) 115–124116

Adsorption is currently the efficient method for the puri-
fication of aqueous solutions with organic contaminations. 
Many efforts have been dedicated to developing adsorbents 
for organic pollutions in aqueous environment, including 
activated carbon for removing trichloroethene [6], γ-Al2O3 
for adsorbing phenol [7] and reduced graphene oxide for 
removing naphthylamine [8], etc. Unfortunately, there are 
very little researches on the removal of high toxic COPs, 
especially about the development of adsorption materials for 
CNP and its degradation products in aqueous environment, 
such as washing solutions. Hence, the development of effec-
tive sorbents is urgent in order to solve COPs polluted issues.

Lipoid-type adsorbents may be preferable because of 
the hydrophobic nature of COPs. From this point of view, 
lipoid-type adsorbents are able to adsorb COPs through “like 
dissolves like” principle; moreover, these adsorbents can be 
recycled via organic solvent washing. Previous findings have 
shown that lipoid-type adsorbents exhibited great potential 
for effective removal of organic pollution from aqueous solu-
tion, for example, polyamide decorated triolein was used for 
adsorptive removal of nitrobenzene [9], triolein-embedded 
activated carbon showed a high adsorption capacity of diel-
drin [10].

Humic acid (HA) is a ubiquitous natural resource with 
many functional groups, including carboxylic acid, alcohol, 
phenolic compounds, aldehydes, and methoxyl (Possible 
chemical structure of HA in Fig. 1). Thus, it makes sense to 
prepare novel functional materials using HA as raw material. 
On the other hand, HA will react with chlorine during water 
treatment and produce trihalomethanes, which is a poten-
tial carcinogen [11,12]. Hence, the HA-based adsorbent is of 
practical importance and interest.

Prior work has documented the potential performance 
of HA when used as the supporting matrix of adsorption 
material [13]: a lipoid-type adsorbent (HA-M), which was 
prepared by using HA immobilized monoolein via simple 
esterification, preserves high adsorption capacities to both 
chlorobenzene compounds and organochlorine pesticides. 
Based on these, it looks possible that HA-M can be further 

chemically grafted with various hydrophobic raw materials 
(such as glycerol triglycidyl ether) via etherification due to its 
abundant functional groups. 

The work presented herein is to develop a new hydro-
phobic adsorbent for treatment of various COPs in water/soil 
environment. To evaluate the adsorptive removal properties 
of the prepared hydrophobic adsorbent to COPs, CNP, 2,4,6-
TCP and PNP were utilized as the target contaminations in 
aqueous environment. The influence of pH on the adsorption 
capacity of COPs, the adsorption kinetics and the adsorption 
isotherms were systematically investigated. Furthermore, 
desorbed pollutants were completely degraded by a fluorine-
based titanium dioxide-based photocatalyst under visible-
light irradiation for the innocuous treatment. The hydro-
phobic adsorbent has exhibited satisfactory performance in 
treatment of COPs-contained aqueous solution.

2. Materials and experiments

2.1. Materials

Glycerol triglycidyl ether was obtained from Changshu 
Jiafa Chemical Ltd., China. Humic acid (HA; CAS: 1415-
93-6) was purchased from Changshu Jiafa Chemical Co., 
Ltd. (China). Hexane was of analytical grade (ChengDu 
Kelong Chemical Co., Ltd., China). Chlornitrofen (CNP), 
2,4,6-trichlorophenol (2,4,6-TCP) and p-nitrophenol (PNP) 
were purchased from Aladdin Industrial Corporation, 
(Shanghai, China).

HA-M was prepared according to the methods reported 
in our previous study [13]: in brief, monoolein (CAS: 111-03-
05) was esterificated with HA using H2SO4 as catalyst. The 
resulting HA-M (1 g) was placed in a three-necked flask 
containing minute water. Then, the mixture was stirred at 
333 K for 1 h while pH was adjusted to 5 by 0.2 mol/L NaOH. 
Glycerol triglycidyl ether (GTE; CAS: 13236-02-7; 25%wt of 
HA-M) was gently dropwise added, along with few drops of 
acetone. The etherification reaction was performed at 333 K 

Fig. 1. Diagram of experiment procedure.
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for 6 h with continued stirring. After the reaction, the mixture 
was cooled down to room temperature, following by cen-
trifugation (4,000 r/min), and drying at 323 K. The obtained 
product was humic acid ester ether product (HAEE) and the 
preparation process can be illustrated by two major reaction 
steps which are shown as follows:
C21H39O3-OH + HA-COOH                    HA-COO-C21H39O3 + H2O
  (monoolein)     (humic acid)                                 (HA-M)  (1)

 
HA-COO-C21H39O3 + C10H17O5-CH-CH2                    C10H17O5-CH-CH2-HA-COO-C21H39O3
      (HA-M)                      (GTE)                                                            (HAEE)

O OH

 (2)

2.2. Experiments

Various COPs solutions used in this experiment were 
diluted by deionized water from the stock solutions. 
The adsorption system was kept sealed during all batch 
experiments.

2.2.1. pH influences on the adsorption capacity

0.02 g of HAEE was added into 50 mL of COPs solutions 
(10 mg/L of NCP; 10 mg/L of 2,4,6-TCP; 20 mg/L of PNP). 
The solution pH was adjusted in the range of 4–8 using HCl 
solutions (0.2 mol/L) and NaOH solutions (0.2 mol/L). The 
mixture solution was shaken at 293 K for 8 h to achieve the 
adsorption progress. When the adsorption was completed, 
the mixture solution was filtered. The collected filtrate was 
extracted by hexane for three times, then 0.2 g NaCl was 
added into the collected hexane solution to increase the 
ionic strength of organic matters. Subsequently, the collected 
organic phase was dehydrated using anhydrous sodium 
sulfate and precisely diluted to 10 mL via hexane. The 
obtained solutions were further filtered by passing through 
an organic membrane (0.45 μm), the concentrations of PNP 
was detected by ultraviolet spectrophotometer (Alpha-1900, 
Shanghai Puyuan Ltd., China; 398 nm) while the concentra-
tions of NCP or 2,4,6-TCP in these filtrates were analyzed 
by gas chromatograph (GC, D7900, Teccomp Ltd., China). 
Besides, the organic membrane filter had no adsorption to 
COPs. Adsorption capacities of HAEE (qe, mg/g) were calcu-
lated by Eq. (3):

q
C C V
Me

t=
−( 0 )

 (3)

where C0 (mg/L) and Ct (mg/L) are the initial concentrations 
of COPs and the remaining concentration at time t, respec-
tively, V (L) is the volume of aqueous solution and M (g) is 
the mass of adsorbent used.

2.2.2. Hydrophobicity influences on the adsorption capacity

In order to regulate and control the hydrophobicity of 
HAEE, different dose of glycerol triglycidyl ether (GTE) was 
added in the preparation process, respectively (15%wt, 25%wt, 
50%wt, 100%wt and 200%wt of HA-M). With various hydro-
phobicity, the obtained HAEE (0.02 g) was added into 50 mL 
of solutions (10, 20, 30, 40, 50 mg/L of CNP, or 10, 20, 50, 100, 
200 mg/L of 2,4,6-TCP, or 10, 20, 50, 100, 200 mg/L of PNP). The 
solution pH was adjusted to 7.0, while the adsorption process 
was conducted at 298 K with constant shaking for 8 h.

2.2.3. HAEE dose influences on the adsorption capacity

0.01, 0.02, 0.05, 0.10 or 0.20 g of HAEE was added into 
50 mL of COPs solutions (50 mg/L of NCP, or 100 mg/L of 
2,4,6-TCP, or 100 mg/L of PNP), respectively. Solution pH was 
adjusted to 7.0, while the adsorption process was conducted 
at 298 K with constant shaking for 8 h.

2.2.4. Adsorption kinetics

0.02 g of HAEE was added into 50 mL of solutions (30 mg/L 
of CNP, or 50 mg/L of 2,4,6-TCP, or 50 mg/L of PNP). The 
solution pH was adjusted to 7.0, while the adsorption process 
was conducted at 298 K with constant shaking, promising that 
lipophilic HAEE disperse well in the heterogeneous adsorp-
tion system formed by COPs and HAEE. The concentration 
of COPs in the organic phase was measured at different 
intervals, and the adsorption capacities at time t (min) were 
obtained by mass balance calculation, which were denoted as 
qt (mg/g). The adsorption kinetic data were further fitted by 
the pseudo-first-order rate model, and the pseudo-second- 
order rate model, which are expressed as Eqs. (4) and (5):

log( ) log
.

q q q k te t e− = − 1

2 303
 (4)

t
q k q

t
qt e e

= +
1

2
2  (5)

where qe (mg/g) and qt (mg/g) are the adsorption amount of 
COPs at equilibrium and time t (h), respectively; k1 (h–1) and 
k2 (g/(mg h)) are the rate constants.

2.2.5. Adsorption isotherms

Adsorption isothermal experiments were conducted with 
various initial concentrations of COPs. The solution pH was 
adjusted to 7.0 and the adsorption processes were carried 
out at 293, 208, 303 K for 8 h, respectively. The concentration 
of COPs in the extracted phase was measured by GC. The 
adsorption capacities at equilibrium (qe) were obtained by 
mass balance calculation. Adsorption isotherms data were 
fitted by Freundlich equations.

2.2.6. Effect of coexisting organic pollutants

Benzene and phenol were utilized as coexisting organics 
to investigate the removal efficiency of HAEE adsorbent to 
COPs. Absorption experiments were carried out by adding 
0.02 g of HAEE into 50 mL solutions of 2,4,6-TCP, respec-
tively. The concentrations of each kind of organic pollutants 
were fixed at 0.5 or 1.0 g/L. Initial pH of the solutions was 
adjusted 7.0. Batch experiments were conducted at 298 K 
with constant shaking for 8 h. The concentrations of 1,3,5-
TCB in the solutions were analyzed by GC. 

2.3. Adsorption efficiency in multi-component aqueous solutions

0.02 g of HAEE was added into a series of 50 mL aque-
ous solutions, which contains CNP, 2,4,6-TCP and PNP with 
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different concentrations. The initial pH of the solutions was 
adjusted to 7.0 and the adsorption was carried out under con-
stant stirring for 8 h. After adsorption, the remaining COPs 
concentrations were determined.

2.4. Regeneration of HAEE

Regeneration of HAEE was performed in desorbing solu-
tion of methylene chloride. 0.02 g of HAEE has been used to 
adsorb the 2,4,6-TCP (20 mg/L, 50 mL) and then was eluted 
in 20 mL methylene chloride with shaking at 298 K for 1 h. 
Finally, the HAEE was reused for the adsorption of 2,4,6-TCP.

2.5. Photocatalytic degradation and mineralization of COPs.

A simple and effective photocatalyst was developed for 
Fenton-like photocatalytic degradation and mineralization 
of 2,4,6-TCP eluted from HAEE. The catalyst was prepared 
as follows: 10 mL of titanium tetraisopropoxide was dis-
solved in 30 mL of absolute ethanol under constant stirring 
at 313 K. Subsequently, Fe(NO3)3·9H2O was slowly added 
(mass ratio of Fe to Ti was 10%) and the mixture was stirred 
at 343 K for 30 min. Meanwhile, 10 mL of absolute ethanol 
was mixed with 5 mL water, followed by addition of HF 
(mass ratio of F to Ti was 0.05). Subsequently, this mixture 
was added into initial solution drop by drop with vigorous 
stirring, and then kept statically for 24 h. Afterwards, the 
gel was dried at 353 K for 24 h. The dried gel was reduced 
by NaBH4 in nitrogen condition, and then calcined at 573 K 
for 6 h under vacuum. The obtained catalyst was entitled as 
Fe0/F-TiO2.

Photocatalytic experiments were carried out in a 100 mL 
photocatalytic reactor utilizing 0.05 g Fe0/F-TiO2. Metallic-
additive lamp was used as the radiation source while UV 
light (λ < 420 nm) was filtered. Concentration of 2,4,6-TCP as 
well as chloride ion and total organic carbon of the 2,4,6-TCP 
solution was measured. 

3. Result and discussion

3.1. Characterization

As shown in Fig. 2, hydroxyl groups had endowed HA 
with enough hydrophilicity. HA-M is dispersed in organic 
phase due to its enough hydrophobic property, though a few 
HA-M contained soils existed at interface between organic 
and water phases. Notably, the HAEE adsorbent just dis-
persed in organic phase after the modification with hydro-
phobic GTE. Additionally, the as-obtained HAEE could finely 
disperse well in organic/aqueous/soil heterogeneous system 
following constant shaking.

FT-IR spectra confirmed the existence of considerable 
hydrophobic groups in HAEE, such as –C=C, –COOH, –C–O– 
[14,15]. It was clear that this adsorbent had been successfully 
modified via etherification. 

3.2. Single-component aqueous solutions

The adsorption performances of HAEE to three typical 
COPs were investigated. When solution pH was 7.0, the 
adsorption capacities of HAEE to all COPs were close to 23, 

24 and 47 mg/g for CNP, TCP and PNP, respectively (Fig. 3a). 
Besides, there was only a negligible influence of pH on 
adsorption capacity, since the pH changes had least effect 
on the dominant adsorption mechanism (π−π interaction). 
Relatively high pHs and ionic strengths would promote the 
dissociation of hydroxyls in HA, then increase its chelating 
effect to various metal ions [16]. Obviously, hydrophobic 
COPs do not have an electron accepting ability. Additionally, 
the benzene rings in the HAEE can form “hydrophobic bond” 
with COPs. Hence, the adsorption process is dominated by 
the hydrophobic interactions between HAEE and COPs. 
This adsorbent is expected to have practical potential in a 
practical pH environment.

When the adsorbent dosage was at the maximum 
value (0.2 g), the adsorption capacities are 24.09, 37.80 and 
23.08 mg/g for CNP, TCP and PNP, respectively. However, 
the amount of COPs adsorbed per unit mass of the adsorbent 
decreased considerably with increase of adsorbent dosage 
(Fig. 3b), which was mainly due to adsorption sites remaining 
unsaturated during the adsorption process [17]. The removal 
rates were more than 90% for both CNP and PNP. However, 
the adsorption removal rates of HA toward CNP were always 
less than 50% according to contrast test.

The overall effect of GTE dosage on CNP removal rate 
was studied in the first place, and the results are shown in 
Fig. 3c. Obviously, all the CNP removal rates were close to 
90% no matter what the amount of GTE dosage was. The 
maximum CNP removal rate (96.58%) could be found when 
the GTE dosage was 25wt.% of HA-M, which was closest to 
the removal performance as the GTE dosage was 100wt.% of 
HA-M.

To further investigate the effect of GTE dosage on the 
adsorption removal performance toward all COPs, the two 
typical GTE dosages (25wt.% and 100wt.% of HA-M) were 
studied at different initial concentrations. The results are 
shown in Figs. 3d, 3e and 3f. A greater weight percentage 
(100wt.% of HA-M) always lead to higher adsorption capac-
ities for each COPs as well as a greater contact angle (107o) 
between water and the HAEE surface (Fig. 4). It is easy to 
find the difference of the adsorption capacities among CNP, 

Fig. 2. FT-IR spectra and photograph of HA, HA-M and HAEE in 
hexane/water/soil system.
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2,4,6-TCP and PNP, which generally correlate to the octanol–
water partition coefficient of each COPs as well as the hydro-
phobic ability of HAEE [18,19].

3.3. Adsorption kinetic studies

As presented in Fig. 5, the adsorption capacity of HAEE 
to both TCP and PNP were higher than 100 mg/g in the ini-
tial 1.5 h of adsorption process, and the adsorption equilib-
rium for each COPs could be achieved within around 4 h 
(>60 mg/g for CNP, >110 mg/g for TCP and PNP). The fast 
adsorption rate could be attributed to the strong hydrophobic 

interactions between HAEE and COPs. Additionally, it was 
also believed that the mesoporous structure of adsorbent is 
beneficial for the reduction of mass transfer resistance [13,20].

As is shown in Fig. 6, it was obvious that the pseudo- 
second-order model could well describe the adsorption 
behaviors (R2 > 0.99). The calculated equilibrium adsorption 
capacity of each COPs obtained from this model fitting was 
very close to the one determined by experiments (Table 1). 
For example, the calculated equilibrium adsorption capacity 
of PNP was about 122 mg/g while its experimental equilib-
rium adsorption capacity was almost 116 mg/g. Hence, it 
was not difficult to infer that “solid phase extraction” might 

Fig. 3. Effect of factors on adsorption capacity in single-component system (a) pH, (b) adsorbent dosage; (c) effect of various GTE 
dosage on CNP removal rate; Effect of GTE dosage on COPs adsorption performance, (d) CNP, (e) 2,4,6-TCP and (f) PNP.

Fig. 4. Contact angles between water and the HAEE surface.
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contribute to the dominated rate controlling step in the 
adsorption process.

3.4. Adsorption isotherm studies

Fig. 7 illustrates the experimental adsorption isotherms 
of HAEE to PNP, which was selected as a representative sam-
ple of COPs. When the concentration of PNP increased in the 
aqueous solution, the adsorption capacity of the modified 

adsorbent increased significantly at low concentrations, and 
then, shown a slow uptrend. It was also observed that the 
amount of PNP adsorbed increased slightly with a decrease 
in temperature, which signifies the exothermic nature of 
adsorption of COPs with HAEE. Therefore, the HAEE exhib-
ited lower adsorption capacity at higher temperature.

Adsorption isotherms data were further fitted by 
Freundlich isothermal equation, which is expressed as:

q K Ce e
n= 3

1/  (6)

where Ce is the equilibrium concentration (g/L), qe is the 
equilibrium adsorption capacity (mg/g), K3 is the Freundlich 
constant.

As shown in Fig. 7 and Table 2, the Freundlich model 
provided a good description to the isotherm data with 
correlation constant (R2) higher than 0.97. The Freundlich 
model fitted the adsorption isotherms very well, and all the 
values of 1/n were small, which suggested that the adsorp-
tion of PNP on HAEE was easy to carry on. The Freundlich 
isotherm model meant that the adsorption process occurred 
on a heterogeneous surface of adsorbent [20,21]. The above 
experimental results suggest that the super adsorption 
capacities of HAEE should be ascribed to the introduction 
of the even distribution and strong hydrophobic properties 
of HAEE, which provide high affinity to the hydrophobic 
organic PNP.

In consideration of the fact that soil washing wastewa-
ter and/or ordinary polluted water often contain various 

Fig. 6. Pseudo-second-order model fitting.

Fig. 5. Adsorption kinetics.

Table 1
Fitting parameters collected from pseudo-second-order rate 
model

COPs K2 g/(mg h) qe,Cal. mg/g qe,Exp. mg/g R2 Error %

CNP 0.056 71.225 68.399 0.997 3.968
TCP 0.029 120.919 115.830 0.999 4.209
PNP 0.021 122.850 116.047 0.999 5.538

Er% = [qe,Exp. – qe,Cal.]/qe,Cal.

Fig. 7. Adsorption isotherm plots for adsorption of PNP onto 
HAEE.

Table 2
Freundlich model parameters

COPs Freundlich

1/n K3 R1
2

PNP 293 K 1.512 9.540 0.998
298 K 1.540 9.658 0.986
303 K 1.404 12.007 0.973
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organic pollutants simultaneously, typical organic matters 
(benzene and phenol) were selected as the coexisting organ-
ics to investigate their influences on the adsorption of COPs 
on HAEE. The relevant result shows that these two coexisting 
organic matters have negligible influence on the adsorption 
performance of HAEE, indicating that the hydrophobicity 
performance of HAEE is dominant force during this process 
(Table 3). 

3.5. Multi-component aqueous solutions

All kinds of COPs usually coexist in practical treatment 
wastewater (such as soil washing water) [22,23]. Thus, the 
adsorption performances of HAEE were investigated in 
aqueous solutions containing three typical COPs at different 
concentrations. As shown in Fig. 8, the adsorbent exhibited 
satisfied performances to all kinds of COPs both at low and 
high concentrations, including the adsorption capacities and 
the removal efficiency. 

Comparing with the adsorption efficiency of HAEE to 
single COPs, the adsorption performances of HAEE toward 
these coexisting COPs were little worse, which shows that 
a mild competitive process existed among the is observed 
COPs. But, it is understood that the influence of the slight 
competitive effect can be negligible when it refers to the high 
removal efficiency. For instance, the removal efficiencies of 
PNP at different simulation groups (inset in Fig. 8c) at 8 h 
were >95%, ≈95%, >95%, respectively. 

In addition, when compared with other adsorbents, the 
advantage of HAEE is the excellent adsorption ability to aro-
matic COPs with benzene rings through strong π-π interac-
tion. The π-π bonding establishes between carbon-carbon 
double bonds or benzene rings of COPs molecules and ben-
zene rings on the surface of HAEE via π-π coupling. Thus, it 
is not hard to expect that hydrophobic HAEE can provide a 
promising option for practical treatment of COPs-contained 
wastewater.

3.6. Regeneration of HAEE

In order to know the recyclability of HAEE, the adsor-
bent was reused for several times in adsorption of 2,4,6-TCP.  
As shown in Fig. 9, the HAEE could be recycled without sig-
nificant loss of removal rate. The adsorption removal rate of 
2,4,6-TCP was 95.82 % in the first cycle, while the adsorption 
removal rate of TCP declined to 83.83% in the third cycle. 
This relatively small change could be attributed to the strong 
“hydrophobic interactions” between HAEE and 2,4,6-TCP, 
which ensured a strong junction force during adsorption 

process. However, the recyclability of HAEE exhibited a 
slight decrease of removal in the following cycles, mainly due 
to the partial loss of HAEE during the regeneration process. 
Notably, the partial loss of the HAEE could be acceptable 
because of the environmentally friendly nature and ample of 
HA raw material.

Table 3
Effect of coexisting organic matters on the adsorption 
 performance

COPs (removal 
efficiency)

Coexisting organic matters

Benzene Phenol Blank
2,4,6-TCP (%) 94.3a; 92.1b 92.2a; 90.7b 96.3

aConcentration of coexisting organic matters, 0.5 g/L.
bConcentration of coexisting organic matters, 1.0 g/L.

Fig. 8. Adsorption kinetics in multi-component aqueous solu-
tions of various concentrations of COPs.
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3.7. Innocuous treatment of COPs

Although, the adsorbed CNPs pollutants still have poten-
tial threat toward adjacent water, soil and gas environment 
due to persistent nature. As an interesting environmental 
material, TiO2 has been widely used for organic pollutants 
treatment due to its good properties, such as cost effective-
ness, strong oxidizing power and long-term stability against 
photo- and chemical corrosion [24]. Therefore, an efficient tita-
nium dioxide-based photo-catalyst (Fe0/F-TiO2) was further 
synthesized and unitized to degrade the organic contaminant 
which was collected from desorption process, which is aimed 

to achieve the security treatment of COPs (Fig. 10). To further 
modify the band gap of TiO2 by doping to extend the optical 
absorption properties into the visible light, here, fluorine (F) 
was introduced to the preparation process of photo-catalyst. 
In most cases, however, that mono-doping alone could not 
completely improve photo-catalytic activity. This was par-
ticularly because of the impurity band, which was partially 
occupied that, might act as recombination center and thus 
reduced the photogenerated current [25,26]. Hence, the Fe0 
was also introduced in the photo-catalytic material for pro-
viding the condition to form Fe2+/Fe0 interchange potential. 

As shown in Fig. 10, the crystalline phase, UV–Vis spec-
tral data of Fe0/F-TiO2 catalyst were analyzed. Furthermore, 
the catalytic kinetics, the mineralization degree of 2,4,6-TCP 
and the possible photocatalytic degradation mechanism was 
explained. Under the visible light, the complete mineraliza-
tion as well as the removal efficiency was observed within 
12 h. A similar remarkable performance could be found for 
the dechlorination, where the extent of dechlorination was 
higher than 90% after 2 h of treatment. It was a clear indi-
cation that the Fe0/F-TiO2 was proved to be effective for the 
further degradation of COPs.

The possible photocatalytic degradation mechanism 
of 2,4,6-TCP was illustrated in Fig. 10d. With a conduction 
band and a valence band by visible light irradiation, the elec-
tron potential of TiO2 provided the electrons to reduce Fe2+ 
to Fe0, which may avoid the formation of oxide layer on the 
zero-value iron surface. The degradation process included 
three stages [27–31]: (i) Fenton-like photocatalytic oxidation 
dechlorination and ring opening; (ii) Fenton-like photocat-
alytic oxidation mineralization and further dechlorination; 
(iii) Fenton-like photocatalytic oxidation mineralization. 
First, photogenerated electrons (e–) initiated from valence Fig. 9. Adsorption–desorption cycles of TCP onto HAEE.

Fig. 10. (a) XRD pattern of photocatalyst, (b) UV–Vis spectral data of photocatalyst, (c) photocatalytic desorption of 2,4,6-TCP, and (d) 
the possible photocatalytic degradation pathway of 2,4,6-TCP.
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band layer to conduction band layer and the holes (h+) were 
generated at conduction band, when Fe0/F-TiO2 was exposed 
to electron radiation energy greater than its forbidden band-
width. Then, O2 and H2O adsorbed on the Fe0/F-TiO2 surface 
would form highly active oxidized substances, including 
superoxide radicals (•O2) and hydroxyl radicals (•OH), which 
may attack on the adjacent –Cl of 2,4,6-TCP. Sorts of dechlori-
nation intermediates were formed by oxidation of 2,4,6-TCP, 
such as p-chlorophenol and 2-chlorophenol. Meanwhile, the 
environmental O2 was unitized to produce H2O2, which was 
conducive to further open the benzene ring of intermediates. 
According to Fig. 10c, the dechlorination rate was about 90% 
while the mineralization rate was 70% within 2 h, and the 
dechlorination rate reached up to 100% when the mineral-
ization rate was 80% in 4 h. It was clear to indicate that the 
dechlorination process occur synchronously with mineraliza-
tion during the reaction. Finally, the small molecular organic 
compounds formed by oxidation ring opening were further 
mineralized by decarboxylation to CO2 and H2O.

4. Conclusions

The hydrophobic adsorbent (HAEE) exhibits notice-
able efficiency in adsorptive removal of both mixed COPs 
and single component (CNP, 2,4,6-TCP or PNP) in aqueous 
solution. The adsorption studies showed that CNP sorp-
tion on HAEE reached high removal rate (>90%), whereas 
CNP sorption on HA was less than 50%. The adsorption 
kinetics demonstrated that the adsorption of COPs on 
HAEE reached equilibrium within 4 hours. The kinetic 
data were fitted well with the pseudo-second-order model. 
Additionally, HAEE can be recycled for several times with-
out significant lose in its adsorption capacity. The hydro-
phobic interaction established between HAEE and COPs 
would be the dominated contributor in adsorption removal 
process. Moreover, the complete degradation of 2,4,6-TCP 
was achieved under visible light in the presence of Fe0/F-
TiO2 catalyst. These results provide practical evidences 
about a promising potential idea of COPs treatment from 
wastewater and soil.
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