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a b s t r a c t
The biochemical oxygen demand (BOD5) could be used as an indication of wastewater treatment 
quality, but measuring BOD5 is very time-consuming and costly. Ahvaz wastewater treatment plant 
(A-WWTP) plays a pivotal role in reducing the input load to the Karun River and it is very important 
to check its efficiency. Thus, the most critical parameters affecting the BOD5 were determined using 
the linear regression and stepwise method. The capability of the multivariate linear regression model 
(MLR), feed-forward artificial neural network (FF-ANN), and adaptive neuro-fuzzy inference system 
(ANFIS) were investigated with different architectures and inputs to predict the effluent BOD5 of 
A-WWTP (for daily and monthly modes). These architectures had two, three, four, or five inputs. 
The results of the MLR revealed that the maximum correlation coefficients (R) for training and testing 
were 0.916 and 0.864 (daily), and 0.809 and 0.793 on a monthly basis, respectively. The maximum R 
in FF-ANN for training and testing was 0.960 and 0.906 (daily basis), and 0.921 and 0.849 (monthly 
basis), respectively. Meanwhile, the maximum R in ANFIS for training and testing was 0.980 and 
0.933 daily, and 0.968 and 0.927 monthly, respectively. The results indicated that the three models are 
appropriate, but the ANFIS is a more accurate model. In addition, based on conditions and available 
wastewater qualitative parameters, all of the architectures can be used to estimate the output BOD5.

Keywords:  Adaptive neuro-fuzzy inference system; Biochemical oxygen demand; Feed-forward 
artificial neural network; Regression; Wastewater

1. Introduction

The raw urban wastewater contains various pollut-
ants and has an enormous environmental impact. Thus, to 
meet the regulation standard for discharge in surface water 
resources or for reusing the treated wastewater in agriculture 
and industry, the wastewater treatment plants have been 
established.

One of the major indications of treated plant performance 
is biochemical oxygen demand (BOD5). Thus, measuring 
and monitoring BOD5 continuously in wastewater treatment 
plants are essential. However, laboratory methods for BOD5 

measuring are time-consuming and costly. Thus, advanced 
forecasting techniques are employed for the assessment.

One of the most straightforward modeling techniques is 
the use of multivariate regression. Belhaj et al. [1] used the 
multivariate linear regression (MLR) to model the behavior of 
the Sfax wastewater treatment plant in Southeastern Tunisia. 
They developed models with a high level of approximation 
and accuracy, with the coefficients of determination (R2) of 
0.973, 0.946, and 0.925 for BOD5, chemical oxygen demand 
(COD), and total suspended solids (TSS), respectively.

On the other side, the artificial neural network (ANN) 
is flexible and straightforward to analyze the non-linear 
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problems of environmental science [2]. The study of litera-
ture from 1995 to 2019 indicated that the prediction ability 
of artificial intelligence technology should be strengthened 
by modifying important parameters of the wastewater treat-
ment process, to provide operators with the opportunity to 
efficiently manage parameter shocks and ensure wastewater 
discharge water quality standards [3]. In recent years, many 
researchers have been using ANN to predict some param-
eters such as BOD5 of industrial and domestic wastewater 
plants effluent [4–12]. Zare Abyaneh [13] investigated the 
efficiency of MLR and ANN models in the prediction of two 
major wastewater quality parameters, BOD5 and COD, in the 
Ekbatan wastewater treatment plant (Tehran). The perfor-
mance of these models was evaluated using the coefficient 
of correlation (R), and root means square error (RMSE). The 
results showed that the ANN model performed far better 
than the MLR. Also, Gaza wastewater treatment efficiency 
was determined considering influent input values of pH, 
temperature (T), BOD5, COD, and TSS with influent output 
values of BOD5, COD, and TSS. The results revealed that 
the performance of the ANN model was better than that of 
the MLR model [14].

There are several methods in the training of ANNs that 
affect ANN performance. In this regard, there are three 
methods called multi-layered (ML-ANN), teaching-learning 
based algorithm, and artificial bee colony algorithm (ABC-
ANN) which had been applied to estimate BOD5 of the 
wastewater treatment plant in Turkey [15]. The input flow 
(Q), T, pH, COD, suspended sediment, total phosphorus 
(TP), total nitrogen (TN), and electrical conductivity (EC) was 
used as the input parameters to estimate the BOD5. The result 
indicated that the ML-ANN method provided the best esti-
mation of both training and test series with R2 = 0.8924 and 
R2 = 0.8442, respectively.

The results of these studies revealed that ANN could 
predict wastewater plant efficiency, but data uncertainty 
caused researchers to develop other models such as a 
genetic algorithm to simulate the behavior of wastewater 
treatment plants (WWTP) [2,16]. Shokri et al. [17] applied 
two models of Mamdani fuzzy and Sugeno for evaluating 
the Tabriz wastewater treatment plant. They obtained the 
R of 0.91 and 0.94 for BOD5 and TSS, respectively. These 
researchers concluded that both models could verify the 
performance of the treatment plant as well as the prob-
lems related to the treatment plants, including uncertainty. 
Thus, they suggested fuzzy methods when studying the 
treatment plants. Nadiri et al. [18] introduced a super-
vised committee fuzzy logic (SCFL) model as a predictive 
ensemble model for effluent water quality. The SCFL model 
used an ANN to combine forecasted water quality result-
ing from individual fuzzy logic (Takagi-Sugeno, Mamdani, 
and Larsen). Civelekoglu et al. [19] compared ANN and 
adaptive neuro-fuzzy inference system (ANFIS) for estimat-
ing the effluent COD. The results overall indicated that the 
ANFIS modeling approach may be suitable to describe the 
relationship between wastewater quality parameters and 
may have potential applications for performance prediction 
and control of aerobic biological processes in wastewater 
treatment plants. A comparison of the results of ANFIS and 
ANN models with an identical structure indicated that both 
models were suitable for activated sludge system simulation, 

but ANFIS is more efficient and offers better results than the 
ANN model [20]. Elsewhere, three different artificial intelli-
gence-based non-linear models, that is, feed-forward neural 
network, ANFIS, support vector machine approaches, and 
MLR methods were applied for predicting the performance 
of the Nicosia wastewater treatment plant. The obtained 
results of single models proved that the ANFIS model pro-
vides effective outcomes in comparison with individual 
models [21].

Akilandeswari and Kavitha [22] used the ANFIS and 
compared it to the MLR model to estimate the output waste-
water BOD5 in the textile industry. They found that the 
ANFIS had better performance than the MLR model.

Research examined the operation of aerobic granular 
sludge (AGS) reactors via ANFIS and support vector regres-
sion. The results indicated the potential of artificial intelli-
gence for developing predictive models for the AGS process 
and provided insight into the selection of the appropriate 
algorithms for these models [23].

Previous studies simulating wastewater treatment effi-
ciency have provided the best architecture for each study. 
Nevertheless, sometimes, operators of WWTP could not 
measure all wastewater quality parameters. The work prob-
lems of WWTP, especially in the city of Ahvaz, require that 
we have several forecasting models with different numbers 
of input data for different conditions in order to control the 
efficiency of the treatment plant for better management. 
Ahvaz wastewater treatment plant (A-WWTP) plays a sub-
stantial role in reducing the input load to the Karun River, 
but not all of the quality parameters are measured daily. 
Knowing several intelligent models with different archi-
tectures and inputs can help operators of WWTP to evalu-
ate the wastewater treatment performance. Simplicity and 
user-friendliness of the model are two important indicators 
for developing and applying models. Therefore, in this study, 
we tried to examine the simplest and most widely used mod-
els. Accordingly, this paper focused on four architectures for 
three models (MLR, feed-forward artificial neural network 
(FF-ANN), and ANFIS). Further, these models were applied 
to simulate BOD5 for both daily and monthly modes.

2. Materials and methods

2.1. Study area

The study area covers A-WWTP, Iran. The data used 
were for 8 y (96 months) leading to March 2018. The waste-
water sampling is not done every day. On the other hand, 
some data were outlier or the measurement was not com-
plete. Therefore, after the initial data analysis, 676 data were 
obtained for daily simulation. The total number of monthly 
data is 96 months. The primary processes of this treatment 
plant include screening, equalization tank, primary settling 
tank, aeration lagoon, and activated sludge reactor. The flow 
rate is 50,000 cubic meters per day. Most of the wastewater 
quality parameters are measured manually. All chemical 
analytical methods are according to the standard methods.

2.2. Multivariate linear regression

Statistical methods, such as MLR models, are simple 
and useful tools for investigating any relationship between 
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dependent and independent parameters [24]. MLR is based 
on the least-squares. In the best model, the sum of square 
error between observed and predicted parameters should be 
minimum. In this study, the MLR was used to model the lin-
ear relationship between a dependent parameter and two or 
more independent parameters.

2.3. Artificial neural network

ANN is a simplified model of the human brain. This 
model applies as a mathematical structure to display the 
nonlinear relations between the inputs and outputs. 
A neural network is composed of neural cells called neu-
ron and communication units called an axon. The neurons 
of ANN are a simple form of biological neurons. Each ANN 
is composed of three layers, including input, output, and 
hidden layer. There are some neurons as processing units 
on each of these layers, which are connected through some 
weighted connections. The operations of each neuron are 
as follows: (1) the neuron collects all the inputs arrived to 
the cell, (2) the neuron reduces the neuron threshold value, 
(3) the neuron passes them across a stimulus function 
or activity function, and (4) the neuron output is created. 
Activity functions are used for transferring the outputs of 
each layer to the next layer. The feed-forward neural net-
work modeling technique is the most widely used ANN 
type in water resources applications [25].

In this paper, the FF-ANN model was applied with 12 
train functions and three activity functions (tansig, logsig, 
and purelin functions). For avoiding overtraining, the max-
imum number of RMSE increase and the number of repe-
titions was considered 6 and 1,000, respectively. The best 
structure was selected based on the best statistical indices.

2.4. Adaptive neuro-fuzzy inference system

Fuzzy logic does not have a systematic process for fuzzy 
controllers. Thus, Jang et al. [26] presented the ANFIS. 
ANFIS acts based on the changes in the value and range of 
membership functions at different iterations to achieve an 
appropriate network based on minimum error. ANFIS uses 
Takagi–Sugeno inference method. The number and type of 
inputs and form of membership functions are the factors 
affecting the neural fuzzy model [26].

In this study, for simulation with ANFIS, eight input 
membership functions and two output membership func-
tions were used (linear and constant). Also, the error toler-
ance equaled zero, and the number of replications was 1–50. 
The best structure was selected based on the best statistical 
indices.

2.5. Training and testing dataset

Experimental data sets were either divided into three 
parts (training, validation, and testing) or two parts (train-
ing and testing) [3]. According to Hamed et al. [5], Moral 
et al. [27], and Solgi et al. [28], data are classified into 
training and test data in each type of neural network with a 
favorite method and type of architecture. For this purpose, 
75% of data were used for training and 25% for the test in 
this study.

2.6. Input data preparation for FF-ANN and ANFIS

Since entering raw data reduces the network speed and 
accuracy, the data normalization method was used to pre-
vent the minimization of weights and early saturation of neu-
rons. Based on the normalization method, each number was 
converted into a number between zero and one to be used in 
the neural network function [29]. Researchers use different 
equations for normalization, and here the following five equa-
tions were used to study the accuracy of equations. Eqs. (1) 
and (5) were presented by Fathi et al. [30], Eq. (2) by Nourani 
and Komasi [31], Eq. (3) by Asadi et al. [32], and Eq. (4) by 
Haghdadi et al. [33]. After normalizing the current data by 
Eqs. (1)–(5) and obtaining the linear regression, it was found 
that Eq. (1) has the best performance for data normalization.
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where X represents the desired data, X� denotes the data 
mean, Xmax shows the maximum data, Xmin shows the min-
imum data, and y is the normalized data. The most signifi-
cant parameters affecting the output wastewater BOD5 were 
determined using the linear regression and stepwise method 
via SPSS 21 software. The MLR model was investigated with 
SPSS 21 software and the MATLAB 2013b software was used 
to develop FF-ANN and ANFIS models.

2.7. Statistical evaluation indices

The RMSE (Eq. (6)) and R index (Eq. 7) were used for 
comparing the created models and selecting the best model 
to estimate the BOD5 value of the A-WWTP in daily and 
monthly periods.
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In these equations, Ti represents the observed values, 
Oi indicates the model output values, T� and O� denote the 
average of Ti and Oi, and, N reflects the number of data.

3. Results and discussion

3.1. Estimation of daily output BOD5

A large number of independent parameters affect efflu-
ent BOD5 such as T, volume (V), turbidity, pH, EC, COD, 
TSS, BOD5, sludge volume index (SVI) and dissolved oxygen 
(DO) of input and output wastewater, primal sedimenta-
tion basin, as well as the first and second aerated lagoons. 
Table 1 describes the statistics of the treatment plant data 
used for developing MLR, FF-ANN, and ANFIS models.

The removal efficiency of BOD5 in this plant was 89.6%. 
This result showed the excellent performance of A-WWTP 
when it was compared with WWTP in Yazd or Gaze. The 
removal percentage of BOD5 in Yazd and Gaze was 74.6% 
and 79%, respectively [14,34].

Nevertheless, the application of all of them causes model 
complexity. Thus, the most critical parameters affecting 
the output wastewater BOD5 were determined. The output 
wastewater BOD5 was used as the dependent variable while 
the other parameters mentioned above were used as the inde-
pendent variables to generate the model. Thus, four different 
architectures were considered based on the number of differ-
ent inputs (given the highest R and R2 and lowest Std. error) 
for producing MLR, FF-ANN, and ANFIS (Table 2). The 
results indicated that the most important parameters affect-
ing the output wastewater BOD5 were the COD of input and 
primal sedimentation basin, input BOD5, input EC, and DO 
of the primal aerated lagoon. Most researchers have applied 
one architecture with several data of the input parameter. 

Türkmenler and Pala [10] used five influent parameters 
(Q, BOD5, COD, TP, and TN) for effluent BOD5 simulation.

In this research, for daily BOD5 simulation, 500 data 
were used for training and 176 data for testing.

3.1.1. Modeling by MLR model for BOD5

The MLR model for different architectures was inves-
tigated with SPSS 21 software. Tables 3 and 4 indicate the 
results and the obtained regression equations, respectively.

According to Table 3, architecture 4 has the highest R 
and lowest RMSE in comparison with the other architectures 
at two steps of training and testing. Figs. 1 and 2 show the 
performance of MLR in predicting BOD5 compare the val-
ues of output BOD5 estimated from MLR to its observed val-
ues at training and testing steps over time. The line cross-
ing the points and axis with equation y = ax was presented 
in Figs. 1 and 2. As the coefficient in equation y = ax was 
closer to one, the model could have a better estimate of the 
observed data. The created model will estimate lower values 
than their corresponding observed values if the coefficient 
is less than one. On the contrary, the generated model will 
determine larger values than their corresponding observed 
values if the coefficient is greater than one. Therefore, the 
scattering of points around the bisector line of the coordinate 
axes is less, and equation y = ax will have a better match if the 
coefficient is closer to one. Thus, in addition to R and RMSE 
for recognizing the best model, the scattering of points 
around the bisector line of the coordinate axes and the slope 
of the line crossing these points can be used. The observed 
and estimated values will have a better match if the slope 
value in the line equation (Fig. 1) is close to one.

The MLR model had an acceptable performance in pre-
dicting daily BOD5 of A–WWTP based on the values of R, 

Table 1
Descriptive statistics of the treatment plant data

Parameter Minimum Maximum Average Std. deviation

Input T, °C 14.6 34.9 24.5 3.9
Turbidity, NTU 24 894 123.9 85.1
pH 6.8 8.2 7.3 0.17
EC, µmhos/cm 1,076 8,530 4,643.9 1,106.3
TSS, mg/L 33 776 137.9 84.1
COD, mg/L 67 1,958 327.4 126.1
BOD, mg/L 50 625 187.1 64.3

Output TSS, mg/L 4 119 29.8 11.7
BOD, mg/L 3 93 19.3 9.4

Aeration DO1, mg/L 0.03 27.5 2.4 1.6
DO2, mg/L 0.03 27.6 2.1 1.6

Primal sedimentation basin SVI 15.6 1,777 168.8 175.4
V, m3 10 990 433.05 288.2
COD, mg/L 65 411 249.7 65.2
BOD, mg/L 50 300 147.67 37.45
TSS, mg/L 7.1 304 65.38 23.79
Turbidity, NTU 1.7 708 65.24 39.63
EC, µmhos/cm 27 8,650 4,187.6 813.27
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RMSE, and functional correlation of observed data and esti-
mated data (Figs. 1 and 2). Belhaj et al. [1] could estimate 
BOD5 in Sfax WWTP (Tunisia) using MLR with R2 = 0.973. 
They concluded that the MLR model verified BOD5 
of this treatment plant with a rather good approximation.

3.1.2. Modeling results by FF-ANN for daily data

Neural Network Toolbox in MATLAB (2013b) soft-
ware was used to implement the neural network model. 
Modeling was conducted based on different defined archi-
tectures by selecting different neurons. The number of 
neurons for the input layer was assumed to be equal to 
the number of network inputs; the number of neurons for 
the output layer was considered as one; and the number 
of neurons for the middle layer was examined from 6 to 
20 using a trial-and-error approach. The number of neu-
rons was selected based on preliminary information, as 
reported in Table 5 for different architectures. The results 
of the FF-ANN model developed for training and verifying 

the output BOD5 for different architectures are presented 
in Figs. 3 and 4. The comparison of Tables 3 and 5 showed 
that the FF-ANN model was better than the MLR model. 
This result concurs with Hamada et al. [14] findings.

3.1.3. Modeling results by ANFIS for daily data

ANFIS was modeled by the ANFIS toolbox in MATLAB 
software. Different structures in each different architecture 
and iterations were studied.

The results of the ANFIS developed for verifying the 
output BOD5 for different architectures are outlined in 
Table 6. Figs. 5 and 6 indicate the results of ANFIS for train-
ing and testing the output BOD5 for different architectures. 
Based on the obtained results, the ANFIS had more relevant 
results than the ANN. In research, the comparison of ANN, 
ANFIS, and MLR models for estimating the adsorption 
efficiency of biochar for the removal of Cu(II) ions showed 
that the ANFIS model with Gaussian membership function 
and fuzzy set combination of [4 5 2 3] was the best method, 

Table 2
Different architectures of input parameters to models (daily)

Standard error 
of the estimate

Adjust R2ROutputInputArchitecture

0.016510.7790.883BOD-OcBOD-Ia, COD-Pb1
0.019220.8050.898BOD-OBOD-I, COD-P, COD-I2
0.019160.8160.904BOD-OBOD-I, COD-P, COD-I, EC-I3
0.019100.8220.907BOD-OBOD-I, COD-P, COD-I, EC-I, DO-1d4

aI – input; bP – primal sedimentation basin; cO – output; dl – first aerated lagoon.

Table 4
MLR equations for daily and monthly BOD5

Index Architecture Equation

Daily BOD5 One 1.236COD-P + 0.089BOD-I + 0.097
Two 1.243COD-P + 0.196BOD-I – 0.141COD-I + 0.088
Three 1.247COD-P + 0.182BOD-I– 0.124CODi + 0.03EC + 0.1
Four 1.248COD-P + 0.178BOD-I – 0.121COD-I + 0.034EC – 0.022DO + 0.094

Monthly BOD5 One 1.141COD-P + 0.374BOD-I + 0.152
Two 0.979COD-P + 0.36BOD-I + 0.205TUR-P + 0.161
Three 0.955COD-P + 0.481BOD-I + 0.256TUR-P + 0.15COD-I + 0.16
Four 0.995COD-P + 0.454BOD-I + 0.257TUR-P – 0.168COD-I + 0.137SVI + 0.201

P – Primal sedimentation basin; I – Input.

Table 3
Results of the MLR model for different architectures of daily BOD5

RMSE at the test levelRMSE at the training levelR at the test levelR at the training levelArchitecture

0.01160.02160.8560.9021
0.01170.02120.8560.9112
0.01170.02110.8580.9143
0.01150.02100.8640.9164
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with an accuracy of 90.24% and 87.06% for the training 
and test datasets, respectively [35].

3.2. Estimation of monthly output BOD5

Initially, useful parameters were determined by the 
backward method, and four different architectures were 
evaluated based on different inputs to make the nonlinear 
regression, FF-ANN, and ANFIS to estimate the wastewater 
monthly output BOD5 (Table 7). The most critical parame-
ters affecting the wastewater monthly output BOD5 included 
the input COD, primal sedimentation basin, input BOD5, 
turbidity of a primal sedimentation basin, and SVI. In this 

research, for monthly BOD5 simulation, 72 data were used 
for training and 24 data for testing.

3.2.1. Modeling via MLR for monthly BOD5

The MLR model was implemented by SPSS 21 soft-
ware for the four different architectures mentioned above 
(Table 7). Table 4 reports the obtained equations.

As Table 8 indicates, architecture 4 has a higher R and 
a lower RMSE in comparison with the other architectures 
at the training and test levels. The results of architecture 
4 as the best-obtained model for the training and test are 
presented in Figs. 7 and 8. Although the R values for both 
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Fig. 1. Comparison of the values of the best MLR structure and the observed values of daily output BOD5 at the training level.
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Fig. 2. Comparison of the values of the best MLR structure and the observed values of daily output BOD5 at the test level.

Table 5
FF-ANN model results for different architectures of the daily period

RMSE at  
the test level

RMSE at the  
training level

R at the  
test level

R at the  
training level

Architecture

0.01230.01490.8540.9411
0.01180.01430.8600.9452
0.01120.01310.8780.9503
0.01100.01260.8970.9564
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levels of training and test are lower than the linear regres-
sion values for daily data (training = 0.916 and test = 0.864), 
the closeness of these coefficients (training = 0.810 and 
test = 0.794) indicates that the linear regression model for 
monthly data could estimate the data of test level with very 
good accuracy.

3.2.2. Modeling results for an FF-ANN for monthly data

Modeling was conducted based on different defined 
architectures (Table 7) and by selecting different numbers 
of neurons. Meanwhile, the number of input layer neurons 
was assumed to equal to the number of network inputs, the 
number of output layer networks was evaluated as one, 
and the number of middle layers was estimated as trial 
and error from 6 to 20 (Table 9). Figs. 9 and 10 illustrate 

the results of FF-ANN for training and testing the output 
BOD5 for different architectures.

3.2.3. Modeling results via ANFIS for monthly data

ANFIS toolbox in MATLAB software was used for mod-
eling via the ANFIS. Different structures in each differ-
ent architecture and iterations were studied. Table 10 and 
Figs. 11 and 12 present the results of ANFIS for training 
and testing the output BOD5 for different architectures.

4. Conclusion

The study investigated a simple MLR model and two 
artificial intelligence models (FF-ANN and ANFIS) with 
4 architectures (requiring 2–5 inputs). The results indicated 
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Fig. 3. Comparison of the values of the FF-ANN model and the observed values of daily output BOD5 at the training level.
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Fig. 4. Comparison of the values of the FF-ANN model and the observed values of daily output BOD5 at the test level.

Table 6
Results of ANFIS for different architectures of the daily period

RMSE at the test levelRMSE at the training levelR at the test levelR at the training levelArchitecture

0.01120.01340.8680.9481
0.00980.01130.8810.9622
0.00920.01050.8990.9713
0.00830.00990.9300.9794
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Fig. 5. Comparison of the values of ANFIS and the observed values of daily output BOD5 at the training level.
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Fig. 6. Comparison of ANFIS values and the observed values of daily output BOD5 at the test level.

Table 7
Different architectures of input parameters to monthly BOD5 models

OutputInputArchitecture

BOD5-OBOD5-I, COD-P1
BOD5-OBOD5-I, COD-P, TUR-P2
BOD5-OBOD5-I, COD-P, TUR-P, COD-I3
BOD5-OBOD5-I, COD-P, TUR-P, COD-I, SVI4

O – Output; I – Input; P – Primal sedimentation basin.

Table 8
Results of the MLR model for different architectures of monthly BOD5

RMSE at the test levelRMSE at the raining levelR at the test levelR at the training levelArchitecture

0.04270.06580.7820.7901
0.04210.06430.7900.7952
0.04110.06340.7910.8023
0.03960.06180.7940.8104
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Fig. 7. Comparison of the values of the best linear regression structure and the observed values of monthly output BOD5 at the training 
level.
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Fig. 8. Comparison of the values of the best linear regression structure and the observed values of monthly output BOD5 at the 
test level.

Table 9
Results of FF-ANN for different architectures of monthly BOD5

RMSE at the test levelRMSE at the training levelR at the test levelR at the training levelArchitecture

0.03650.05910.8260.8581
0.03140.05400.8340.8652
0.03080.05060.8430.8763
0.02900.04630.8540.9054

Table 10
Monthly results of ANFIS for different architectures 

RMSE at the test levelRMSE at the training levelR at the test levelR at the training levelArchitecture

0.03770.04990.8350.8721
0.03240.04400.8400.8982
0.02690.03170.8620.9303
0.01740.02100.9270.9564
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that although architecture 4 had better results in both peri-
ods and three models, other architectures had acceptable 
solutions close to the observed values. Different archi-
tectures can be used based on conditions and available 
wastewater qualitative parameters to estimate the out-
put BOD5 in treatment plants. Furthermore, based on the 

obtained results, the ANFIS had a better performance for 
daily and monthly periods at training and test levels as 
compared to the regression and FF-ANN. Note that the 
performance of the three models was more appropriate in 
estimating the daily output BOD5 of this treatment plant 
as compared to the monthly type. According to the results 
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Fig. 9. Comparison of the values of architecture 4 in FF-ANN and the observed values of monthly BOD5 (training level).
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Fig. 10. Comparison of the values of architecture 4 in ANN and the observed values of monthly BOD5 (test level).
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Fig. 11. Comparison of the values of architecture 4 in ANFIS and the observed values of monthly BOD5 (training level).
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of this study, other models of artificial intelligence such 
as genetic algorithms as well as hybrid models are pro-
posed to evaluate the quality of effluent and technical and 
economic management of the treatment plant.
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