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a b s t r a c t
In the present work, the Paracentrotus lividus spines (PLS) are proposed as a novel low-cost 
non-conventional adsorbent for the removal of malachite green (MG) from aqueous phases in the 
absence and presence of ultrasonic irradiation and by combining simultaneously ultrasound and 
mechanical agitation. The PLS was characterized by Fourier transform infrared spectroscopy. Batch 
process was used for adsorption kinetic and equilibrium studies. The effects of diverse parameters 
such as contact time, initial dye concentration, adsorbent dose, and solution pH on MG adsorp-
tion by PLS were investigated. The obtained results indicate that both the rate and amount of MG 
adsorption were enhanced in the presence of ultrasound. Dye adsorption under ultrasound assis-
tance was improved with the increase of initial dye concentration and with decreasing the adsor-
bent dose. Basic pH conditions are more propitious for the adsorption of MG. The simultaneous 
combination of ultrasound and agitation leads to an intensification of adsorption. Adsorption 
isothermal data could be adequately simulated by the Langmuir model, and then Freundlich and 
Temkin models. Langmuir simulation indicated that the adsorption capacities of PLS spines were 
22.35, 34.45, and 89.72 mg g−1 for the classical method, the ultrasound-assisted method, and the 
simultaneous association of ultrasound and stirring, respectively. The kinetic data are very well- 
described by the pseudo-second-order kinetics model for the classical method, ultrasound, and com-
bining concurrently ultrasonic irradiation and stirring. The combination of ultrasound and agitation 
for the adsorption process has proven to be interesting for the treatment of wastewater contaminated 
with malachite green.
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1. Introduction

Pollution induced by industrial wastewaters has become 
a common problem for several countries. The effluents dis-
charged from dye manufacturing and consumption indus-
tries are very colorful coupled with high chemical and 

biochemical oxygen demands (COD and BOD) and having a 
high quantity of suspended organic solids.

Malachite green, which comes under the category of 
basic dyes, is widely used for coloring purposes, amongst 
all other dyes of its category [1]. This triarylmethane dye 
is largely employed in the global aquaculture industry as 
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a biocide as well as in the silk, wool, cotton, leather, paper, 
and in distilleries. It is also used in aquaculture as an ecto-
parasiticide and a fungicide because of its efficacy and low 
cost. This dye can enter into the food chain and could possi-
bly provoke carcinogenic and mutagenic effects on humans 
[2]. Therefore, it is crucial to remove malachite green from 
wastewater before rejection into the environment.

Several methods are available for treating dye impacted 
wastewater. Adsorption, biological oxidation, membrane 
separation, electrochemical techniques, and ion exchange 
are designated for wastewater treatment, while more 
attention was dedicated to adsorption. Adsorption is an 
inexpensive and simple process that use adsorbent to 
remove dye from wastewater effluent with high efficiency 
[3]. There is, therefore, considerable interest in developing 
the utilization of low-cost adsorbents for the elimination 
of dyes from wastewater such as agricultural wastes [4], 
dolomitic [5], fly ash [6], zeolite [7], chlorella [8], and sew-
age sludge ash [9]. The fruitful use of marine adsorbents 
such as sea shells [10], oyster shells [11], mussel shells [12], 
and scallop [13] have been reported. Since, marine adsor-
bents are available and can potentially be used to elimi-
nate dye pollutants from the aqueous phase. The spines of 
Paracentrotus lividus (PLS) is selected as a suitable material 
for water pollutants removing.

Recently, the combination of ultrasound irradiation and 
the adsorption process has received a great deal of attention 
[14–16]. The advantage may be attached to more accelera-
tion in chemical reactions and mass transfer as a result of 
acoustic cavitation (the creation, growth, and implosive 
collapse of bubbles in the solution) and formation of new 
adsorption sites on adsorbent [17–19]. The combination 
between ultrasound irradiation and adsorption conducts to 
an increase of efficiency and also a decrease of the cost of 
dye adsorption [16,20,21].

The purpose of this work was to investigate the poten-
tial of the spines of PLS (marine waste) as an alternative 
low-cost adsorbent for the removal of MG from aqueous 
phases in the absence and presence of ultrasound as well as 
by coupling ultrasonic irradiation and agitation at the same 
time. The effect of various experimental conditions such 
as contact time, initial concentration of dye, stirring speed, 
adsorbent dose, and ionic strength on the removal kinetics 
is investigated. Kinetics data are analyzed and modeled 
using different models. The obtained results may contrib-
ute to a better understanding of the adsorption phenomena 
at the liquid–solid interface in the absence and presence 
of ultrasound.

2. Materials and methods

2.1. Malachite green

The cationic dye (C.I. 42000; Basic Green 4), malachite 
green oxalate salt, (abbreviation: MG; molecular formula 
C52H56N4O12, FW 929), was purchased from Merck and used 
without further purification. The structure of this dye is 
displayed in Fig. 1a. Five hundred milligram per liter stock 
solution was prepared by dissolving the requested quantity 
of dye in distilled water. Working solutions at the desired 
concentrations were established by consecutive dilutions.

2.2. Adsorbent

The PLS were collected from the Saint Cloud sea beach 
in Annaba, Algeria. The spines of PLS are removed as waste. 
This material (PLS) was washed several times with boiled 
water and finally with distilled water to remove dirt parti-
cles and water-soluble materials. The washing process was 
continued till the wash water did not contain any color. 
The washed material was then completely dried in an oven 
at 50°C for 4 d to constant weight. The dried sample was 
crushed by means of a grinder into small particles of differ-
ent sizes in the range of 0.5–1 mm, and stored in a desiccator 
for later use. No other chemical or physical treatments were 
used prior to adsorption experiments.

2.3. Experimental procedures

Batch adsorption experiments were performed in the 
experimental setup shown in Fig. 1b. Experiments were 
realized in a 400 mL cylindrical jacketed glass vessel that 
was attached to an overhead mechanical stirrer. The agi-
tator used was a 45° pitch four blades down pumping 
impeller (diameter 5 cm), which has good suspension 
characteristics for the solid particles.

The vessel was immersed in an ultrasonic cleaning bath 
operating at a frequency of 45 kHz with an electrical nom-
inal power of 120 W (indirect sonication). The ultrasonic 
power (69 W) was determined by the calorimetric method.

For dye removal kinetic experiments, 0.1 g of PLS was 
contacted with 100 mL malachite green solutions. The mix-
ture was stirred at a fixed agitation speed of 300 rpm (clas-
sical method), sonicated, or concurrently agitated (300 rpm) 
and sonicated. At predetermined intervals of time, solutions 
were analyzed for the final concentration of malachite green 
by using a UV-vis spectrophotometer (Secomam, model 
Uviline94000) set at a wavelength of 617 nm, maximum 
absorbance.

All experiments were conducted in triplicate and the 
mean values were reported.

2.4. Material characterization

For the main functional groups that might be involved in 
dye adsorption, a Fourier transform infrared (SHIMADZU 
FTIR-8400S) analysis was done on the PLS to deter-
mine the surface functional groups, and the spectra were 
recorded from 4,000 to 400 cm−1.

Scanning electron microscopy (SEM) pictures of PLS 
before and after adsorption of malachite green were taken 
using an environmental scanning electron microscopy 
(ESEM-FEI Quanta 250). The elementary composition of 
PLS was determined through energy-dispersive X-ray spec-
troscopy (EDAX TEAM EDS system) integrated with the 
SEM.

3. Results and discussion

3.1. Characterization of the adsorbent

3.1.1. Fourier transform infrared spectroscopy

FTIR spectroscopy is a widely employed method to 
determine the functional groups that serve as adsorption 



H. Ghodbane et al. / Desalination and Water Treatment 210 (2021) 430–445432

sites. FTIR spectrum for the solid waste (PLS) before and 
after adsorption in the absence and presence of ultrasound 
as well as by coupling ultrasonic irradiation and agitation 
is shown in Fig. 2. A clear difference was found between the 
adsorbent spectrum before and after adsorption. This dif-
ference largely lies in the region between 500 and 700 cm–1 
that corresponds to the deformation vibrations due to the 
presence of the benzene ring, which proves the richness 
of the sample in aromatic compounds. The analysis of the 
infrared spectrum of PLS shows the following bands. It 
can be seen that a peak at 871 cm–1 represents the alkene 
bonds, =CH2, thus the C–H of a hybridized carbon sp2. It 
is the deformation vibrations. Also, we can observe a wide 
and intense strong band at 1,396 cm–1 attributed a priori to 
the elongation vibration of the C–H bonds of the CH3 bonds 
of a sp3 hybridized carbon, that is, alkanes and to the elon-
gation vibrations of the C–N bond of an aromatic amine. 
A low-intensity peak at 2,330 cm–1 was appeared, which 
suggests that the adsorbent may contain an alkyne (C≡C) 

or nitrile (C≡N) function. The elongation vibration bands 
that appear around 2,839 and 2,908 cm–1 can be attributed 
to the CH bonds of the alkanes. It is clearly shown that 
the adsorbent has a number of absorption peaks, which 
reflects the complex nature of the material.

An effusion due to low-intensity vibration bands in 
the region of 3,556 to 37,950 cm–1, attributed to N–H bond 
elongation vibrations, was observed. This function may be 
due to intermolecular interactions that may form between 
the malachite green and the processing medium.

3.1.2. Scanning electron microscopy and 
X-ray dispersive energy

The SEM technique was employed to observe the surface 
physical morphology of the PLS (Figs. 3a–d) before and after 
adsorption of malachite green in the absence and presence 
of ultrasound and by combining concurrently ultrasonic 
irradiation and mechanical stirring, respectively.

xx°C
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Thermometer

Coolant outlet

Cylindrical jacketed vessel
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Coolant inlet
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Fig. 1. Chemical structure of malachite green (oxalate salt) (a) and experimental setup (b).
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It is clear that PLS has a rough surface with hetero-
geneous pores and cavities. This indicates that there is a 
good possibility for MG dye to get trapped and adsorbed. 
The X-ray dispersive energy (EDX) analysis obtained in the 
spectrum presented in Fig. 3a shows the presence of Ca, 
O, Mg, and Al in the following proportions 24.8%, 67.6%, 
5.3%, and 2.3%, respectively.

SEM characterization of PLS, before and after adsorp-
tion, showed a complete change in surface texture. Before 
adsorption, there was a rough surface morphology as 
observed, while after adsorption of dye on the PLS, layer on 
the surface of the adsorbent and smoother morphology was 
observed (Fig. 3b).

The surface became rough with a new porous structure 
created in the presence of ultrasound as shown in Figs. 3c 
and d. The formation of the porous structure is due to the 
hydrodynamic cavitation effect of ultrasound. It enhances 
the adsorption efficiency of the adsorbent through the 
active site created, which provides a larger surface area for 
the dye molecules to attach with.

3.2. Effects of ultrasound and contact time

Fig. 4 shows the results of MG adsorption kinetics by 
PLS in the absence (classical method by simple mechan-
ical agitation) and the presence of ultrasound (40 kHz and 
69 W) as well as in the combined process (ultrasonic irra-
diation and mechanical agitation simultaneously). The rate 
and amount of adsorption were significantly increased and 
enhanced in the presence of ultrasound.

Sonication improved the removal of MG through the 
extreme conditions produced by cavitation bubbles. The 
improvement in adsorption may be caused by an alter-
ation in the equilibrium and enhancement of adsorption 
kinetics. Additionally, ultrasound can increase the rate 
of adsorption by expediting mass transfer by hydrody-
namical effects produced by acoustic cavitation [22–25]. 

Microjets and shockwaves generated by the cavitation may 
change the structure of the adsorbent and lead to a higher 
adsorption capacity. A further improvement of the dye 
removal is assigned to thermal properties induced by 
localized hot spots formed when bubbles cavitated [23–25].

As it is illustrated in Fig. 4, the dye adsorption in the 
presence of ultrasound alone and in the combined process 
(sonication and mechanical mixing) reached equilibrium 
in about 130 min, but in the classical method, this time is 
expanded to about 600 min. The rate of removal of MG and 
the adsorption capacity of the adsorbent in the combined 
method were higher than those obtained by simple agitation 
and by ultrasound alone. The shorter time to achieve equilib-
rium and the faster rate of removal in the combined process 
was assigned to the strong convective currents occurring 
within the reactor. These effects associated with the hydro-
dynamic phenomena caused by cavitation and mechanical 
agitation are responsible for the perfect mixing of the reactor 
content.

3.3. Effect of initial dye concentration

The effect of MG initial concentration on the dye 
adsorption by PLS for the conventional method, sonication, 
and combined method is illustrated in Fig. 5. The obtained 
results displayed that the dye removal varied with chang-
ing initial MG concentration. The adsorption efficiency of 
MG increased progressively with increasing contact time 
and achieved a plateau thereafter. An increase in initial 
dye concentration leads to an increase in the adsorption 
capacity of PLS, especially in the presence of ultrasound 
(Fig. 5). When initial dye concentration was increased from 
5 to 15 mg L–1, after 130 min of treatment, the adsorption 
capacity increased, respectively, from 2.78 to 6.41 mg g–1 
by the conventional method, from 4.66 to 14.09 mg g–1 by 
sonication alone, and from 5 to 14.1 mg g–1 by combin-
ing ultrasonication and mechanical stirring. For all initial 
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Fig. 2. FTIR spectra of PLS before and after adsorption in the absence and presence of ultrasound and in the combined process.
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(a)

(b) (c)

(d)

Fig. 3. (a) SEM images and EDX spectrum of PLS. SEM image of adsorbent after adsorption by (b) conventional method, 
(c) sonication without stirring, and (d) combined method.
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dye concentrations, higher adsorption occurred using the 
combination of ultrasonic irradiation and mechanical stir-
ring than with the classical method. The enhancement of 
adsorption by sonication can be explained by the inten-
sification of mass transfer phenomena and the thermal 
effects of ultrasound. By the combination of sonication and 
mechanical agitation, the perfection of the MG removal 
is due to the perfect mixing produced in the reactor. This 
behavior could be attributed to the induction of turbulence 
and additional convective mass transport within the pores 
and at the surface induced by high-speed microjets and 
high-pressure shock waves and also by microstreaming.

3.4. Effect of adsorbent dosage

To examine the effect of adsorbent dose on MG adsorption, 
experiments were conducted at an initial dye con centration 
of 10 mg L−1. The effect of adsorbent dose on the amount of 
MG adsorbed for the conventional method, sonication, and 
for the combined method (ultrasound + stirring) is shown in 
Fig. 6a. In all cases, it was observed that the amount of MG 
adsorbed decreased with the increase in adsorbent dose. 
After 130 min of treatment, the adsorbed amount decreased 
from 5.5 to 1 mg g−1 for the conventional method, from 9.14 
to 1.21 mg g−1 for ultrasound-assisted method, and from 
10 to 1.25 mg g−1 for the combined method for an increase 
in adsorbent dose from 0.1 to 0.8 g/100 mL, respectively.

The diminution in the amount of MG adsorbed with 
increasing adsorbent mass is attributable to the split in the 
flux or the concentration gradient between solute concen-
trations in the solution and on the adsorbent surface. But 
dye removal increases with an increase in the adsorbent 
dose. The increase in MG removal was attributable to the 
increase of the available adsorption surface and the avail-
ability of more adsorption sites. Hence, with increasing 
adsorbent mass, the amount of dye adsorbed by the unit 

weight of adsorbent diminished, thus causing a decrease 
in adsorption capacity with increasing adsorbent dosage. 
For all adsorbent dosages, it was indicated that adsorption 
was more effective in the presence than in the absence of 
ultrasound. Additionally, the elimination of dye increased 
in the presence of ultrasound more than with the classical 
method. This could be related to the higher mass transfer 
in the presence of the ultrasonic irradiation. For the highest 
adsorbent dose, the increase of adsorption in the presence of 
ultrasound is low, which is explained by the high availabil-
ity of adsorption sites (Fig. 6a).

The amount of MG adsorbed in the presence of the ultra-
sonic field is higher than that obtained in the conventional 
method, whatever the adsorbent dose is. This behavior could 
be related to the physical effects of ultrasound and cavita-
tion, which give rise to strong convection in the medium 
through various physical phenomena. Adsorption, being 
a mass transfer process, is limited by diffusion– convection 
in the system. The overall resistance to mass transfer can be 
reduced by increasing the convection in the medium or, in 
other words, making the system turbulent. When the bubble 
is collapsing near the solid surface, symmetric cavitation is 
hindered and collapse occurs asymmetrically. The asymmet-
ric collapse of bubbles in a heterogeneous system produces 
high-speed microjets. Additionally, symmetric and asymmet-
ric collapses generate shockwaves, which cause extremely 
turbulent flow at the liquid–solid interface, increasing the 
rate of mass transfer near the solid surface. Furthermore, 
the cavitation event also gives rise to acoustic microstream-
ing or formation of miniature eddies that enhance the mass 
and heat transfer at interfacial films surrounding nearby 
sorbent particles and within the pores. As a result, sonica-
tion could produce not only high-speed microjets but also 
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high-pressure shock waves and acoustic vortex microst-
reaming [24–31]. These actions lead to an improvement of 
the adsorption by an enhancement of mass transfer. On the 
other hand, t the movement of cavitation bubbles in liq-
uid causes a flow of the liquid termed acoustic streaming 
or microstreamer, which increases the mass transfer.

For an adsorbent dose of 0.8 g/100 mL, the adsorp-
tion capacity increased from 1.00 mg g–1 in the conven-
tional method to 1.2 mg g–1 in presence of ultrasound and 
1.25 mg g–1 in the combined process.

For various adsorbent dose ranging from 0.1 to 0.8 g/100 
mL, the amount of MG adsorbed at equilibrium as function 
of the equilibrium concentration of dye for the conventional 
method, for the assistance of ultrasound, and for the simul-
taneous association of ultrasound and stirring (combined 
method) is shown in Fig. 6b.

3.5. Effect of solution pH

The pH is an important parameter to be taken in 
consideration for the removal of dyes from aqueous phases, 
as it can affect the interaction between adsorbent and 
adsorbate, and also it can affect the charge at the surface of 
the adsorbent [32]. pHpzc of PLS is equal to 8.9. The effect 
of pH solution on the amount of MG adsorbed for the con-
ventional method, for the assistance of ultrasound, and for 
the simultaneous association of ultrasound and stirring 
(combined method) is shown in Fig. 7. The results presented 
in Fig. 7 show that the effect of pH is almost insignificant 
on the adsorption capacity. During the pH effect experi-
ments, the final pH of suspensions with initial pH values 
of 4–8 converged rapidly (<5 min) to pHPZC (8.9). At initial 
pH < pHPZC, H+ ions may be exhausted by reducing func-
tional groups on the adsorbent surface, while at higher 
pH values, the released H+ of hydroxyl and/or carboxyl 
groups may neutralize the alkali solution [37].

3.6. Isotherm analysis

The adsorption isotherm is essentially important for 
describing how the solutes interact with the adsorbents and 
is fundamental to optimize the utilization of the adsorbents. 
In order to determine the most suitable correlations for the 
equilibrium data in the adsorption design system, three 
currently used isotherm models were tested: the Langmuir, 
the Freundlich, and the Temkin models.

The applicability of the isotherm equations was compared 
by evaluating the correlation coefficients, R. The Langmuir 
[33] adsorption model has predicated on the hypothesis that 
maximum adsorption corresponds to a saturated monolayer 
of solute on the adsorbent surface. This model suggests that 
all adsorption sites are supposed to be identical. Each site 
holds one molecule of the given compound and all sites are 
energetically and sterically independent of the adsorbed 
amount. The linear form of the Langmuir equation can be 
depicted by:

C
q q

C
b q

e

e m
e

m

= +
⋅

1 1  (1)

where Ce (mg L−1) is the equilibrium concentration of the 
dye, qe (mg g−1) is the amount of adsorbate per unit mass 
of adsorbent, qm (mg g−1), and b (L mg−1) are Langmuir con-
stants related to adsorption capacity and rate of adsorption, 
respectively.

The linear plot of specific adsorption (Ce/qe) against the 
equilibrium concentration (Ce) is depicted in Fig. 8. This fig-
ure shows that the adsorption obeys the Langmuir model. 
The Langmuir constants qm and b were determined from the 
slope and intercept of the plot and are presented in Table 1. 
The correlation coefficient values indicate that the Langmuir 
isotherm offers a good adjustment to the isotherm data for 
the three investigated methods. The principal characteristics 
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of the Langmuir isotherm maybe outlined in terms of 
the constant dimensionless separation factor RL [34] given 
by Eq. (2).

R
bCL = +
1

1 0

 (2)

where C0 (mg L−1) is the initial dye concentration and 
b (L mg−1) is the Langmuir constant. The parameter RL 
(Fig. 9) specifies the nature of the type of form of the iso-
therm to be either unfavorable (RL > 1), linear (RL = 1), 
favorable (0 < RL < 1), or irreversible (RL = 0). For the adsorp-
tion of MG by PLS, the values of RL are in the range of 
0.08536–0.1548 for the three investigated methods, which 
demonstrate that the uptake of MG is a favorable process.

The equilibrium data were analyzed by linear regres-
sion analysis method to fit the Freundlich model. The linear 
form of the Freundlich model is represented by Eq. (3):

ln ln lnq k
n

Ce F e= +
1  (3)

where qe (mg g–1) is the amount adsorbed at equilibrium, 
Ce (mg L–1) is the liquid-phase concentration at equilibrium, 
kF (mg1−(1/n) L1/n g−1) is the Freundlich constant that is used 
as an indicator of adsorption capacity, and n is a constant 
depending to the magnitude of the adsorption driving force. 
A linear plot of lnqe against lnCe was employed to give the 
values of kF and n from the slope and intercept of the line 
(Fig. 10). The Freundlich parameters are recapitulated in 
Table 1. The correlation coefficients (R) showed relatively 
good linearity. The Freundlich adsorption capacity parame-
ters kF for the removal of MG by adsorption on PLS obtained 
in the combined method and in the presence of ultrasound 

are higher compared to that resulting from the conventional 
method. This is an indication that under sonication, new 
adsorption sites occurred by disturbance of the adsorbent 
particles.

The Temkin isotherm [35] is focused on the assump-
tion that the heat of adsorption would reduce linearly 
with increasing adsorbent coverage. The linear form of the 
Temkin equation can be depicted by:

q
R T
b

a
R T
b

Ce
g

t
t

g

t
e= +ln ln  (4)

where bt is the Temkin constant related to the heat of 
adsorption (J mol−1), at is the Temkin isotherm constant 
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(L mg−1), Rg is the ideal gas constant (8.314 J mol−1 K−1), and 
T is the absolute temperature (K).

The adsorption data for MG by PLS were analyzed by 
a linear regression analysis to fit the Temkin isotherm model 
(Fig. 11). The parameters of Temkin model as well as the 
correlation coefficients are listed in Table 1. The coefficients 
of correlation were high representing good linearity. It was 
noted that the Temkin constant, at, increases with a consid-
erable improvement in the combined method, whereas the 
Temkin constant, bt, due to the heat of adsorption reduced 
under the assistance of ultrasound. The Temkin constant 
related to the heat of adsorption was found to be small in all 
cases with the order: combined method (264.79 J mol−1) < son-
ication alone (370.52 J mol−1) < conventional method 
(578.27 J mol−1). However, the typical range of bonding 
energy for the ion exchange mechanism is 8–16 kJ mol−1 
[36]. As the binding energy range related to the adsorbent 
under study was found to be substantially low, the interac-
tion between the adsorbate and the adsorbent appeared to be 
lower, according to the degree of their obeisance to Temkin’s 
model (i.e., the degree of linearity of the heat of adsorption).

Table 2 lists a comparison of the adsorption capac-
ity of the PLS with those obtained in the literature for the 
adsorption of MG. The calculated adsorption capacities 
exhibit a good capacity for dye adsorption from aqueous 
solutions. This result reveals that the PLS is an effective 
adsorbent for MG dye removal from wastewater when it 
was used in the combined method. It should be noted that 
the values and comparisons reported for MG dye removal 
capacity have only a relative meaning because of different 
testing conditions and methods.

3.7. Modeling of adsorption kinetics

A simple kinetic model was employed to test the 
experimental data obtained via the three methods inves-
tigated for different initial concentrations by using the 
equation of Lagergren [55], which is the first elaborated 

equation that can be used to describe the adsorption of 
liquid–solid systems based on solid capacity.

ln( ) lnq q q k te e− = − 1  (5)

where qe (mg g−1) is the amount of MG adsorbed at equilib-
rium, q (mg g−1) is the amount of MG adsorbed at time t and 
k1 (min−1) is the rate constant of pseudo-first-order adsorp-
tion. A linear plot of ln(qe − q) against time allows obtain-
ing the rate constant (Fig. 12). If the plot was found to be 
linear with a good correlation coefficient, it indicates that 
Lagergren’s equation is appropriate to MG adsorption by 
PLS. The Lagergren’s pseudo-first-order rate constant (k1) 
and qe determined from the model are depicted in Table 3, 
along with the corresponding correlation coefficients. It was 
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Fig. 10. Freundlich adsorption isotherm for MG adsorption by 
PLS (conditions: 100 mL of MG solution, initial concentration: 
5–15 mg L−1, adsorbent mass: 0.1 g, acoustic power: 69 W, stirring 
speed: 300 rpm, pH 4, and temperature: 21°C).

Table 1
Isotherm parameters for the adsorption of MG by PLS

Stirring Sonication Combined method

Langmuir

b (L mg−1) 0.7097 0.7149 0.3656
qm (mg g−1) 22.3513 34.4483 89.7182
R 0.9881 0.9938 0.9934

Freundlich

n 1.9346 1.2807 0.9648
KF (mg1−(1/n) L1/n g−1) 8.6166 15.3451 37.9511
R 0.9572 0.9910 0.9914

Temkin

at (L mg−1) 8.6072 8.4850 11.4112
bt (J mol−1) 578.2731 370.5158 264.7942
R 0.9901 0.9653 0.9938
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Fig. 11. Temkin adsorption isotherm for MG adsorption by 
PLS (conditions: 100 mL of MG solution, initial concentration: 
5–15 mg L−1, adsorbent mass: 0.1 g, acoustic power: 69 W, stirring 
speed: 300 rpm, pH 4, and temperature: 21°C).



439H. Ghodbane et al. / Desalination and Water Treatment 210 (2021) 430–445

observed that for the three methods, the correlation coeffi-
cients are acceptable (R ≥ 0.9614). Also, it was found that the 
values of the adsorption capacity at equilibrium determined 
theoretically are not close compared to the experimental 
values, especially for the case of combined method and 
ultrasound alone, which shows that the Lagergren model is 
not suitable for describing the adsorption of the dye by the 
biomaterial.

The adsorption kinetics can also be described by the 
pseudo-second-order equation [56,57]:

t
q K q q

t
e e

= +
1 1

2
2  (6)

where k2 (g mg−1 min−1) is the pseudo-second-order rate 
constant. The qe and k2 values can be determined from the 
slope and intercept of the plot t/q vs. t (Fig. 13). The pseudo- 
second-order rate constants k2 and the corresponding lin-
ear regression correlation coefficients are given in Table 3. 
The correlation coefficient values were found to be in the 
range of 0.9731–0.9999. Moreover, the variations between 
the calculated qe and experimental qe were very minimal for 
this model, especially in the case of the combined method. 
Therefore, it can be concluded that the pseudo-second-order 

kinetics model provided a better correlation for the adsorp-
tion of MG by PLS at different initial dye concentrations 
compared to the pseudo-first-order model for the three 
methods. Hubbe et al. [58] mentioned that a majority of 
studies that have shown good fits to the pseudo-second- 
order (PSO) model have involved relatively small and sim-
ple adsorbate species. Since small molecules and ions tend 
to diffuse rapidly in solution, they would be able to adopt 
essentially all of their possible molecular conformations 
within tiny pore spaces in fractions of seconds, including 
high numbers of collisions with, and possible detachments 
from, an adjacent solid surface.

The fact that data more often fit better to a PSO rate 
expression implies that the rate of uptake slows down to 
a greater extent than one would expect based on the mere 
filing of adsorption sites. Of the several contributing expla-
nations, one of the most persuasive involves the selection of 
experimental conditions [58].

Hubbe et al. [58] reported also that there are two main 
strategies that researchers have used in published works to 
provide an explanation for good fits of adsorption data to 
pseudo-second-order kinetics. The first of these sets of strat-
egies are mathematical or statistical, arguing that the good 
fits are merely a consequence of how random errors can be 
expected to affect the analysis of data. Such an approach can 

Table 2
Comparison of adsorption capacity of the PLS with that of various adsorbents

Adsorbent qm (mg g–1) Reference

Bentonite clay 7.716 [37]
Arundo donax root 8.490 [38]
Rattan sawdust 62.7 ± 1.27 [39]
Dead pine needles 33.56 [26]
Neem sawdust 4.35 [40]
Degreased coffee bean 55.3 [41]
Pine wood decayed by fungi Poria cocos 16.093 [42]
Limonia acidissima (wood apple) shell 35.84 [43]
Sea shell powder 42.3 [10]
Avena sativa (oat) hull 51.42 [44]
Cerastoderma lamarcki shell 35.84 [45]
Zeolite 19.70 [46]
Iron humate 19.2 [47]
Composite of coir pith activated carbon (CPAC) 4.4 [48]
CPAC/chitosan/SDS 4.8 [48]
Leaves of Solanum tuberosum 33.3 [49]
Carbon prepared from Borassus bark 20.70 [50]
Dried cashew nut bark carbon 20.09 [51]
Chlorella-based biomass 18.4 [8]
Cellulose powder 2.422 [52]
Rice husk 7.40 [53]
Tamarind fruit shell 1.95 [54]
PLS (Conventional method) 22.351 This work
PLS (Ultrasound-assisted method) 34.448 This work
PLS (Combined method) 89.718 This work
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be used, for instance, to assert that apparent fits to a PSO 
model are actually attributable to an underlying pseudo- 
first-order (PFO) mechanism.

Therefore, the kinetics data were further evaluated by 
the intraparticle diffusion model to elucidate the diffusion 
mechanism, which is defined as follows [59]:

q k t Ci i= +1 2/  (7)

where q is the amount of MG adsorbed (mg g−1) at time t, 
ki is the intraparticle diffusion constant (mg g−1 min−1/2), 
and Ci is the intercept.

Fig. 14 shows the amount of MG adsorbed vs. t1/2 for 
intra-particle diffusion at different initial dye concentra-
tions for the conventional method, sonication alone, and 
the combined method. The obtained results showed that 
the curves have three successive linearities: the first is 
instantaneous adsorption on the external surface of the 
solid, the second is the progressive adsorption stage where 
intraparticle diffusion is limiting, and the third region is 
the final step before equilibrium where intraparticle dif-
fusion begins to slow down because of the low concentra-
tion of the solute in the solution. The plots are not linear 
for the total time interval, which indicates that adsorption 
is influenced by more than one process. It can be remarked 
that the plots did not pass by the origin; this was reveal-
ing a few degrees of boundary layer control and it further 
demonstrated that intraparticle diffusion was not the only 
rate-limiting step, but that other processes could control the 
adsorption rate. The slope of the linear portion characterizes 
the rate parameter ki which corresponds to the intraparticle 

diffusion. It was found that the rate constant increases as the 
initial dye concentration increased.

3.8. Adsorption mechanism

Adsorption mechanism involves the chemical or/and 
physical adsorption of chemical compounds into sub-
stances. Chemical adsorption could be either in terms of 
chemical bonding or ion exchange; several interactions such 
as complexation, ion exchange due to surface ionization, 
and hydrogen bonds may be involved. The different ratio 
or/and nature of the functional groups for each adsorbent 
(by means of their strength for electrostatic interactions, 
e.g., hydrogen bonding) affects tremendously the adsorp-
tion capability of the materials [60]. For example, regard-
ing the hydrogen bonding, the strength of a hydrogen 
bond between an O atom, which is covalently bound to an 
aliphatic chain is tremendously different from an O atom 
connected to an aromatic ring. For that reason, different 
adsorption capacities are observed for different adsorbents 
and different dyes, due to the different extent and nature 
of the interactions involved. In order to understand the 
adsorption mechanism, the point of zero charges (pHPZC) of 
adsorbents, is determined in most research studies. In this 
manner, a cationic dye (such as MG) adsorption is favored at 
pH > pHpzc, due to the presence of functional groups such as 
–OH, –COOH. Subsequently, by controlling the pH value of 
a wastewater solution, the electrostatic interaction between 
the adsorbent and the dye may be favored or prevented.

Based on the FTIR spectrum analysis, the mechanism for 
the adsorption of MG on PLS can be explained. The analy-
sis of FTIR indicates that –OH and –COOH are present on 

Table 3
Comparison of the pseudo-first-order and pseudo-second-order parameters for the adsorption of Malachite Green at various initial 
concentrations (conditions: 100 mL of MG solution, initial concentration: 5–15 mg L−1, adsorbent mass: 0.1 g, acoustic power: 69 W, 
stirring speed: 300 rpm, and temperature: 21°C)

C0 (mg L–1) qe,exp (mg g−1) Pseudo-first-order model Pseudo-second-order model

k1 (min−1) qe,calc (mg g−1) R k2 (g mg−1 min−1) qe,calc (mg g−1) R

Conventional method

5 4.6189 0.0090 4.8172 0.9928 0.0022 5.3222 0.9947
8 7.3585 0.0089 8.2523 0.9862 0.0012 8.6296 0.9944
10 9.1333 0.0085 10.1868 0.9917 0.0007 11.1943 0.9972
15 12.5783 0.0073 14.7037 0.9845 0.0003 16.0751 0.9950

Ultrasound-assisted method

5 4.7751 0.0294 5.8949 0.9947 0.0012 8.1287 0.9731
8 7.6138 0.0405 9.8552 0.9614 0.0029 9.5383 0.9952
10 9.4047 0.0393 12.0661 0.9826 0.0024 11.6195 0.9959
15 14.1488 0.0439 20.1963 0.9655 0.0011 18.6008 0.9887

Combined method

5 5.0000 0.0668 3.1515 0.9836 0.0509 5.2145 0.9999
8 7.6509 0.0301 5.1279 0.9867 0.0126 8.1300 0.9995
10 9.9739 0.0345 7.3713 0.9896 0.0085 10.7808 0.9997
15 14.1030 0.0326 11.3169 0.9953 0.0046 15.5077 0.9997
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PLS surface. In fact, this mechanism could be explained by 
the electrostatic attraction between hydroxyl and carboxyl 
groups and the cationic dye molecules. At pH higher than 
5.77, the carboxylic groups are deprotonated, and nega-
tively charged carboxylate ligands (COO−) bind to the posi-
tively charged malachite green molecules [61]. This finding 
confirms that the adsorption of malachite green by PLS is 
electrostatic interaction between the negatively charged 
functional groups and the positively charged dye mole-
cules [62].

4. Conclusion

The present work shows that the PLS can be used as an 
adsorbent for the removal of malachite green (MG) from 
aqueous solutions. The quantity of MG adsorbed was found 
to vary according to the initial dye concentration, the dose 
of adsorbent, and the pH. The adsorption was considerably 
enhanced in the presence of the ultrasonic irradiation. The 
amount of MG adsorption with the assistance of ultrasound 
was improved with the increase of dye initial concentra-
tion, and with the decrease of adsorbent dosage. The cou-
pling of agitation and ultrasound leading to an increasing 
in the removal of MG. Adsorption isothermal data could be 
adequately simulated by Langmuir model, followed by the 
Freundlich and Temkin models. The maximum adsorption 
capacities calculated by using the Langmuir isotherm were 
22.35, 34.45, and 89.72 mg g−1 for the classical method, ultra-
sound method, and the combined method, respectively. The 
Adsorption system obeys the pseudo-second-order kinetic 
model for the combined method (agitation + ultrasound) 
and it can be predicted by pseudo-first-order kinetic for 
the classical method. The results of the intra- particle dif-
fusion model proposed that the intraparticle diffusion was 
not the only step in controlling the rates. The combination 
of ultrasound and agitation for the adsorption process was 
proven to be of interest for the treatment of waste water 
contaminated with cationic dye like malachite green.
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