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a b s t r a c t
The present research compares the prediction of the response surface methodology (RSM) and 
artificial neural network (ANN) on the decolorization of Reactive Orange 16 (RO16) using a novel 
adsorbent produced from Ulva lactuca (seaweed). These mathematical models were designed based 
on four process conditions biochar dose, pH, temperature, and initial concentration. The experimen-
tal trials concluded that the dye removal of 93.10% was achieved at an optimum biochar dosage of 
2 g/L, pH of 2, initial concentration of 0.5 mmol/L, and temperature of 40°C. The biochar character-
ization confirmed the presence of functional groups that are responsible for the adsorption of dye. 
The mathematical predictive model of RSM and ANN was compared with the experimental trials 
and a correlation coefficient (R2) of 0.95 is obtained for RSM, whereas a correlation coefficient (R2) 
of 0.99 was obtained for ANN. ANN prediction model was far better than RSM in the prediction 
of decolorization of Reactive Orange 16 (RO16) using U. lactuca as a novel adsorbent. The adsorp-
tion isotherm studies concluded that four parameter model Fritz–Schlunder – IV and Marczewski–
Jaroniec were found to best fit with a correlation coefficient of 0.9999. Pseudo-second-order kinetic 
model was found to best fit the experimental data.

Keywords:  Artificial neural network; Biochar; Decolorization; Reactive Orange 16 (RO16); 
Response surface methodology

1. Introduction

Pollutants in the form of dyes from the textile industry 
were one of the hazardous materials that affect the envi-
ronment if it is not treated properly. Since, if it enters into 
the nearby water streams or the wastewater it will react 
immediately and become more stable and it is difficult to 
degrade since it is more complex [1]. These dyes are toxic, 

carcinogenic compounds that are present in the dyes will 
affect the microorganism, aquatic life and also it will affect 
the surface and groundwater that in turn will affect the 
health of the human being if it is not treated properly [2]. 
Even 1 mg/L of dyes in water will affect the quality of the 
water and causes a serious impact on health. So, it is to 
be treated properly using physical, chemical, or biological 
methods.
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Many physical, chemical, and biological methods are 
used for the degradation of dyes from the water or waste-
water [3]. But in physical and chemical methods the pollut-
ants are not degraded, it is converted into other forms and 
creates the secondary pollutants to the environment if it is 
not disposed of properly [4]. So recently many researchers 
are concentrating on the biological methods to degrade the 
dyes and to avoid the secondary pollutants to the environ-
ment [5]. Some of the commonly used biological methods 
are biosorption, bioaccumulation, and phytoremediation. 
Biological methods use biomaterials that are organic or 
inorganic that are capable of adsorbing or degrading the 
toxic wastes materials. Of these biological methods, bio-
sorption plays a key role in the removal of dyes. A bioma-
terial-based sorbent is produced from biological materials 
and that is used in the adsorption.

In the past, commonly used sorbents were produced 
from cocoa pod husk [6], coconut shell [7], date palm rachis 
[8], jujube stones [8] in the form of activated carbon and 
commercial activated carbon [9] also used in the adsorp-
tion process. Similarly, agricultural solid wastes like bark 
[10], cocoa pod husks [11], coconut husk [12], coconut 
shells [13,14], groundnut shell [15], rice husk [16], sawdust 
[17], breadfruit peel [18], and Artocarpus camansi peel [19]. 
Industrial wastes like activated sludge [20], bio fly ash [21], 
chitin [22], chitosan [23], commercial chitosan powder [24], 
fly ash [25], industrial waste sludge [26], metal hydroxide 
sludge [27], paper mill sludge [28], red mud [29], tannery 
sludge [30], ceramic adsorbents [31], and cedar [32]. Natural 
material clays like acid-activated clay [33], natural bentonite 
[34], sepiolite [35], synthetic talc, and zeolite [36]. Biological 
materials like Amphiroa foliacea [37], Bacillus megaterium 
[38], Candida lipolytica [39], Corynebacterium glutamicum [40], 
Laminaria sp. (protonated with HCl) [41] Pseudomonas [42] 
Phanerochate chrysosporium [43], and enriched microorgan-
ism compost as adsorbents [44]. Recently seaweeds like 
Ulva lactuca, Ulva reticulata, Caulerpa Scalpelliformis [45–48], 
Sargassum wightii, Turbinaria conoides [49], and Kappaphycus 
alvarezii [50] are also used as a prominent adsorbent. Biochar 
is a carbon-rich biomaterial that is produced in the absence 
of oxygen [51]. A limited study has been carried out in 
the application of biochar as a successful adsorbent material.

Many mathematical tools are developed for the optimi-
zation of the experimental trails. Response surface meth-
odology (RSM) and artificial neural network (ANN) are 
such types of optimization tools that can be utilized as a 
predictive tool [52]. RSM is a method in which dependent 
variables are compared with various independent vari-
ables at different levels using statistical and mathemati-
cal methods that are applied based on the experimental 
data [53–55]. Accordingly, RSM can also avoid repeating a 
greater number of experimental trails, in turn, reduces the 
time and cost associated with the testing [56,57]. Nowadays, 
ANNs is used as one of the best prediction models in learn-
ing algorithms and understanding the link between the 
input and output variables for nonlinear systems [58–63]. 
In recent times, RSM and ANN models are compared with 
experimental trails by different authors [64–66]. Hence in 
the current research novel adsorbent biochar was pro-
duced from U. lactuca for the decolorization of Reactive 
Orange 16 (RO16) in batch mode operation under optimum 

conditions. To the best of our knowledge, this is the first 
research of utilizing biochar derived from U. lactuca species 
for the decolorization of Reactive Orange 16 (RO16).

2. Materials and methods

2.1. Seaweed and chemical

The marine seaweed U. lactuca was collected from the 
seashore near Rameswaram, India. The collected seaweed 
was first rinsed with distilled water and natural drying 
was carried out for 24 h. Then the seaweed is reduced into 
a uniform size of 0.75 mm. The dyes used in this study are 
Reactive Orange 16 (RO16) and it was procured from Sigma 
Aldrich (India). The empirical formula of Reactive Orange 
16 (RO16) is C20H17N3Na2O11S3 with a molecular weight of 
617.54 g/mmol. The λmax value of Reactive Orange 16 (RO16) 
is 490 nm. The structure of RO16 is shown in Fig. 1.

2.2. Synthesis of biochar and characterization of biochar

A measured quantity of 50 g of the dried biomass 
(seaweed) is utilized for the synthesis of biochar. A muffle 
furnace with a heating rate of 5°C/min was used for the ther-
mal pyrolysis. The thermal pyrolysis was carried out at an 
oxygen-free environment at different temperatures such as 
300°C, 350°C, 400°C, 450°C, and 500°C. Before the start of the 
experiments, the muffle furnace was purged with nitrogen 
gas to ensure an oxygen-free environment inside the muffle 
furnace [67]. At each temperature, three trials were carried 
out to determine the yield of the biochar. The yield of the 
biochar is taken in terms of mass. From the experimental 
investigation, it was concluded that the biochar yield is 
maximum at a temperature of 300°C and it is carried out for 
further studies.

2.3. Batch adsorption studies

A rotating orbital shaker with operating conditions of 
160 rpm for 6 h was used for batch studies. The effect of 
adsorption process was studied by varying the parameters 
such as biochar dosage, equilibrium pH, initial concentra-
tion, and temperature at different levels. Once the batch 
studies were completed, a centrifuge with an operating 
condition of 2,400 rpm for 10 min was used to separate the 
supernatant and pellet. The collected supernatant is used 
for further studies.

2.4. Design of experiments

2.4.1. Response surface methodology

For this study, Box–Behnken design (BBD) was used 
for modeling. The regression analysis and design of exper-
iments are done by using Minitab software (version 16.1.1). 
Table 1 shows the BBD design with actual and coded 
values of the variables with three different levels of high, 
medium, and low (–1, 0, +1). The BBD was analyzed using a 
quadratic equation as shown in Eq. (1).

Y x x x x
i

k

i i
i

K

ii i
i j i

ij i ij= + + + +( )
= = = = +
∑ ∑ ∑∑β β β β ε0

1 1

2

1 1

 (1)



M. Kumar et al. / Desalination and Water Treatment 211 (2021) 304–318306

where Y  is  the  response  (%  removal),  β  is  a  regression 
coefficient. Where xi and xj are independent variables and 
ε is the error.

2.4.2. ANN model

A feed-forward backpropagation neural network algo-
rithm with two layers was used. For this study, the neural 

network toolbox of MATLAB Software version was used 
to predict the removal efficiency of dyes. A Levenberg–
Marquardt backpropagation (LMA) algorithm was used 
with two layers (Fig. 2). A total of 27 data samples were 
used and divided into 70% training (21 samples), 15% 
validation (4 samples), and 15% test (4 samples), respec-
tively. The data set of different process conditions were 
normalized between limits of –1 and 1 using Eq. (2).

x
y k y k

y k y kik
i i

i i

= ×
( ) − ( )

( ) − ( ) +0 8 0 1.
max

max min
.  (2)

where xik is the normalized value of response k of trail i, 
max yi(k) is the maximum value of yik, yi(k) is the response 
k of the trail I, min yik is the minimum value of yik (i = 1, 
2, …. n), and I is the number of experiment trails.

3. Result and discussion

3.1. Biochar characterization

Fig. 3 shows the scanning electron microscopy (SEM) 
of U. lactuca-biochar and RO16 bounded biochar. For 
instance, the biochar surface was identified with different 
sized uneven pores and this may be due to the pyroly-
sis. Pyrolysis resulted in the uneven surface and this may 
increase the specific surface area, which increased the bind-
ing capacity. So, the sorbent produced from U. lactuca can 
be used as a successful adsorbent. Robic et al. [68] reported 
that U. lactuca is composed of water-soluble ulvan and 

Fig. 1. Structure of Reactive Orange 16 (RO16).

Fig. 2. ANN-based neural network model.

Fig. 3. Scanning electron microscopy of raw biochar (a) and RO16 loaded biochar (b).

Table 1
BBD design variable levels

Coded variable levels

1 0 –1 Variables

2 4 6 Biochar dosage (g/L)
2 3 4 Equilibrium PH
0.25 0.50 1.0 Initial concentration (mmol/L)
25 35 45 Temperature (°C)
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the remaining 38%–54% is composed of cell wall polysac-
charides (on a dry weight basis). The SEM images (Fig. 3) 
also pointed out that there is much difference in the bio-
char surface and indicates that cation and anion exchange 
happened between the dye and the biochar surface.

Fig. 4 demonstrates the Fourier transform infrared (FT-
IR) spectrum of the U. lactuca-derived biochar and RO16 
loaded biochar. From Fig. 4, it is clear that a major shift has 
occurred from a strong band at 1,072–1,073 of (C–O (alco-
hol) band), 1,411–1,418 (C=O, symmetric), 1,628–1,625 (C=O 
stretch of COOH, asymmetric), 2,914–2,919 (C–H stretch), 
and 3,427–3,442 (–NH, –OH stretching) [69,70]. Therefore, 
it was obvious that biochar comprises binding sites of dif-
ferent nature which exhibited the above-mentioned spec-
tral peaks. This is due to the exchange of other ions pres-
ent on the surface of the biochar by Remazol dyes during 
adsorption. This shows the involvement of numerous func-
tional groups on the biochar matrix. Therefore, the FT-IR 
spectra of biochar bounded with Remazol dyes exhibited 

substantial deviations in biochar functional sites after 
exposed to Remazol dyes (Fig. 4).

3.2. RSM based predictive model

The developed equation for the dye removal using an 
RSM is given in Eq. (3).

% Removal =  69.75 + 9.379A + 8.31B + 15.70C – 0.945D –  
0.5365A2 – 0.896B2 – 24.73C2 + 0.01717D2 – 
0.4625AB – 1.250AC – 0.0900AD – 2.700BC + 
0.0200BD + 0.520CD (3)

where A is the biochar dose (g/L), B is the pH, C is the initial 
concentration (mmol/L), and D is the temperature (°C).

Fig. 5 shows the Pareto chart of the standard effects of 
different variables with different combinations. The refer-
ence line at a standardized effect at 2.18 denotes 0.05 signifi-
cant levels with a 95% confidence level. The variables which 
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Fig. 5. Pareto chart of the standard effects predicted by RSM.

Fig. 4. FT-IR spectra of RO16-loaded biochar (a) and raw biochar (b).
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are greater than the standard effect of 2.18 (reference line) 
are statistically significant and variables that are less than 
the standard effect of 2.18 are not statistically significant. 
From Fig. 5, it is evident that the independent variable A 
(biochar dose) and interaction variables BD (pH × tempera-
ture) are not statistically significant, whereas remaining all 
variables are statistically significant. A maximum signifi-
cant level was observed for AA (Biochar × Biochar). Fig. 6 
shows the residual plots for dye removal efficiency. Table 
2 summarized the analysis of variance for % removal of 
Reactive Orange.

3.2.1. Effect of process conditions

Fig. 7 shows the 3D surface plot and 2D contour plots 
for two different independent parameters with respect to 
the removal % of the dye. A 2D contour plot was used to 
explore the relationship between three variables in two- 
dimensional relationships by fixing the % removal as the 
target and any two process conditions were compared in 
two dimensional. Similarly, 3D surface plot or 2D wire-
frame plot is a three-dimensional plot that compares tar-
get (% removal) in the z-axis and any of the two process 
conditions in the x and y-axis. That target or response is 
represented in the form of a surface plot or wireframe plot.

Figs. 7a–e shows the surface and contour plot of two 
variables temperature and biochar with respect to the 
response (% removal). From Figs. 7a–c and e, it is evident 
that the contour plot is following a stationary ridge pattern. 
The stationary ridge pattern of the contour plot implies 
that other parameters affect the response in maximum. It is 
also noted that temperature is the common variable in these 

contour plots and it shows that temperature is not having a 
maximum effect on the response. From the surface plot and 
contour plot, it is concluded that the maximum response 
of 91.80% was achieved at a temperature of 40°C at a bio-
char dose of 2 g/L. Similarly, >91.80% was achieved at a pH 
of 4 and a temperature of 40°C, >91.80% was achieved at 
an initial concentration of 0.25 mmol/L and temperature of 
40°C and >91.80% was achieved at an initial concentration 
of 0.25 mmol/L and pH of 4. So, it can be concluded that the 
optimum temperature for the maximum removal of dye is 40°C.

Fig. 7d shows the surface plot and contour plot of ini-
tial concentration and biochar dosage with respect to % 
removal. The contour plot follows a simple maximum pat-
tern. According to this pattern, the color gets darker when 
it reaches maximum. From Fig. 7d, it is evident that the 
maximum response (>91.80%) was attained at a biochar dos-
age of 4 g/L with an initial concentration of 0.50 mmol/L. 
Fig. 7f shows the surface plot and contour plot of initial con-
centration and biochar dosage with respect to % removal. 
The contour plot follows a rising ridge pattern. From 
Fig. 7f, it is evident that the response increases as we decrease 
the pH and increase with an increase in biochar dosage.

3.3. ANN-based predictive model

Fig. 8a shows the error histogram with 20 bins predicted 
by an ANN. ANN validates the experimental data and pre-
dicts the response. There will be always an error between 
the predicted response and the experimental data until 
R2 = 1. The residual error between each observation is pre-
dicted and a range is fixed. ANN predicted the maximum 
error of 0.12 for observation 06 and nil error is predicted 
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for many observations. Fig. 8a shows the histogram of 
20 bins with a total error of 2.26. So, the error for each bin 
is 0.113 or the difference between each bin is 0.113. The 
training was stopped with a mean square error of 0.005 at 
epoch 8 (Fig. 8b) and which is very close to the acceptable 
limit. Almost 23 observations that are validated by ANN 
showed nil error. This shows that the predicted responses 
by ANN are close to experimental trails.

Lim and Lee [71] reported that the Levenberg–Marquardt 
backpropagation algorithm can obtain higher R2 value with 
lower standard deviation and MSE than any other algo-
rithm. The optimum network topology of ANN is 4:10:1, 
which shows, that four input variables with ten hidden 
neurons and a single output variable. Fig. 9 shows the R2 
value of the experimental and predicted response of ANN. 
The R2 value of 1, 0.9997, 0.9989, and 0.9997 was obtained 

Table 2
Analysis of variance for % removal of Reactive Orange 16

Source DF Adj. SS Adj. MS F-value P-value

Model 14 80.7791 5.7699 70.53 0.000
Linear 4 28.2100 7.0525 86.21 0.000
Biochar dose (A) 1 0.2700 0.2700 3.30 0.094
pH (B) 1 2.2533 2.2533 27.54 0.000
Initial concentration (C) 1 11.6033 11.6033 141.84 0.000
Temperature (D) 1 14.0833 14.0833 172.16 0.000
Square 4 40.7916 10.1979 124.66 0.000
Biochar dose × biochar dose (A2) 1 24.5579 24.5579 300.20 0.000
pH × pH (B2) 1 4.2801 4.2801 52.32 0.000
Initial concentration × initial concentration (C2) 1 12.7445 12.7445 155.79 0.000
Temperature × temperature (D2) 1 0.9823 0.9823 12.01 0.005
2-Way interaction 6 11.7775 1.9629 23.99 0.000
Biochar dose × pH (AB) 1 3.4225 3.4225 41.84 0.000
Biochar dose × Initial concentration (AC) 1 1.5625 1.5625 19.10 0.001
Biochar dose × Temperature (AD) 1 3.2400 3.2400 39.61 0.000
pH × initial concentration (BC) 1 1.8225 1.8225 22.28 0.000
pH × temperature (BD) 1 0.0400 0.0400 0.49 0.498
Initial concentration × Temperature (CD) 1 1.6900 1.6900 20.66 0.001
Error 12 0.9817 0.0818 – –
Lack-of-fit 10 0.8950 0.0895 2.07 0.370
Pure error 2 0.0867 0.0433 – –
Total 26 81.7607 – – –
R2 = 98.80% R2 (Adj.) = 97.40% R2 (Predicted) = 93.46%
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for training, validation, testing, and all. The predicted 
response of ANN shows that the removal efficiency of dye 
is in good agreement with the experimental trails. Therefore, 
it is concluded that ANN is the best predictive model than 
the RSM predictive model and for further adsorption stud-
ies the developed ANN model can be used for different 
combinations.

3.4. Comparison between experimental, RSM, and ANN 
predictive model

Table 3 summarizes the predicted response and error 
of RSM and ANN with experimental data. From Table 3, 
for most of the observation, the error is nil for ANN, which 
shows that the predicted response by ANN is in good 
agreement with the experimental removal efficiency.

3.4.1. Box plot of experimental and predictive model

Fig. 10 shows the boxplot of response obtained by experi-
mental, RSM, and ANN predictive model. From the graph, 

it is also concluded that the response obtained by experi-
ments is close with the response predicted by ANN then the 
response predicted by RSM. The median value for an exper-
iment, RSM and ANN are 90.10, 89.78, and 90.10. So, from 
the boxplot it is concluded that the predicted response 
obtained by ANN is in good accordance with the experi-
mental studies then, the predicted response by RSM, and 
for further studies the ANN predictive model was used.

3.4.2. Hierarchical cluster analysis

Fig. 11 shows the hierarchical cluster analysis (HCA) 
for experimental, RSM, and ANN. Cluster analysis was 
carried out by single-linkage methods that are used to find 
the distance and similarity between the closely associated 
variables. From the dendrogram (Fig. 11), it is clear that a 
cluster was formed between the experimental and ANN 
with a similarity level and distance level of 68.51 whereas 
a cluster between experiment and RSM showed a simi-
larity and distance level of 3.47 and. so, HCA proves that 
ANN predictive model is the best model for experimental 
data than the RSM predictive model.
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Table 3
BBD matrix for process parameters with experimental, RSM and ANN predicted % removal of Reactive Orange 16

Run
A B C D Removal % Error

Biochar 
dose

pH Initial 
concentration

Temperature Experimental RSM 
predicted

ANN 
predicted

RSM ANN

1 2 3 0.75 35 87.70 87.77 87.70 –0.07 0.00
2 4 2 0.75 35 88.50 88.48 88.50 0.02 0.00
3 6 3 0.50 40 90.10 89.98 90.10 0.12 0.00
4 6 3 0.75 35 86.10 86.22 86.10 –0.12 0.00
5 4 2 0.50 30 90.20 89.78 90.24 0.42 –0.04
6 2 2 0.50 35 87.20 87.42 87.08 –0.22 0.12
7 2 4 0.50 35 90.10 90.13 90.10 –0.03 0.00
8 4 2 0.50 40 91.60 91.75 91.60 –0.15 0.00
9 4 3 0.75 40 91.50 91.30 91.50 0.20 0.00
10 4 4 0.50 30 90.50 90.45 90.50 0.05 0.00
11 4 4 0.75 35 88.20 88.00 88.20 0.20 0.00
12 4 3 0.50 35 91.50 91.67 91.50 –0.17 0.00
13 4 4 0.25 35 91.50 91.32 91.50 0.18 0.00
14 4 3 0.25 40 92.10 91.97 92.10 0.13 0.00
15 2 3 0.50 40 92.30 92.08 92.30 0.22 0.00
16 4 3 0.25 30 90.80 91.10 90.80 –0.30 0.00
17 6 3 0.25 35 89.40 89.43 89.40 –0.03 0.00
18 4 2 0.25 35 89.10 89.10 89.26 0.00 –0.16
19 6 2 0.50 35 88.90 88.97 89.90 –0.07 0.00
20 6 3 0.50 30 89.60 89.62 89.60 –0.02 0.00
21 4 3 0.50 35 91.90 91.67 91.90 0.23 0.00
22 2 3 0.50 30 88.20 88.12 88.20 0.08 0.00
23 6 4 0.50 35 88.10 87.98 88.04 0.12 0.06
24 4 3 0.75 30 87.60 87.83 87.60 –0.23 0.00
25 2 3 0.25 35 88.50 88.48 88.50 0.02 0.00
26 4 3 0.50 35 91.60 91.67 91.60 –0.07 0.00
27 4 4 0.50 40 92.30 92.82 92.30 –0.52 0.00
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3.5. Response optimizer

Fig. 12 shows the prediction of dye removal % by using 
a response optimizer. From the experimental studies, it 
is concluded that a maximum of 92.30% of the dye was 
removed with a process condition of biochar dose of 2 g/L, 
pH of 3, initial concentration of 0.5 mmol/L, and tempera-
ture of 40°C. Response optimizer predicted that maximum 
removal of 93.52% can be obtained at a process condition of 
biochar dose of 3.33 g/L, pH of 3.53, and initial concentra-
tion of 0.46 mmol/L, and temperature of 40°C. Three trails 
of experimental trials were carried out with the process con-
dition optimized by response optimizer. The dye removal 
efficiency of 93.30%, 93.20%, and 93.40% was obtained at 
three different trails.

3.6. Adsorption mechanism

To understand the adsorption mechanism prediction 
of the rate-determining step is important. Commonly, 

solid–liquid adsorption is influenced by either external 
diffusion or intraparticle, or in some conditions both can 
happen. The adsorption mechanism can follow the three-
step process as discussed below. First, it may be due to 
film diffusion, the movement of metals ions from the bulk 
solution to the external surface of the adsorbent. Second, it 
may be due to particle diffusion, metal ions will move to 
the interior to the adsorbents. Third, it may be adsorption, 
the metal ions move deep in the pores and binding spaces 
of the adsorbent. Isotherm model plays a very import-
ant role in understanding the adsorption mechanism. The 
experimental data were fitted with two, three, and four- 
parameter model. Based on the correlation coefficient R2 
the best fit of the two-parameter model was found to be in 
the order of Langumir > Freundlich > Smith. The Langmuir 
model with a correlation coefficient of 0.9817 and it shows 
that the homogenous and monolayer adsorption of RO16 
on to biochar. The Freundlich isotherm was found to be 
partially fit with the experimental data with a correlation 
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coefficient (R2) of 0.8578. This proved that to a certain extent 
that, the adsorption is heterogeneous and the values of 
1/nF < 1 show that the cooperative adsorption. The ability 
of the three-parameter model to fit the experimental data 
was checked. From Table 4, it is concluded that the best 
fit model was in the order of Toth > Sips > Hill > Redlich–
Peterson > Radke–Prausnitz > Unilin > Fritz–Schlunder 
– III > Vieth–Sladek > Khan. Even though the Toth model 
best fits the data the adsorption capacity was found to 
be less when compared to Hill, Khan, Vieth–Sladek, and 
Radke–Prausnitz. Among the four-parameter model both 
Fritz–Schlunder – IV and Marczewski–Jaroniec were found 
to best fit with a correlation coefficient of 0.9999. In over-
all, the four-parameter model best fits the experimental 

data when compared to the two and three-parameter  
model.

3.7. Kinetic study

The kinetic study was carried out by varying the initial 
concentration from 0.2 to 1 mmol/L and the final concen-
tration was measure at a different time interval. From Fig. 13, 
it is concluded that the adsorption was maximum at the first 
120 min followed by very little adsorption which occurred 
till 360 min. Almost 90% of the adsorption has occurred at 
120 min and the optimum contact time for the adsorption 
is fixed was 120 min. Table 5 explores the pseudo-first- 
order and pseudo-second-order kinetic model parameters. 

Table 4
Adsorption isotherm parameters for adsorption of RO16 onto Ulva lactuca derived biochar

Model Parameter Values Model Parameter Values

Two parameter model

Freundlich KF 0.4633 Langmuir Q0 0.3404
1/nF 0.3365 b 31.6939
R2 0.8578 R2 0.9817

Smith WS1 0.0709
WS2 1.3837
R2 0.7526

Three parameter model

Redlich–Peterson KRP 7.9823 Vieth–Sladek QMVS 0.6351
αRP 29.7744 BVS 13.8926
βRP 1.2144 NVS 1.3160
R2 0.9943 R2 0.9891

Sips KS 84.8014 Radke–Prausnitz QMRP 0.6351
βS 1.5186 KRP 13.8929
aS 274.6297 nRP 1.3160
R2 0.9966 R2 0.9927

Toth Qmax 0.2989 Fritz–Schlunder – III QMFS 29.7748
bT 20.7270 KFS 0.2681
nT 0.3469 NFS 1.2144
R2 0.9997 R2 0.9916

Hill qmH 0.3161 Unilin QMU 29.8992
nH 1.4674 AU 0.2690
KH 0.0047 BU 1.2107
R2 0.9964 R2 0.9918

Khan Qmax 0.6139
bk 10.3445
ak 1.7743
R2 0.8687

Four parameter model

Fritz–Schlunder – IV AFS 4.7428 Marczewski–Jaroniec QMMJ 0.2945
aFS 0.9364 KMJ 18.7468
BFS 78.2681 NMJ 3.8253
BFS 2.0337 MMJ 0.9222
R2 0.9999 R2 0.9999
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Pseudo-second-order kinetic model was found to be the 
best fit model with a correlation coefficient of not less than 
0.9954. It also revealed that boundary layer thickness and 
external mass transfer strongly influenced the adsorption, 
without resistance to mass transfer within the pores of the 
sorbent. Moreover, adsorption on boundary layer is strongly 
governed by the electron-donor forces between these anionic 
dyes and positively charged biochar. This is agreeable with 
the results obtained from the effect of pH since the optimum 
pH for the removal of Remazol dyes is 2, which indicates the 
surface of the biochar is charged with positive ions (H+) that 
enhance the maximum removal efficiency.

4. Conclusions

In the current investigation, the following observations 
were concluded.

•  A maximum RO16 dye removal of 92.30% was achieved 
by using biochar derived from U. lactuca at process condi-
tions of biochar dosage of 2 g/L, pH of 2, initial concentra-
tion of 0.5 mmol/L, and temperature of 40°C.

•  Characterization of biochar and dye bounded biochar 
showed that a major shift has been accrued in the func-
tional groups.

•  The predictive model of RSM and ANN was compared 
with the experimental trials and ANN was found to be 

the best fit model with a correlation coefficient (R2) of 
0.999.

•  The statistical analysis of boxplot and HCA proved that 
ANN is the best predictive model for experimental trials 
in comparison with RSM predictive model.

•  Furthermore, the response optimizer predicted that max-
imum removal of 93.52% can be obtained at a process 
condition of biochar dose of 3.33 g/L, pH of 3.53, and 
initial concentration of 0.46 mmol/L and temperature of 
40°C.

•  Adsorption isotherm and kinetic studies concluded that, 
the four-parameter model Fritz–Schlunder – IV and 
Marczewski–Jaroniec were found to best fit with a cor-
relation coefficient of 0.9999 and pseudo-second-order 
kinetic model was found to be the best fit model with a 
correlation coefficient of not less than 0.9954.
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