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a b s t r a c t
Accurate prediction of groundwater depth has guiding value for the rational use of water and soil 
resources in irrigation areas. The buried depth of groundwater is a complex system, and its evo-
lution is characterized by nonlinearity and non-stationarity. Complementary ensemble empirical 
mode decomposition (CEEMD) is one of the methods of “decomposition–prediction–reconstruc-
tion” predictive model, and its data decomposition has a certain inhibitory effect on the modal alias 
problem in the process of empirical mode decomposition. Based on CEEMD, it has the ability to 
smooth non-stationary signals and back-propagation (BP) can approximate arbitrary functions, has 
good nonlinear mapping capabilities, and has an advantage in the prediction of uncertain factors. 
This paper builds a coupling model based on the groundwater depth prediction of CEEMD-BP 
and applies it to the groundwater depth prediction of People’s Victory Canal Irrigation District. 
The results show that the CEEMD-BP coupling model has a good predictive effect, with an average 
relative error of 4.7% and an inter-rate agreement of 100%. Which is superior to the EEMD-BP model 
and the BP model, and it has a higher fitting and predicted accuracy. Providing an effective predic-
tion method of application prospects for the buried depth of groundwater in the irrigation area.

Keywords:  BP network; Complementary ensemble empirical mode decomposition; Groundwater 
depth; People’s Victory Canal Irrigation District; Prediction

1. Introduction

Groundwater burial depth variation in irrigation areas 
is a complex, fuzzy and uncertain system, influenced 
by various factors such as temperature, precipitation, 
evapotranspiration dispersion [1], groundwater recharge, 
groundwater extraction, soil geological conditions, etc., 
resulting in groundwater burial depth variation show-
ing non-linearity, non-smoothness, local volatility and 
multi-temporal [2–4]. It makes the prediction of ground-
water depth of burial more difficult and requires more 

demanding prediction methods. For this reason, the intro-
duction of artificial neural networks with better non- linear 
and self-learning capabilities for groundwater burial 
depth prediction has become a new topic of research for 
scholars at home and abroad. Adhikary and Dash [5] used 
cross-validation methods to compare the effectiveness of 
Inverse Distance Weighting (IDW), Radial Basis Function 
(RBF), Ordinary Kriging (OK), and Universal Kriging 
(UK) interpolation methods in groundwater level predic-
tion. Al-Mahallawi et al. [6] used neural networks to pre-
dict changes in nitrate pollution of groundwater in rural 
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agricultural areas. Sucharita et al. [7] used the use of differ-
ent heuristic models to evaluate the prediction of ground-
water burial depth across basins in India. Khorasani et 
al. [8] used time series models for groundwater depth 
of burial prediction. Maiti et al. [9] used artificial neural 
networks and neuro-fuzzy models for groundwater level 
prediction. Liu et al. [10] used artificial neural networks 
in complex groundwater management. Zhou et al. [11] 
combined wavelet pre-processing of artificial neural net-
work and support vector machine models for comparative 
analysis of groundwater depth prediction. Shao et al. [12] 
used an Improved Artificial Bee Colony (IABC)-RBF neural 
network to predict groundwater depth, which improved 
the learning speed of the network and improved the pre-
diction capability of the neural network. Zhang et al. [13] 
used a long and short term memory network to simulate 
the variation of groundwater depth in Guanzhong well. 
Yu et al. [14] used a coupled wavelet transform and sup-
port vector machine model (WA-SVM) to predict the burial 
depth of groundwater in arid areas, which can provide new 
methods and ideas for dynamic prediction of groundwa-
ter burial depth in arid areas. Liang et al. [15] constructed 
an EEMD-PSO-ELM (PSO – Particle Swarm Optimization; 
ELM – Extreme Learning Machine) groundwater depth 
prediction model to predict the monthly groundwater 
depth of Youyi Farm, which can provide a basis for ground-
water management and agricultural policy formulation 
in Youyi Farm and even in the Sanjiang Plain. As can be 
seen from the above, researchers at home and abroad have 
mainly studied groundwater burial depth prediction mod-
els through artificial neural networks or machine learning 
methods. The construction of coupled prediction models 
by reducing the non-smoothness of the original series is 
less common. Complementary ensemble empirical mode 
decomposition (CEEMD) [16] transforms complex time 
series variations into a few simple. The method is used to 
smooth non-smoothed series by extracting the Intrinsic 
Model Function (IMF) from the original signal, thereby 
separating the low and high frequency parts of the signal 
and transforming the complex time series variation into 
the sum of a few simple variables. In this paper, CEEMD 
is used to decompose the groundwater burial depth 
data, and the decomposed series has good smoothness. 
Combined with back propagation (BP) neural network 
which can approximate arbitrary functions and has good 
nonlinear mapping ability, it has advantages in prediction 
of uncertainty factors [17]. A coupled CEEMD-BP neural 
network model for groundwater burial depth prediction 
in the People’s Victory irrigation area was established to 
reveal the predictive capability of the coupled model for 
groundwater burial depth in the irrigation area. A new 
approach is provided for the improvement of groundwater 
burial depth prediction accuracy. In addition, the analysis- 
prediction of the periodic characteristics of groundwater 
burial depth can provide data support for the rational use 
of groundwater resources, which has important guidance 
significance for social and economic development.

In order to improve the accuracy of groundwater depth 
prediction, this paper proposes to combine the CEEMD 
method of the BP neural network to predict the groundwa-
ter depth. By combining with the EEMD-BP model, the BP 
model and the Elman model, the relative percentage error 

(RPE) and the average absolute percentage error (MAPE), 
root mean square error (RMSE), average absolute error 
(MAE) and Nash coefficient (NSE) and other indicators are 
compared to analyze the effectiveness of the CEEMD-BP 
model for groundwater depth prediction.

2. Basic principles and methods

2.1. Complementary ensemble empirical mode decomposition

Empirical mode decomposition (EMD) [18] is a signal 
decomposition based on the time-scale characteristics of 
the data itself, which has obvious advantages for handling 
non-stationary and non-linear data. EEMD is an improved 
algorithm of empirical mode decomposition. Compared 
with EMD, EEMD adds Gaussian white noise to the sig-
nal to change the characteristics of the extremum point, so 
that the signal has continuity at different scales and effec-
tively suppresses the phenomenon of confounding in EMD 
decomposition, but the addition of white noise will remain 
in the component signal and cause signal reconstruction 
errors.

Different from the EEMD method, CEEMD adds white 
noise with an opposite mean value of 0 to the original signal, 
so that CEEMD have features not only reduces the non-sta-
tionarity of the sequence, but also transforms the non-sta-
tionary time series into a stable and minimally influential 
sequence [19]. Moreover, the addition of white noise that is 
opposite to each other reduces signal errors of reconstruc-
tion, minimizes the interference from white noise on the 
signal decomposition, and have a better completeness of the 
decomposition.

The implementation steps of CEEMD decomposition are 
as follows:
1. In the original time series, randomly add n sets of pos-

itive and negative auxiliary white noise sequences with 
a mean value of zero to generate two sets of aggregate 
signals.
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where G1 and G2 are the time-series signals after adding 
positive and negative white noise; N is the auxiliary noise 
signal and S is the original signal. Finally, there are 2n sets 
of signals were obtained [20].

2. The EMD decomposition method is used to decompose 
each set signal, and each signal gets a set of 2m–1 IMF 
components and a trend term, where the jth IMF compo-
nent of the ith component represents cij. m is the number 
of signals after each signal is decomposed.

3. Take the average of the corresponding IMF components 
and trend items as the final decomposition.
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where U(t) represents the sum of IMF components and 
the remaining components after CEEMD decomposition 
of the original noisy data, and rm represents the average 
trend or constant.
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2.2. BP neural network

BP neural network usually adopts the structure of 
multi-layer forward neural network based on BP neuron, 
which is composed of input layer, hidden layer and output 
layer, and each layer has several neurons. The BP network 
divides the entire learning process into two parts, namely 
the forward propagation of the network input signal and 
the backward propagation of the error signal. The network 
is trained in the learning method with a tutor. In the for-
ward propagation, the input signal is passed from the input 
layer to the output layer through the hidden layer calcu-
lated layer by layer; in the output layer, the output of each 
neuron corresponds to the network response of the input 
mode. If the output layer does not get the expected output, 
the error turn to back propagation, following the principle 
of reducing the inaccuracy between the expected output 
and the actual output, the error information of each unit is 
returned from the output layer to the input layer through 
the middle layer. The connection weights and thresholds 
are modified layer by layer, and the cycle is repeated until 
the error signal reaches the allowable range or the number 
of exercises reaches the predetermined number [21–23]. 
A schematic diagram of the network is shown in Fig. 1.

The action function of the node usually selects the 
Sigmoid type function, and its expression is:

f x
e x� � �
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 (3)

where f(x) is the function of the network node; x is the input 
value of the neuron node.

The programming steps of the standard BP algorithm 
are:

1. Perform data normalization. All sample data are normal-
ized by the normalisation functions.

2. Initialization. Assign random numbers to the weight 
matrix W and V, set the sample pattern counter P and the 
training times counter q to 1, the error E to 0, the learning 
rate η to a decimal within 0–1, and the accuracy Emin to be 
achieved after network training a positive decimal.

3. Input the training sample pair and calculate the output 
of each layer. Use the current samples XP and dP to assign 
values to the vector arrays X and d, and use the following 

formula to calculate the components in the hidden layer 
Y and the output layer O.
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4. Calculate the network output error. Suppose there is p 
pairs of training samples, and the network has differ-
ent errors EP for different samples. The squares of the 
output errors of all samples can be accumulated and 
then squared as the total output error. Emax, the larg-
est of the errors, can also be used to represent the total 
network output error, the root mean square error is 
often used as the total error of the network in practical  
applications.

5. Calculate the error signal of each layer. Apply formula (4) 
to calculate δk

0 and δj
y.
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6. Adjust the weights of each layer. Use the following 
formula to calculate each component of W and V.
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7. Check whether one rotation training is completed for all 
samples. If p < P, the counters p and q increases by 1, and 
return to step (3), otherwise, go to step (8).

 
Fig. 1. The BP neural network structure.
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8. Check whether the total error of the network meet the 
accuracy requirements. When using ERME as the total 
error of the network, if ERME < Emin, the training ends, 
 otherwise E is set to 0, p is set to 1, and step (3) is returned.

3. Coupling model

3.1. CEEMD-BP

From the perspective of CEEMD decomposition, the 
contribution rate of each IMF component and trend relative 
to the time series is not the same. The IMF component and 
trend term can be approximately regarded as the driving 
factors of time. So that the time forecast is equivalent to the 
forecast of IMF components and trend items.

The specific steps of CEEMD-BP coupling model are as 
follows:

1. CEEMD decomposition. Use MATLAB to decompose 
the original data by CEEMD to get the IMF components 
and trend items of the time series.

2. Divide training data and prediction data. The IMF com-
ponents and trend items of the groundwater depth from 
1993 to 2011 are used as the training data of the BP net-
work, and the IMF components and trend items from 
2012 to 2013 are used as the prediction data of the BP 
network.

3. BP neural network prediction. The BP network is used to 
repeatedly debug the training data of IMF components 
and trend items, so that the prediction of BP components 
and trend items reaches the best effect.

4. Analysis of prediction results. Finally, the predicted IMF 
components and trend items are cumulatively restored 
and compared with the original data.

The technical route of CEEMD-BP coupling prediction 
model is shown in Fig. 2.

3.2. Evaluation index

In order to better reflect the prediction effect of the 
CEEMD-BP model, five main criteria are used for evalua-
tion of prediction, relative percentage error (RPE), average 
absolute error (MAE), root mean square error (RMSE), aver-
age relative percentage error (MAPE), and Nash efficiency 
coefficient (NSE), which are defined as:
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where yt is the actual value of the t moment; y‾t is the pre-
diction value of the t moment; μt is the total average value 
of observations at time t; N is the number of time series.

4. Example application

4.1. Regional overview

The People’s Victory Canal Irrigation District is located 
in the northern part of Henan Province. It is the first large-
scale artesian irrigation district built on the lower Yellow 
River since the founding of New China. In recent years, 
with the completion and use of Xiaolangdi Reservoir, the 
intake of the People’s Victory Canal Irrigation District has 
difficulty diverting water due to the elevation of the sluice 
bottom. The development of industry and agriculture and 
the improvement of urbanization in the irrigation area have 
an increasing demand for water resources, so groundwa-
ter exploitation has been gradually increased, becoming 
one of the main water sources in the irrigation area.

The irrigation area has a warm temperate continental 
monsoon climate, with an average annual temperature of 
140°C, a frost-free period of 220 d, an average annual water 
surface evaporation of 1,300 mm, and an annual average 
precipitation of 620 mm. The total land area in the irriga-
tion area is 1,486.84 km2. The data in this article comes from 
the monthly monitoring data of observation wells in the 
irrigation area from 1993 to 2013.

It can be seen from Fig. 3 that from 1993 to 2013, the 
groundwater depth of the People’s Victory Canal Irrigation 
District showed an upward trend. The rising process was 
accompanied by certain fluctuations and the fluctuation 

 

Fig. 2. The technical route of the CEEMD-BP coupling prediction 
model.
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range was inconsistent. This also verified the uncertainty and 
non-stationarity of the groundwater depth sequence is rela-
tively large, which T also reflects the rationality of choosing 
the CEEMD method from the side.

4.2. CEEMD decomposition

According to the previous CEEMD decomposition 
steps, the groundwater depth data of the People’s Victory 
Canal Irrigation District from 1993 to 2013 was subjected 
to CEEMD decomposition, with the noise variance being 

0.2 and the number of noise being 100. The decomposition 
result is shown in Fig. 4.

It can be seen from Fig. 4 that the groundwater depth 
sequence is decomposed into 5 IMF components and a cor-
responding trend item. Among them, the IMF1 component 
has the largest volatility, high frequency, and the shortest 
wavelength; the amplitude of IMF2 ~ trend phase gradually 
decreases, the frequency gradually decreases, and the wave-
length gradually increases. After the groundwater depth 
sequence of the People’s Victory Canal Irrigation District 
is processed by CEEMD, the volatility and non-station-
arity of the sequence are greatly reduced, and the original 

 
Fig. 3. Groundwater depth curve of the people’s victory canal irrigation district from 1993 ~ 2013.

 
Fig. 4. CEEMD decomposition of groundwater depth in the People’s Victory Canal Irrigation District from 1993 ~ 2013.
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sequence is decomposed into periodic IMF components to 
reduce the difficulty of prediction.

4.3. Groundwater depth prediction

When using BP network to predict the depth of ground-
water in People’s Victory Canal Irrigation District, training 
and testing samples must be divided. The IMF and trend 
items from 1993 to 2011 are used as training samples, and 
the IMF and trend items from 2012 to 2013 are used as test 
samples. Using the rolling prediction method, the delay 
order is 1:6, and the number of hidden nodes is 20.

According to the previous steps, the BP network is used 
to predict the five IMF components and one trend item of the 
groundwater depth in the People’s Victory Canal Irrigation 
District from 2012 to 2013. The prediction results are shown 
in Figs. 5a–f.

It can be seen from Figs. 5a–f that the prediction effect of 
the IMF1 component is slightly worse, which indicates that 
the non-stationarity of the IMF1 component is higher; the 
prediction effect of IMF2 ~ IMF6 is better, which shows that 
the non-stationarity of the IMF2 ~ IMF6 components is lower, 
after the groundwater depth sequence is decomposed by 
CEEMD, the volatility and non-stationarity of the sequence 
are greatly reduced.

It can be seen from Table 1 that the maximum, minimum, 
and average values of IMF1 relative errors are relatively 
large, which are 594.74, 4.30, and 161.55, respectively, which 
shows that the non-stationarity of the IMF1 component 
is higher and has a greater impact on the prediction error; 
The maximum, minimum, and average values of the relative 
error are small, respectively 0.04, 0.00, 0.01, which shows 
that the low-frequency signal is relatively stable and has lit-
tle effect on the prediction error. It can be seen from Table 
1 that after the groundwater depth sequence is decomposed 
by CEEMD, the IMF component becomes more and more 
stable, and the indicators of the relative error of the IMF1 
residual show a decreasing trend overall.

It can be seen from Table 2 that the maximum, minimum, 
and average relative errors of the CEEMD-BP coupling pre-
diction model is 3.04%, 0.03%, and 0.73%, respectively, and 
the Nash efficiency coefficient of the model is calculated 
to be 0.96, which is close to 1 which shows that the qual-
ity of the model is very high, the relative error of model 
prediction are small, and the qualification rate is high.

Fig. 6 is the prediction curve of groundwater depth 
in People’s Victory Canal Irrigation District from 2012 to 
2013. It can be seen from Fig. 7 that the predicted value 
of groundwater depth in People’s Victory Canal Irrigation 
District from 2012 to 2013 is basically the same as the real 
value. The degree of fitting of CEEMD-BP coupling model is  
higher.

5. Results and discussion

In order to further evaluate the function of the pro-
posed model, the simulation results of several models in 
the prediction of groundwater depth are compared. Due 
to the limited mastery of various forecasting methods, 
only the simulation results of Elman, EEMD-BP, BP and 
CEEMD-BP are compared as shown below.

Fig. 7 compares the reconstruction error of CEEMD and 
EEMD. It can be clearly seen that the reconstruction error of 
EEMD is much larger than that of CEEMD; the CEEMD-BP 
coupling model better overcomes the shortcomings of white 
noise for the large reconstruction error of the EEMD-BP 
network.

It can be seen from Table 3 and Fig. 8 that the CEEMD-BP 
coupling model has the highest degree of fitting for ground-
water depth prediction, and MAE, RMSE, and MAPE are all 
lower than the other three prediction models; the BP pre-
diction model has a higher degree of fitting Based on the 
Elman prediction model; at the same time, it can be seen 
that the prediction effect of the “decomposition–prediction– 
reconstruction” model is significantly better than that of 
a single neural network prediction model; the original sig-
nal is decomposed to reduce the non-stationarity of the 
sequence, thereby improving the prediction accuracy.

It can be seen from Fig. 9 that when predicting a total 
of 24 months from 2012 to 2013, 73% of the relative error of 
CEEMD-BP is less than that of the other three models, and 
CEEMD-BP model possesses more effective prediction.

From the above comparative analysis, it can be con-
cluded that the CEEMD-BP model prediction results are as 
expected, and the period and trend are in high agreement 
with the sequence of the measured data. The relative error 
sum is lower and the results are better compared to Elman, 
EEMD-BP and BP, which indicates that CEEMD-BP is more 
advantageous for precipitation forecasting. Compared to 
other forecasting methods, decomposing the reconstructed 
forecast model reduces the forecast error. The reason for this 
is as follows: the original signal is decomposed by a decom-
position tool (CEEMD) into different frequency components 
of the high-frequency and low-frequency components. 
The overall prediction error of the model is determined 
by the error predictions of these high-frequency and low- 
frequency components. In this way, even if some components 
are not predicted well, the overall prediction is not affected.

CEEMD is proposed on the basis of EEMD. The CEEMD 
decomposition solves the problems of modal confusion and 
residual noise in the reconstructed sequence that exist in the 
EEMD decomposition process, and its decomposition pro-
cess has integrity and no reconstruction error. Therefore, the 
prediction effect of CEEMD-BP model is more advantageous 
and stable than the single decomposition reconstruction 
prediction model of EEMD-BP.

6. Conclusion

1. The groundwater depth sequence is decomposed by 
CEEMD, by adding opposite white noises whose average 
value are equal to 0, solves the problem of large recon-
struction errors caused by adding single row white noise 
to EEMD decomposition. The time series of ground-
water depth is decomposed by CEEMD, the signal is 
decomposed into 5 IMF components and trend items, 
the predicted value of the signal is equal to the sum of 
the predicted values of the 5 IMF components and the 
trend item. By decomposing the groundwater depth 
sequence into different frequency subcomponents, the 
complex groundwater depth prediction becomes a pre-
diction of many simple single variables. Reducing the 
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Fig. 5. The prediction results of IMF1 ~ IMF6 and residual. (a) IMF1 forecast results and errors, (b) IMF2 forecast results and errors, 
(c) IMF3 forecast results and errors.
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Fig. 5. The prediction results of IMF1 ~ IMF6 and residual. (d) IMF4 forecast results and errors, (e) IMF5 forecast results and errors, 
and (f) trend prediction results and errors.
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non-stationarity of the original sequence and have more 
regularity, which provides good conditions for BP model 
prediction.

2. Based on the CEEMD decomposition of the groundwa-
ter depth sequence, the BP network is used to predict the 
IMF1 ~ trend item, which solves the problem that the BP 
network cannot be used to learn some high-frequency 
mutation data directly. By predicting and reconstructing 
each component after CEEMD decomposition, the true 
value can be better fitted. Compared with the traditional 
single BP network, the model can reasonably reflect the 
real changes of the sequence in detail. The CEEMD-BP 

coupling model predicts a relative error of 0.73%, and cal-
culates the Nash efficiency coefficient commonly used to 
verify the simulation results of the hydrological model. 
The result is 0.96, which has a higher accuracy and is 
better than the EEMD-BP model and BP neural network. 
This shows that the CEEMD-BP coupling model is feasi-
ble and reliable for the prediction of groundwater depth 
in irrigation areas.

3. The CEEMD-BP coupled model has an effective decom-
position algorithm and a powerful, fast and stable predic-
tion tool. The decomposition of groundwater burial depth 
series using the CEEMD method helps to understand the 

Table 1
Relative error index of IMF1 ~ residual

Forecast Maximum relative error (%) Relative error minimum (%) Relative error average (%)

IMF1 594.74 4.30 161.55
IMF2 287.17 1.50 41.30
IMF3 9.89 0.12 2.90
IMF4 1.88 0.05 0.67
IMF5 3.37 0.43 0.77
Trend item 0.04 0.00 0.01

Table 2
Relative error of groundwater depth prediction in People’s Victory Canal Irrigation District from 2012 ~ 2013

Year Month True value (m) Predicted value (m) Absolute error (%) Relative error (%)

2012

1 6.03 6.07 0.044 0.73
2 6.21 6.23 0.022 0.35
3 6.4 6.40 0.003 0.05
4 6.49 6.54 0.045 0.69
5 6.6 6.66 0.061 0.91
6 6.83 6.76 –0.071 1.04
7 6.6 6.65 0.051 0.77
8 6.52 6.50 –0.023 0.35
9 6.48 6.50 0.023 0.35
10 6.56 6.59 0.031 0.47
11 6.57 6.54 –0.029 0.44
12 6.59 6.40 –0.194 3.04

2013

1 5.96 6.02 0.058 0.96
2 5.86 5.91 0.052 0.88
3 6.06 6.06 –0.002 0.03
4 6.3 6.48 0.175 2.71
5 6.71 6.77 0.055 0.81
6 6.96 6.91 –0.046 0.67
7 6.78 6.77 –0.008 0.13
8 6.62 6.62 0.003 0.04
9 6.8 6.78 –0.024 0.35
10 6.8 6.81 0.012 0.17
11 6.92 6.86 –0.055 0.80
12 6.87 6.82 –0.052 0.77

Average relative error (%) 0.73
Nash efficiency coefficient 0.96
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Fig. 6. The groundwater depth prediction curve of People’s Victory Canal Irrigation District from 2012 ~ 2013.

 
Fig. 7. CEEMD, EEMD reconstruction error.

 
Fig. 8. The CEEMD-BP model is compared with other models.
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characteristics of groundwater burial period changes, 
and can transform non-linear and non-smooth time series 
into smooth time series, which helps to improve the accu-
racy of prediction, solving the problem that it is difficult 
to reveal the characteristics of groundwater burial depth 
changes and the low prediction accuracy by using BP 
model prediction alone, and has broad application pros-
pects. The prediction algorithm based on the CEEMD-BP 
model can be used not only for groundwater burial depth 
prediction, but also for the prediction of other time series 
such as rainfall, runoff and meteorological factors.

4. Although the overall prediction accuracy of the estab-
lished CEEMD-BP coupled model is high, there are also 
shortcomings, such as the network parameters need 
to be set and adjusted artificially, the study only made 
short-term prediction of groundwater depth of burial, 
but not long-term prediction, in addition, the model 
does not involve the influence of physical mechanism of 
groundwater depth of burial change, its applicability and 
accuracy improvement still need further research, these 
will be the next research direction These will be the next 
research directions and priorities.
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