References
- J. Feng, B.-w. Zhu, T.-T. Lim, Reduction of chlorinated methanes
with nano-scale Fe particles: Effects of amphiphiles on
the dechlorination reaction and two-parameter regression for
kinetic prediction, Chemosphere, 73 (2008) 1817–1823.
- S. Babel, P.A. Sekartaji, H. Sudrajat, TiO2 as an effective nanocatalyst
for photocatalytic degradation of humic acid in water
environment, J. Water Supply Res Technol.-Aqua, 66 (2017)
25–35.
- Y. Zhan, Z. Zhu, J. Lin, Y. Qiu, J. Zhao, Removal of humic acid
from aqueous solution by cetylpyridinium bromide modified
zeolite, J. Environ. Sci., 22 (2010) 1327–1334.
- A. Naghizadeh, H. Shahabi, F. Ghasemi, A. Zarei, Synthesis of
walnut shell modified with titanium dioxide and zinc oxide
nanoparticles for efficient removal of humic acid from aqueous
solutions, J. Water Health, 14 (2016) 989–997.
- B.R. Eggins, F.L. Palmer, J.A. Byrne, Photocatalytic treatment
of humic substances in drinking water, Water Res., 31 (1997)
1223–1226.
- C.R. Reiss, J.S. Taylor, C. Robert, Surface water treatment using
nanofiltration—pilot testing results and design considerations,
Desalination, 125 (1999) 97–112.
- Á. de la Rubia, M. Rodríguez, D. Prats, pH, Ionic strength and
flow velocity effects on the NOM filtration with TiO2/ZrO2
membranes, Sep. Purif. Technol., 52 (2006) 325–331.
- E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal
from aqueous environments by electrocoagulation process
using iron electrodes, J. Chem., 9 (2012) 2453–2461.
- M.H. Dehghani, S. Nazmara, A. Zahedi, M. Rezanasab, E.
Nikfar, V. Oskoei, Efficiency rate of photocatalytic UV/ZnO in
removing humic acid from aqueous solution, J. Mazandaran.
Univ. Med. Sci., 24 (2015) 264–277.
- I. Sutzkover-Gutman, D. Hasson, R. Semiat, Humic substances
fouling in ultrafiltration processes, Desalination, 261 (2010)
218–231.
- R. Lamsal, M.E. Walsh, G.A. Gagnon, Comparison of advanced
oxidation processes for the removal of natural organic matter,
Water Res., 45 (2011) 3263–3269.
- C. Lu, F. Su, Adsorption of natural organic matter by carbon
nanotubes, Sep. Purif. Technol., 58 (2007) 113–121.
- V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-
Ghoshekandi, A. Makhlouf, M. Goodarzi, A. Garshasbi,
Study on the removal of heavy metal ions from industry waste
by carbon nanotubes: effect of the surface modification: a
review, Crit. Rev. Environ. Sci. Technol., 46 (2016) 93–118.
- C. Li, Y. Dong, D. Wu, L. Peng, H. Kong, Surfactant modified
zeolite as adsorbent for removal of humic acid from water,
Appl. Clay Sci., 52 (2011) 353–357.
- A.A.M. Daifullah, B.S. Girgis, H.M.H. Gad, A study of the factors
affecting the removal of humic acid by activated carbon
prepared from biomass material, Colloid Surf. A-Physicochem.
Eng., 235 (2004) 1–10.
- T. Anirudhan, M. Ramachandran, Surfactant-modified bentonite
as adsorbent for the removal of humic acid from wastewaters,
Appl. Clay Sci., 35 (2007) 276–281.
- L. Wang, C. Han, M.N. Nadagouda, D.D. Dionysiou, An innovative
zinc oxide-coated zeolite adsorbent for removal of
humic acid, J. Hazard. Mater., 313 (2016) 283–290.
- X. Zhang, R. Bai, Mechanisms and kinetics of humic acid
adsorption onto chitosan-coated granules, J. Colloid Interface
Sci., 264 (2003) 30–38.
- M. Anbia, S. Khoshbooei, Functionalized magnetic MCM-48
nanoporous silica by cyanuric chloride for removal of chlorophenol
and bromophenol from aqueous media, J. Nanostructure.
Chem., 5 (2015) 139–146.
- T. Moriguchi, K. Yano, M. Tahara, K. Yaguchi, Metal-modified
silica adsorbents for removal of humic substances in water, J.
Colloid. Interface Sci., 283 (2005) 300–310.
- T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite
oxide as a novel adsorbent for humic acid removal from aqueous
solution, J. Colloid. Interface Sci., 333 (2009) 114–119.
- K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää,
M.N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A.
Pal, Z.-j. Wang, A comparative study on the basis of adsorption
capacity between CNTs and activated carbon as adsorbents for
removal of noxious synthetic dyes: a review, J. Nanostructure.
Chem., 5 (2015) 227–236.
- H. Sadegh, G.A. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-Ghoshekandi, M.N. Nadagouda, M. Sillanpää, E. Megiel,
The role of nanomaterials as effective adsorbents and their
applications in wastewater treatment, J. Nanostructure. Chem.,
(2017) 1–14.
- D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal,
V. Gupta, Removal of hazardous dyes-BR 12 and methyl
orange using graphene oxide as an adsorbent from aqueous
phase, Chem. Eng. J., 284 (2016) 687–697.
- E.M. Elnaggar, K.I. Kabel, A.A. Farag, A.G. Al-Gamal, Comparative
study on doping of polyaniline with graphene and
multi-walled carbon nanotubes, J. Nanostructure. Chem., 7
(2017) 75–83.
- Y. Saghapour, M. Aghaie, K. Zare, Thermodynamic study of
lead ion removal by adsorption onto nanographene sheets, J.
Phys. Theor. Chem., 10 (2013) 59–67.
- K.S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H.L. Stormer, U.
Zeitler, J. Maan, G. Boebinger, P. Kim, A.K. Geim, Room-temperature
quantum Hall effect in graphene, Science, 315 (2007)
1379–1379.
- J.P. Naik, P. Sutradhar, M. Saha, Molecular scale rapid synthesis
of graphene quantum dots (GQDs), J. Nanostructure.
Chem., 7 (2017) 85–89.
- J.-W. Jiang, B.-S. Wang, J.-S. Wang, H.S. Park, A review on the
flexural mode of graphene: lattice dynamics, thermal conduction,
thermal expansion, elasticity and nanomechanical resonance,
J. Phys. Condens. Matter., 27 (2015) 083001.
- I. Shown, A. Ganguly, Non-covalent functionalization of CVD grown
graphene with Au nanoparticles for electrochemical
sensing application, J. Nanostructure. Chem., 6 (2016) 281–288.
- C. Mattevi, H. Kim, M. Chhowalla, A review of chemical
vapour deposition of graphene on copper, J. Mater. Chem., 21
(2011) 3324–3334.
- O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced
graphene oxide, and graphene: versatile building blocks for
carbon-based materials, Small, 6 (2010) 711–723.
- Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, G. Jiang, Graphene
and graphene oxide sheets supported on silica as versatile
and high-performance adsorbents for solid-phase extraction,
Angew. Chem.-Int., 123 (2011) 6035–6039.
- A. Azari, M. Salari, M.H. Dehghani, M. Alimohammadi,
H. Ghaffari, K. Sharafi, N. Shariatifar, M. Baziar, Efficiency
of magnitized graphene oxide nanoparticles in removal of
2,4-dichlorophenol from aqueous solution, J. Mazandaran.
Univ. Med. Sci., 26 (2017) 265–281.
- A. Omri, M. Benzina, W. Trabelsi, N. Ammar, Adsorptive
removal of humic acid on activated carbon prepared from
almond shell: approach for the treatment of industrial phosphoric
acid solution, Desal. Water Treat., 52 (2014) 2241–2252.
- X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene
oxide-iron oxide and reduced graphene oxide-iron oxide
hybrid materials for the removal of organic and inorganic pollutants,
RSC. Adv., 2 (2012) 8821–8826.
- A. Naghizadeh, Regeneration of carbon nanotubes exhausted
with humic acid using electro-Fenton technology, Arab. J. Sci.
Eng., 41 (2016) 155–161.
- A. Naghizadeh, F. Ghasemi, E. Derakhshani, H. Shahabi, Thermodynamic,
kinetic and isotherm studies of sulfate removal
from aqueous solutions by graphene and graphite nanoparticles,
Desal. Water Treat., 80 (2017) 247–254.
- A. Naghizadeh, R. Nabizadeh, Removal of reactive blue 29 dye
by adsorption on modified chitosan in the presence of hydrogen
peroxide, Environ. Prot. Eng., 42 (2016).
- O. Moradi, K. Zare, Adsorption of Pb (II), Cd (II) and Cu (II)
ions in aqueous solution on SWCNTs and SWCNT–COOH
surfaces: kinetics studies, Fullerenes, Fuller. Nanotub. Carbon
Nanostruct., 19 (2011) 628–652.
- A. Naghizadeh, S. Nasseri, A. Rashidi, R.R. Kalantary, R. Nabizadeh,
A. Mahvi, Adsorption kinetics and thermodynamics
of hydrophobic natural organic matter (NOM) removal from
aqueous solution by multi-wall carbon nanotubes, Water Sci.
Technol.-Water Supply, 13 (2013) 273–285.
- A. Naghizadeh, Comparison between activated carbon and
multiwall carbon nanotubes in the removal of cadmium (II)
and chromium (VI) from water solutions, J. Water Supply Res.
Technol.-Aqua, 64 (2015) 64–73.
- L. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev
model, Colloid Surf. A-Physicochem. Eng., 173 (2000)
1–38.
- S.-g. Wang, W.-x. Gong, X.-w. Liu, B.-y. Gao, Q.-y. Yue, D.-h.
Zhang, Removal of Fulvic Acids from Aqueous Solutions
via Surfactant Modified Zeolite11 Supported by the National
High-tech and Development of Program of China (No.
2003AA601060), Chemical Research in Chinese Universities,
22 (2006) 566–570.
- A. Naghizadeh, F. Momeni, E. Derakhshani, Efficiency of
ultrasonic process in regeneration of graphene nanoparticles
saturated with humic acid, Desal. Water Treat., 70 (2017) 290–
293.
- S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics
study of lead adsorption on to activated carbons from
coconut and seed hull of the palm tree, Int. J. Environ. Sci.
Technol., 4 (2007) 11–17.
- E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber,
G. Morvan, Efficient anionic dye adsorption on natural
untreated clay: Kinetic study and thermodynamic parameters,
Desalination, 275 (2011) 74–81.
- Z. Zhu, H. Zeng, Y. Zhu, F. Yang, H. Zhu, H. Qin, W. Wei, Kinetics
and thermodynamic study of phosphate adsorption on the
porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with
eucalyptus wood microstructure, Sep. Purif. Technol., 117
(2013) 124–130.
- M. Yari, M. Norouzi, A.H. Mahvi, M. Rajabi, A. Yari, O. Moradi,
I. Tyagi, V.K. Gupta, Removal of Pb (II) ion from aqueous solution
by graphene oxide and functionalized graphene oxidethiol:
effect of cysteamine concentration on the bonding
constant, Desal. Water Treat., 57 (2016) 11195–11210.
- C. Dong, W. Chen, C. Liu, Preparation of novel magnetic chitosan
nanoparticle and its application for removal of humic
acid from aqueous solution, Appl. Surf. Sci., 292 (2014) 1067–
1076.
- W.W. Ngah, M. Hanafiah, S. Yong, Adsorption of humic acid
from aqueous solutions on crosslinked chitosan–epichlorohydrin
beads: kinetics and isotherm studies, Colloid Surf. B-Biointerfaces,
65 (2008) 18–24.