References

  1. J. Feng, B.-w. Zhu, T.-T. Lim, Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction, Chemosphere, 73 (2008) 1817–1823.
  2. S. Babel, P.A. Sekartaji, H. Sudrajat, TiO2 as an effective nanocatalyst for photocatalytic degradation of humic acid in water environment, J. Water Supply Res Technol.-Aqua, 66 (2017) 25–35.
  3. Y. Zhan, Z. Zhu, J. Lin, Y. Qiu, J. Zhao, Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite, J. Environ. Sci., 22 (2010) 1327–1334.
  4. A. Naghizadeh, H. Shahabi, F. Ghasemi, A. Zarei, Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions, J. Water Health, 14 (2016) 989–997.
  5. B.R. Eggins, F.L. Palmer, J.A. Byrne, Photocatalytic treatment of humic substances in drinking water, Water Res., 31 (1997) 1223–1226.
  6. C.R. Reiss, J.S. Taylor, C. Robert, Surface water treatment using nanofiltration—pilot testing results and design considerations, Desalination, 125 (1999) 97–112.
  7. Á. de la Rubia, M. Rodríguez, D. Prats, pH, Ionic strength and flow velocity effects on the NOM filtration with TiO2/ZrO2 membranes, Sep. Purif. Technol., 52 (2006) 325–331.
  8. E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes, J. Chem., 9 (2012) 2453–2461.
  9. M.H. Dehghani, S. Nazmara, A. Zahedi, M. Rezanasab, E. Nikfar, V. Oskoei, Efficiency rate of photocatalytic UV/ZnO in removing humic acid from aqueous solution, J. Mazandaran. Univ. Med. Sci., 24 (2015) 264–277.
  10. I. Sutzkover-Gutman, D. Hasson, R. Semiat, Humic substances fouling in ultrafiltration processes, Desalination, 261 (2010) 218–231.
  11. R. Lamsal, M.E. Walsh, G.A. Gagnon, Comparison of advanced oxidation processes for the removal of natural organic matter, Water Res., 45 (2011) 3263–3269.
  12. C. Lu, F. Su, Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol., 58 (2007) 113–121.
  13. V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari- Ghoshekandi, A. Makhlouf, M. Goodarzi, A. Garshasbi, Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review, Crit. Rev. Environ. Sci. Technol., 46 (2016) 93–118.
  14. C. Li, Y. Dong, D. Wu, L. Peng, H. Kong, Surfactant modified zeolite as adsorbent for removal of humic acid from water, Appl. Clay Sci., 52 (2011) 353–357.
  15. A.A.M. Daifullah, B.S. Girgis, H.M.H. Gad, A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material, Colloid Surf. A-Physicochem. Eng., 235 (2004) 1–10.
  16. T. Anirudhan, M. Ramachandran, Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters, Appl. Clay Sci., 35 (2007) 276–281.
  17. L. Wang, C. Han, M.N. Nadagouda, D.D. Dionysiou, An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid, J. Hazard. Mater., 313 (2016) 283–290.
  18. X. Zhang, R. Bai, Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules, J. Colloid Interface Sci., 264 (2003) 30–38.
  19. M. Anbia, S. Khoshbooei, Functionalized magnetic MCM-48 nanoporous silica by cyanuric chloride for removal of chlorophenol and bromophenol from aqueous media, J. Nanostructure. Chem., 5 (2015) 139–146.
  20. T. Moriguchi, K. Yano, M. Tahara, K. Yaguchi, Metal-modified silica adsorbents for removal of humic substances in water, J. Colloid. Interface Sci., 283 (2005) 300–310.
  21. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid. Interface Sci., 333 (2009) 114–119.
  22. K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A. Pal, Z.-j. Wang, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review, J. Nanostructure. Chem., 5 (2015) 227–236.
  23. H. Sadegh, G.A. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-Ghoshekandi, M.N. Nadagouda, M. Sillanpää, E. Megiel, The role of nanomaterials as effective adsorbents and their applications in wastewater treatment, J. Nanostructure. Chem., (2017) 1–14.
  24. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V. Gupta, Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase, Chem. Eng. J., 284 (2016) 687–697.
  25. E.M. Elnaggar, K.I. Kabel, A.A. Farag, A.G. Al-Gamal, Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes, J. Nanostructure. Chem., 7 (2017) 75–83.
  26. Y. Saghapour, M. Aghaie, K. Zare, Thermodynamic study of lead ion removal by adsorption onto nanographene sheets, J. Phys. Theor. Chem., 10 (2013) 59–67.
  27. K.S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H.L. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene, Science, 315 (2007) 1379–1379.
  28. J.P. Naik, P. Sutradhar, M. Saha, Molecular scale rapid synthesis of graphene quantum dots (GQDs), J. Nanostructure. Chem., 7 (2017) 85–89.
  29. J.-W. Jiang, B.-S. Wang, J.-S. Wang, H.S. Park, A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance, J. Phys. Condens. Matter., 27 (2015) 083001.
  30. I. Shown, A. Ganguly, Non-covalent functionalization of CVD grown graphene with Au nanoparticles for electrochemical sensing application, J. Nanostructure. Chem., 6 (2016) 281–288.
  31. C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., 21 (2011) 3324–3334.
  32. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small, 6 (2010) 711–723.
  33. Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, G. Jiang, Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction, Angew. Chem.-Int., 123 (2011) 6035–6039.
  34. A. Azari, M. Salari, M.H. Dehghani, M. Alimohammadi, H. Ghaffari, K. Sharafi, N. Shariatifar, M. Baziar, Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution, J. Mazandaran. Univ. Med. Sci., 26 (2017) 265–281.
  35. A. Omri, M. Benzina, W. Trabelsi, N. Ammar, Adsorptive removal of humic acid on activated carbon prepared from almond shell: approach for the treatment of industrial phosphoric acid solution, Desal. Water Treat., 52 (2014) 2241–2252.
  36. X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants, RSC. Adv., 2 (2012) 8821–8826.
  37. A. Naghizadeh, Regeneration of carbon nanotubes exhausted with humic acid using electro-Fenton technology, Arab. J. Sci. Eng., 41 (2016) 155–161.
  38. A. Naghizadeh, F. Ghasemi, E. Derakhshani, H. Shahabi, Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles, Desal. Water Treat., 80 (2017) 247–254.
  39. A. Naghizadeh, R. Nabizadeh, Removal of reactive blue 29 dye by adsorption on modified chitosan in the presence of hydrogen peroxide, Environ. Prot. Eng., 42 (2016).
  40. O. Moradi, K. Zare, Adsorption of Pb (II), Cd (II) and Cu (II) ions in aqueous solution on SWCNTs and SWCNT–COOH surfaces: kinetics studies, Fullerenes, Fuller. Nanotub. Carbon Nanostruct., 19 (2011) 628–652.
  41. A. Naghizadeh, S. Nasseri, A. Rashidi, R.R. Kalantary, R. Nabizadeh, A. Mahvi, Adsorption kinetics and thermodynamics of hydrophobic natural organic matter (NOM) removal from aqueous solution by multi-wall carbon nanotubes, Water Sci. Technol.-Water Supply, 13 (2013) 273–285.
  42. A. Naghizadeh, Comparison between activated carbon and multiwall carbon nanotubes in the removal of cadmium (II) and chromium (VI) from water solutions, J. Water Supply Res. Technol.-Aqua, 64 (2015) 64–73.
  43. L. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model, Colloid Surf. A-Physicochem. Eng., 173 (2000) 1–38.
  44. S.-g. Wang, W.-x. Gong, X.-w. Liu, B.-y. Gao, Q.-y. Yue, D.-h. Zhang, Removal of Fulvic Acids from Aqueous Solutions via Surfactant Modified Zeolite11 Supported by the National High-tech and Development of Program of China (No. 2003AA601060), Chemical Research in Chinese Universities, 22 (2006) 566–570.
  45. A. Naghizadeh, F. Momeni, E. Derakhshani, Efficiency of ultrasonic process in regeneration of graphene nanoparticles saturated with humic acid, Desal. Water Treat., 70 (2017) 290– 293.
  46. S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree, Int. J. Environ. Sci. Technol., 4 (2007) 11–17.
  47. E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber, G. Morvan, Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters, Desalination, 275 (2011) 74–81.
  48. Z. Zhu, H. Zeng, Y. Zhu, F. Yang, H. Zhu, H. Qin, W. Wei, Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure, Sep. Purif. Technol., 117 (2013) 124–130.
  49. M. Yari, M. Norouzi, A.H. Mahvi, M. Rajabi, A. Yari, O. Moradi, I. Tyagi, V.K. Gupta, Removal of Pb (II) ion from aqueous solution by graphene oxide and functionalized graphene oxidethiol: effect of cysteamine concentration on the bonding constant, Desal. Water Treat., 57 (2016) 11195–11210.
  50. C. Dong, W. Chen, C. Liu, Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution, Appl. Surf. Sci., 292 (2014) 1067– 1076.
  51. W.W. Ngah, M. Hanafiah, S. Yong, Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: kinetics and isotherm studies, Colloid Surf. B-Biointerfaces, 65 (2008) 18–24.