References

  1. A. Kathalingam, M.R. Kim, Y.S. Chae, J.K. Rhee, T. Mahalingam, Studies on electrochemically deposited ZnO thin films, J. Korean Phys. Soc., 55 (2009) 2476–2481.
  2. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide — from synthesis to application: a review, Materials, 7 (2014) 2833–2881.
  3. M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett., 68 (1996) 2439– 2440.
  4. M. Izaki, Takashi Omi, Electrolyte optimization for cathodic growth of zinc oxide films, J. Electrochem. Soc., 143 (1996) L53– L55.
  5. A. Raidou, M. Aggour, A. Qachaou, L. Lanab, M. Fahoume, Preparation and characterization of ZnO thin films deposited by SILAR method, MJ Condens. Matter, 12 (2010) 125– 130.
  6. S.G. Kumar, K.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (2015) 3306–3351.
  7. Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, A. Benamor, Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes, Desal. Water Treat., 57(17) (2016) 7801–7811.
  8. P. Murkute, H. Ghadi, S. Saha, S.K. Pandey, S. Chakrabarti, Enhancement in optical characteristics of c-axis-oriented radio frequency–sputtered ZnO thin films through growth ambient and annealing temperature optimization, Mat. Sci. Semicon. Proc., 66 (2017) 1–8.
  9. A. Zawadzka, P. Płóciennik, Y. El Kouari, H. Bougharraf, B. Sahraoui, Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition, J. Lumin., 169 (2016) 483–491.
  10. H. Belkhalfa, H. Ayed, A. Hafdallah, M.S. Aida, R.T. Ighil, Characterization and studying of ZnO thin films deposited by spray pyrolysis: effect of annealing temperature, Optik, 127(4) (2016) 2336–2340.
  11. S.A. Gawali, S.A. Mahadik, F. Pedraza, C.H. Bhosale, H.M. Pathan, S.R. Jadkar, Synthesis of zinc oxide nanorods from chemical bath deposition at different pH solutions and impact on their surface properties, J. Alloy. Compd., 704 (2017) 788– 794.
  12. M. Rashad, N.M. Shaalan, A.M. Abd-Elnaiem, Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique, Desal. Water Treat., 57 (2016) 26267–26273.
  13. D. Chu, S. Li, Growth and electrical properties of doped ZnO by electrochemical deposition, New J. Glass Ceram., 2 (2012) 13–16.
  14. S. Peulon D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions, J. Electrochem. Soc., 145 (1998) 864–874.
  15. T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wöhrle, Electrodeposition of inorganic/organic hybrid thin films, Adv. Funct. Mater., 19 (2009) 17–43.
  16. T. Pauporte, D. Lincot, Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride, Appl. Phys. Lett., 75 (1999) 3817–3819.
  17. P. Liu, W. Li, J. Zhang, Electrodeposition and photocatalytic selectivity of ZnO/methyl blue hybrid thin films, J. Phys. Chem. C, 113 (2009) 14279–14284.
  18. Q. Wang, G. Wang, J. Jie, X. Han, B. Xu, J.G. Hou, Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition, Thin Solid Films, 492 (2005) 61–65.
  19. S.E.R. Tay, A.E. Goode, J. Nelson Weker, A.A. Cruickshank, S. Heutz, A.E. Porter, M.P. Ryan, M.F. Toney, Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy, Nanoscale, 8 (2016) 1849–1853.
  20. H. Chettah, D. Abdi, Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties, Thin Solid Films, 537 (2013) 119–123.
  21. Q. Hou, L. Zhu, H. Chen, H. Liu, W. Li, Growth of flower-like porous ZnO nanosheets by electrodeposition with Zn5(OH)8(NO3)22H2O as precursor, Electrochim. Acta, 78 (2012) 55–64.
  22. J. Yang, Y. Wang, J. Kong, H. Jia, Z. Wang, Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism, Opt. Mater., 46 (2015) 179– 185.
  23. T. Tan, Y. Li, Y. Liu, B. Wang, X. Song, E. Li, H. Wang, H. Yan, Two-step preparation of Ag/tetrapod-like ZnO with photocatalytic activity by thermal evaporation and sputtering, Mater. Chem. Phys., 111 (2008) 305–308.
  24. I. El Saliby, L. Erdei, J.H. Kim, H.K. Shon, Adsorption and photocatalytic degradation of methylene blue over hydrogen–titanate nanofibres produced by a peroxide method, Water Res., 47 (2013) 4115–4125.
  25. M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, O. Jbara, A. Tara, B. Bakiz, Nanostructured ZnO, ZnO-CeO2, ZnO-Cu2O thin films electrodes prepared by electrodeposition for electrochemical degradation of dye, Int. J. Electrochem. Sci., 9 (2014) 4297–4314.
  26. U. Holzwarth, N. Gibson, The Scherrer equation versus the Debye-Scherrer equation, Nat. Nanotechnol., 6 (2011) 534–534.
  27. R.M. Mohamed, I.A. Mkhalid, E.S. Baeissa, M.A. Al-Rayyani, Photocatalytic degradation of Methylene Blue by Fe/ZnO/SiO2 nanoparticles under visible light, J. Nanotech., 2012 (2012) 1–5.
  28. S. Otani, J. Katayama, H. Umemoto, M. Matsuoka, Effect of bath temperature on the electrodeposition mechanism of zinc oxide film from zinc nitrate solution, J. Electrochem. Soc., 153(8) (2006) C551–C556.
  29. D. Chu, T. Hamada, K. Kato, Y. Masuda, Growth and electrical properties of ZnO films prepared by chemical bath deposition method, Phys. Status Solidi A, 206(4) (2009) 718–723.
  30. X. Li, S. Cheng, S. Deng, X. Wei, J. Zhu, Q. Chen, Direct observation of the layer-by-layer growth of ZnO nanopillar by in situ high resolution transmission electron microscopy, Sci. Rep., 7 (2017) 40911–40919.
  31. H. Yan, J. Hou, Z. Fu, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, S. Fu, F. Li, Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation, Mater. Res. Bull., 44 (2009) 1954–1958.
  32. X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal. B-Environ., 81 (2008) 267–273.