References

  1. J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  2. A.R. Contreras, A. García, E. González, E. Casals, V. Puntes, A. Sánchez, X. Font, S. Recillas, Potential use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of cadmium from water, Desal. Water Treat., 41 (2012) 296–300.
  3. M. Wu, T. Duan, Y. Chen, Q. Wen, Y. Wang, H. Xin, Surface modification of TiO2 nanotube arrays with metal copper particle for high efficient photocatalytic reduction of Cr(VI), Desal. Water Treat., 57 (2016) 10790–10801.
  4. Ş. Akkan, İ. Altın, M. Koç, M. Sökmen, TiO2 immobilized PCL for photocatalytic removal of hexavalent chromium from water, Desalin. Water Treat., 56 (2014) 2522–2531.
  5. S. Mahdavi, J. Mohsen, A. Abbas, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Commun., 200 (2013) 448–470.
  6. M. Inyang, B. Gao, Y. Yao, Y. Xue, A.R. Zimmerman, P. Pullammanappallil, X. Cao, Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass, Bioresour. Technol., 110 (2012) 50–56.
  7. A. Kaur, U. Gupt, A review on applications of nanoparticles for the preconcentration of environmental pollutants, J. Mater. Chem., 19 (2009) 8279–8289.
  8. Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon, 41 (2003) 2787–2792.
  9. D. Karabelli, C.¨Uz¨um, T. Shahwan, A.E. Eroglu, T.B. Scott, K.R. Hallam, I. Lieberwirth, Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake, Ind. Eng. Chem. Res., 47 (2008) 4758–4764.
  10. O.A. Dada, F.A. Adekola, E.O. Odebunmi, Kinetics and equilibrium models for sorption of Cu(II) onto a novel manganese nano-adsorbent, J. Dispersion Sci. Technol., (2015), http://dx. doi.org/10.1080/01932691.2015.1034361.
  11. Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface Sci., 347 (2010) 277–281.
  12. N.C. Feitoza, T.D. Goncalves, J.J. Mesquita, J.S. Menegucci, M.K.M.S. Santos, J.A. Chaker, R.B. Cunha, A.M.M. Medeiros, J.C. Rubim, M.H. Sousa, Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater, J. Hazard. Mater., 264 (2014) 153–160.
  13. L. Yang, Z. Wei, W. Zhong, J. Cui, W. Wei, Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution, Colloids Surf. A., 490 (2016) 9–21.
  14. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931– 3946.
  15. J. Wang, L. Wang, Y. Fan, Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement, Int. J. Mol. Sci., 17 (2016) 1–14.
  16. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. Res., 18 (2011) 386–395.
  17. H. Jean-Marie, Photocatalysis fundamentals revisited to avoid several misconceptions, Appl. Catal. B, 99 (2010) 461–468.
  18. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. C, 9 (2008) 1–12.
  19. J.L. Blin, M.J. Stébé, T. Roques-Carmes, Use of ordered mesoporous titania with semi-crystalline framework as photocatalyst, Colloids Surf. A, 407 (2012) 177–185.
  20. M. Kassir, T. Roques-Carmes, T. Hamieh, J. Toufaily, M. Akil, O. Barres, F. Villiéras, Improvement of the photocatalytic activity of TiO2 induced by organicpollutant enrichment at the surface of the organografted catalyst, Colloids Surf. A, 485 (2015) 73–83.
  21. P. Dutta, A. Ray, V. Sharma, J. Millero, Adsorption of arsenate and arsenite on titanium dioxide suspensions, J. Colloid Interface Sci., 278 (2004) 270–275.
  22. Z. Xu, X. Liu, Y. Ma, H. Gao, Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles, Environ. Sci. Pollut. Res., 17 (2010) 798–806.
  23. G.W. Stephen, H. Li, H. Jennifer, C. Da-Ren, K. In-Chul, J.T. Yinjie, Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces, J. Pet. Environ. Biotechnol., 3 (2012) 4.
  24. A. Servin, W. Elmer, A. Mukherjee, D.T.R. Roberto, H. Hamdi, J.C. White, P. Bindraban, C. Dimkpa, A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield, J. Nanopart. Res., 17 (2015) 92.
  25. J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghaemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  26. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Sci. Technol., 68 (2009) 312–319.
  27. S.H. Huang, D.H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent, J. Hazard. Mater., 163 (2009) 174–179.
  28. S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147 (2007) 792–799.
  29. Y.C. Chang, D.H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci., 283 (2005) 446–451.
  30. A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-β -cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard. Mater., 185 (2011) 1177–1186.
  31. S.S. Shenvi, A.M. Isloor, A.F. Ismail, S.J. Shilton, A.A. Ahmed, Humic acid basedbiopolymeric membrane for effective removal of methylene blue andrhodamine B, Ind. Eng. Chem. Res., 54 (2015) 4965–4975.
  32. D.X. Li, C.F. Li, A.H. Wang, Q. He, J.B. Li, Hierarchical gold/copolymernanostructures as hydrophobic nanotanks for drug encapsulation, J. Mater. Chem., 20 (2010) 7782–7787.
  33. J.J. Lu, Y. Li, X.M. Yan, B.Y. Shi, D.S. Wang, H.X. Tang, Sorption of atrazine onto humic acids (HAs) coated nanoparticles, Colloids Surf. A: Physicochem. Eng. Aspects, 347 (2009) 90–96.
  34. S. Khan, H. Şengül, Experimental investigation of stability and transport of TiO2 nanoparticles in real soil columns, Desal. Water Treat., 57 (2016) 26196–26203.
  35. W. Jiang, Q. Cai, W. Xu, M. Yang, Y. Cai, D.D. Dionysiou, K.E. O’shea, Cr(VI) adsorption and reduction by humic acid coated on magnetite, Environ. Sci. Technol., 48 (2014) 8078–8085.
  36. S. Yang, P. Zong, X. Ren, Q. Wang, X. Wang, Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 6891–6900.
  37. J. Lua, Y. Li, X. Yan, B. Shi, D. Wang, H. Tang, Sorption of atrazine onto humicacids (HAs) coated nanoparticles, Colloids Surf. A, 347 (2009) 90–96.
  38. K. Yang, B.S. Xing, Sorption of phenanthrene by humic acidcoated nanosized TiO2 and ZnO, Environ. Sci. Technol., 43 (2009) 1845–1851.
  39. Y. Sun, C. Chen, D. Shao, J. Li, X. Tan, G. Zhao, S. Yang, X. Wang, Enhanced adsorption of ionizable aromatic compounds on humic acid-coated carbonaceous adsorbents, RSC Adv., 2 (2012) 10359–10364.
  40. S. Mahdavi, A. Afkhami, H. Merrikhpour, Modified ZnO nanoparticles with new modifiers for the removal of heavy metals in water, Clean Technol. Environ. Policy, 17 (2015) 1645– 1661.
  41. L .Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, J. Alloys and Compd., 501 (2010) 77–84.
  42. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, Int. Nano. Lett., 3 (2016) 2.
  43. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, J. Hazard. Mater., 168 (2009) 253–261.
  44. K. Xiaohan, Y. Jun, Z. Ao, Z. Bing, C. Yunlin, Optical band gap transition from direct to indirect induced by organic content of CH3NH3PbI3 perovskite films, Appl. Phys. Lett., 107 (2015) 091904–4
  45. S. Khan., W. Yaoguo, Z. Xiaoyan, H. Sihai, L. Tao, F. Yilin, L. Qiuge, Influence of dissolved organic matter from corn straw on Zn and Cu sorption to Chinese loess, Toxicol. Environ. Chem., 95 (2013) 1318–1327.
  46. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven Vetenskapsakad. Handl., Band, 24 (1898) 1–39.
  47. G. McKay, Y.S. Ho, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  48. W. Wei, L. Yang, W. Zhong, J. Cui, Z. Wei, Poorly crystalline hydroxyapatite: a novel adsorbent for enhanced fulvic acid removal from aqueous solution, Appl. Surface Sci., 332 (2015) 328–339.
  49. W. Wei, L. Yang, W. Zhong, J. Cui, Z. Wei, Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles, Digest J. Nanomat. Biostruct., 10 (2015) 663–680.
  50. X.J. Feng, A.J. Simpson, M.J. Simpson, Investigating the role of mineral-bound humic acid in phenanthrene sorption, Environ. Sci. Technol., 40 (2006) 3260–3266.
  51. Y. Chen, M. Schnitzer, Scanning electron microscopy of a humic acid and of a fulvic acid and its metal and clay complexes, Soil Sci. Soc. Am. J., 40 (1976) 682–686.
  52. Q. Chen, D. Yin, S. Zhu, X. Hu, Adsorption of cadmium(II) on humic acid coated titanium dioxide, J. Colloid Interface Sci., 367 (2012) 241–248.
  53. L.D. Mafu, B.B. Mamba, T.A.M. Msagati, Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples, J. Saudi. Chem. Soc., 20 (2016) 594–605.
  54. X. Xie, L. Gao, Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations, Curr. Appl. Phys., 9 (2009) S185–S188.
  55. T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresour. Technol., 148 (2013) 574–585.
  56. T.K. Sen, M. Mohammod, S. Maitra, B.K. Dutta, Removal of cadmium from aqueous solution using castor seed hull: a kinetic and equilibrium study, Clean, 38 (2010) 850–858.
  57. C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater., 164 (2009) 923–928.
  58. A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran on Sn(IV)arsenosilicate in H+, Na+, and Ca2+ forms, Colloids Surf., 24 (1987) 33–42.
  59. C.L. Chen, X.K. Wang, Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes, Ind. Eng. Chem. Res., 45 (2006) 9144–9149.