References
- J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles
with humic acid for high efficient removal of heavy metals
in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
- A.R. Contreras, A. García, E. González, E. Casals, V. Puntes, A.
Sánchez, X. Font, S. Recillas, Potential use of CeO2, TiO2 and
Fe3O4 nanoparticles for the removal of cadmium from water,
Desal. Water Treat., 41 (2012) 296–300.
- M. Wu, T. Duan, Y. Chen, Q. Wen, Y. Wang, H. Xin, Surface
modification of TiO2 nanotube arrays with metal copper particle
for high efficient photocatalytic reduction of Cr(VI), Desal.
Water Treat., 57 (2016) 10790–10801.
- Ş. Akkan, İ. Altın, M. Koç, M. Sökmen, TiO2 immobilized PCL
for photocatalytic removal of hexavalent chromium from
water, Desalin. Water Treat., 56 (2014) 2522–2531.
- S. Mahdavi, J. Mohsen, A. Abbas, Heavy metals removal from
aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles,
Chem. Eng. Commun., 200 (2013) 448–470.
- M. Inyang, B. Gao, Y. Yao, Y. Xue, A.R. Zimmerman, P. Pullammanappallil,
X. Cao, Removal of heavy metals from aqueous
solution by biochars derived from anaerobically digested biomass,
Bioresour. Technol., 110 (2012) 50–56.
- A. Kaur, U. Gupt, A review on applications of nanoparticles
for the preconcentration of environmental pollutants, J. Mater.
Chem., 19 (2009) 8279–8289.
- Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu,
B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions
from aqueous solutions by multiwalled carbon nanotubes,
Carbon, 41 (2003) 2787–2792.
- D. Karabelli, C.¨Uz¨um, T. Shahwan, A.E. Eroglu, T.B. Scott,
K.R. Hallam, I. Lieberwirth, Batch removal of aqueous Cu2+
ions using nanoparticles of zero-valent iron: a study of the
capacity and mechanism of uptake, Ind. Eng. Chem. Res., 47
(2008) 4758–4764.
- O.A. Dada, F.A. Adekola, E.O. Odebunmi, Kinetics and equilibrium
models for sorption of Cu(II) onto a novel manganese
nano-adsorbent, J. Dispersion Sci. Technol., (2015), http://dx.
doi.org/10.1080/01932691.2015.1034361.
- Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II)
using goethite and hematite nano-photocatalysts, J. Colloid
Interface Sci., 347 (2010) 277–281.
- N.C. Feitoza, T.D. Goncalves, J.J. Mesquita, J.S. Menegucci,
M.K.M.S. Santos, J.A. Chaker, R.B. Cunha, A.M.M. Medeiros,
J.C. Rubim, M.H. Sousa, Fabrication of glycine-functionalized
maghemite nanoparticles for magnetic removal of copper
from wastewater, J. Hazard. Mater., 264 (2014) 153–160.
- L. Yang, Z. Wei, W. Zhong, J. Cui, W. Wei, Modifying hydroxyapatite
nanoparticles with humic acid for highly efficient
removal of Cu(II) from aqueous solution, Colloids Surf. A., 490
(2016) 9–21.
- X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in
water and wastewater treatment, Water Res., 47 (2013) 3931–
3946.
- J. Wang, L. Wang, Y. Fan, Adverse biological effect of TiO2 and
hydroxyapatite nanoparticles used in bone repair and replacement,
Int. J. Mol. Sci., 17 (2016) 1–14.
- K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni
to titanium dioxide nanoparticles: effect of particle size, solid
concentration, and exhaustion, Environ. Sci. Pollut. Res., 18
(2011) 386–395.
- H. Jean-Marie, Photocatalysis fundamentals revisited to avoid
several misconceptions, Appl. Catal. B, 99 (2010) 461–468.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation
of organic contaminants over titanium dioxide: A
review of fundamentals, progress and problems, J. Photochem.
Photobiol. C, 9 (2008) 1–12.
- J.L. Blin, M.J. Stébé, T. Roques-Carmes, Use of ordered mesoporous
titania with semi-crystalline framework as photocatalyst,
Colloids Surf. A, 407 (2012) 177–185.
- M. Kassir, T. Roques-Carmes, T. Hamieh, J. Toufaily, M. Akil,
O. Barres, F. Villiéras, Improvement of the photocatalytic
activity of TiO2 induced by organicpollutant enrichment at
the surface of the organografted catalyst, Colloids Surf. A,
485 (2015) 73–83.
- P. Dutta, A. Ray, V. Sharma, J. Millero, Adsorption of arsenate
and arsenite on titanium dioxide suspensions, J. Colloid Interface
Sci., 278 (2004) 270–275.
- Z. Xu, X. Liu, Y. Ma, H. Gao, Interaction of nano-TiO2 with lysozyme:
insights into the enzyme toxicity of nanosized particles,
Environ. Sci. Pollut. Res., 17 (2010) 798–806.
- G.W. Stephen, H. Li, H. Jennifer, C. Da-Ren, K. In-Chul, J.T.
Yinjie, Phytotoxicity of metal oxide nanoparticles is related
to both dissolved metals ions and adsorption of particles on
seed surfaces, J. Pet. Environ. Biotechnol., 3 (2012) 4.
- A. Servin, W. Elmer, A. Mukherjee, D.T.R. Roberto, H. Hamdi,
J.C. White, P. Bindraban, C. Dimkpa, A review of the use of
engineered nanomaterials to suppress plant disease and
enhance crop yield, J. Nanopart. Res., 17 (2015) 92.
- J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI)
from wastewater by maghaemite nanoparticles, Water Res., 39
(2005) 4528–4536.
- Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo,
Preparation and application of magnetic Fe3O4 nanoparticles
for wastewater purification, Sep. Sci. Technol., 68 (2009)
312–319.
- S.H. Huang, D.H. Chen, Rapid removal of heavy metal cations
and anions from aqueous solutions by an amino-functionalized
magnetic nano-adsorbent, J. Hazard. Mater., 163 (2009)
174–179.
- S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum
arabic modified magnetic nano-adsorbent, J. Hazard. Mater.,
147 (2007) 792–799.
- Y.C. Chang, D.H. Chen, Preparation and adsorption properties
of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles
for removal of Cu(II) ions, J. Colloid Interface Sci., 283
(2005) 446–451.
- A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S.
Uddin, Carboxymethyl-β -cyclodextrin conjugated magnetic
nanoparticles as nano-adsorbents for removal of copper ions:
synthesis and adsorption studies, J. Hazard. Mater., 185 (2011)
1177–1186.
- S.S. Shenvi, A.M. Isloor, A.F. Ismail, S.J. Shilton, A.A. Ahmed,
Humic acid basedbiopolymeric membrane for effective
removal of methylene blue andrhodamine B, Ind. Eng. Chem.
Res., 54 (2015) 4965–4975.
- D.X. Li, C.F. Li, A.H. Wang, Q. He, J.B. Li, Hierarchical gold/copolymernanostructures as hydrophobic nanotanks for drug
encapsulation, J. Mater. Chem., 20 (2010) 7782–7787.
- J.J. Lu, Y. Li, X.M. Yan, B.Y. Shi, D.S. Wang, H.X. Tang, Sorption
of atrazine onto humic acids (HAs) coated nanoparticles, Colloids
Surf. A: Physicochem. Eng. Aspects, 347 (2009) 90–96.
- S. Khan, H. Şengül, Experimental investigation of stability and
transport of TiO2 nanoparticles in real soil columns, Desal.
Water Treat., 57 (2016) 26196–26203.
- W. Jiang, Q. Cai, W. Xu, M. Yang, Y. Cai, D.D. Dionysiou, K.E.
O’shea, Cr(VI) adsorption and reduction by humic acid coated
on magnetite, Environ. Sci. Technol., 48 (2014) 8078–8085.
- S. Yang, P. Zong, X. Ren, Q. Wang, X. Wang, Rapid and highly
efficient preconcentration of Eu(III) by core–shell structured
Fe3O4@humic acid magnetic nanoparticles, ACS Appl. Mater.
Interfaces, 4 (2012) 6891–6900.
- J. Lua, Y. Li, X. Yan, B. Shi, D. Wang, H. Tang, Sorption of atrazine
onto humicacids (HAs) coated nanoparticles, Colloids
Surf. A, 347 (2009) 90–96.
- K. Yang, B.S. Xing, Sorption of phenanthrene by humic acidcoated
nanosized TiO2 and ZnO, Environ. Sci. Technol., 43
(2009) 1845–1851.
- Y. Sun, C. Chen, D. Shao, J. Li, X. Tan, G. Zhao, S. Yang, X.
Wang, Enhanced adsorption of ionizable aromatic compounds
on humic acid-coated carbonaceous adsorbents, RSC Adv., 2
(2012) 10359–10364.
- S. Mahdavi, A. Afkhami, H. Merrikhpour, Modified ZnO
nanoparticles with new modifiers for the removal of heavy
metals in water, Clean Technol. Environ. Policy, 17 (2015) 1645–
1661.
- L .Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski,
J. Judek, Multiwall carbon nanotubes purification and
oxidation by nitric acid studied by the FTIR and electron spectroscopy
methods, J. Alloys and Compd., 501 (2010) 77–84.
- N. Ghobadi, Band gap determination using absorption spectrum
fitting procedure, Int. Nano. Lett., 3 (2016) 2.
- J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible
light absorption ability and photocatalytic oxidation activity
of various interstitial N-doped TiO2 prepared from different
nitrogen dopants, J. Hazard. Mater., 168 (2009) 253–261.
- K. Xiaohan, Y. Jun, Z. Ao, Z. Bing, C. Yunlin, Optical band gap
transition from direct to indirect induced by organic content
of CH3NH3PbI3 perovskite films, Appl. Phys. Lett., 107 (2015)
091904–4
- S. Khan., W. Yaoguo, Z. Xiaoyan, H. Sihai, L. Tao, F. Yilin, L.
Qiuge, Influence of dissolved organic matter from corn straw
on Zn and Cu sorption to Chinese loess, Toxicol. Environ.
Chem., 95 (2013) 1318–1327.
- S. Lagergren, Zur theorie der sogenannten adsorption gelöster
stoffe, K. Sven Vetenskapsakad. Handl., Band, 24 (1898) 1–39.
- G. McKay, Y.S. Ho, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W. Wei, L. Yang, W. Zhong, J. Cui, Z. Wei, Poorly crystalline
hydroxyapatite: a novel adsorbent for enhanced fulvic acid
removal from aqueous solution, Appl. Surface Sci., 332 (2015)
328–339.
- W. Wei, L. Yang, W. Zhong, J. Cui, Z. Wei, Mechanism of
enhanced humic acid removal from aqueous solution using
poorly crystalline hydroxyapatite nanoparticles, Digest J.
Nanomat. Biostruct., 10 (2015) 663–680.
- X.J. Feng, A.J. Simpson, M.J. Simpson, Investigating the role of
mineral-bound humic acid in phenanthrene sorption, Environ.
Sci. Technol., 40 (2006) 3260–3266.
- Y. Chen, M. Schnitzer, Scanning electron microscopy of a
humic acid and of a fulvic acid and its metal and clay complexes,
Soil Sci. Soc. Am. J., 40 (1976) 682–686.
- Q. Chen, D. Yin, S. Zhu, X. Hu, Adsorption of cadmium(II) on
humic acid coated titanium dioxide, J. Colloid Interface Sci.,
367 (2012) 241–248.
- L.D. Mafu, B.B. Mamba, T.A.M. Msagati, Synthesis and characterization
of ion imprinted polymeric adsorbents for the
selective recognition and removal of arsenic and selenium in
wastewater samples, J. Saudi. Chem. Soc., 20 (2016) 594–605.
- X. Xie, L. Gao, Effect of crystal structure on adsorption behaviors
of nanosized TiO2 for heavy-metal cations, Curr. Appl.
Phys., 9 (2009) S185–S188.
- T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y.
Yue, Q. Li, T.V. Nguyen, Applicability of agricultural waste
and by-products for adsorptive removal of heavy metals from
wastewater, Bioresour. Technol., 148 (2013) 574–585.
- T.K. Sen, M. Mohammod, S. Maitra, B.K. Dutta, Removal of
cadmium from aqueous solution using castor seed hull: a
kinetic and equilibrium study, Clean, 38 (2010) 850–858.
- C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior
of multiwall carbon nanotube/iron oxide magnetic composites
for Ni(II) and Sr(II), J. Hazard. Mater., 164 (2009) 923–928.
- A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran
on Sn(IV)arsenosilicate in H+, Na+, and Ca2+ forms, Colloids
Surf., 24 (1987) 33–42.
- C.L. Chen, X.K. Wang, Adsorption of Ni (II) from aqueous
solution using oxidized multiwall carbon nanotubes, Ind. Eng.
Chem. Res., 45 (2006) 9144–9149.