References
- M. Liu, H. Yang, H. Liu, Y. Wu, Development of high-performance
liquid chromatography and non-aqueous capillary
electrophoresis methods for the determination of fenoxycarb
residues in wheat samples, J. Sci. Food Agric., 67 (2008)
62–67.
- M. Angelo, The Law and Ecology of Pesticides and Pest Management,
Routledge, Taylor & Francis, 2013.
- S. Oda, N. Tatarazako, H. Watanabe, M Morita, T. Iguchi, Production
of male neonates in four cladoceran species exposed
to a juvenile hormone analog, fenoxycarb, Chemosphere, 60
(2005) 74–78.
- W. Palmer, P. Bromley, R. Brandenburg, Wildlife and Pesticides -
Peanuts. North Carolina State University, 2015.
- P. Payá, J. Mulero, J. Oliva, M.A. Cámara, A. Barba, Influence
of the matrix in bioavailability of flufenoxuron, lufenuron,
pyriproxyfen and fenoxycarb residues in grapes and wine,
Food Chem. Toxicol., 60 (2013) 419–423.
- Environmental Protection Agency, Pesticides and Public
Health, 2015.
- M. Al Hattab, A. Ghaly, Disposal and treatment methods for
pesticide containing wastewaters: critical review and comparative
analysis, J. Environ. Protect., 3 (2012) 431–453.
- S. Kanan, F. Samara, I. Abu-Yousef, N. Abdo, Silver nanoclusters
doped in zeolite to decontaminate water resources from
the quinalphos pesticide, Res. Chem. Int., 36 (2010) 473–482.
- C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single
and coupled electrochemical processes and reactors for the
abatement of organic water pollutants: a critical review, Chem.
Rev., 115 (2015) 13362−13407.
- Z. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content
of an industrial wastewater via a heterogeneous photodegradation
process using supported FeO onto nanoparticles
of Iranian clinoptilolite, Desal. Water Treat., 57 (2016) 16483–16494.
- A. Nezamzadeh-Ejhieh, Z. Banan, Photodegradation of
dimethyldisulfide by heterogeneous catalysis using nano CdS
and nano CdO embedded on the zeolite A synthesized from
waste porcelain, Desal. Water Treat., 52 (2014) 3328–3337.
- H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic
activity of NiO and ZnO in photodegradation of a model
drug aqueous solution: Effect of coupling, supporting, particles
size and calcination temperature, J. Hazard. Mater., 321
(2017) 629–638.
- M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive
study on photocatalytic activity of supported Ni/Pb
sulfide and oxide systems onto natural zeolite nanoparticles, J.
Hazard. Mater., 318 (2016) 291–301.
- J. Hupka, A. Zaleska, M. Janczarek, E. Kowalska, P. Górska, R.
Aranowski, Uv/vis light-enhanced photocatalysis for water
treatment and protection. NATO Science Series Soil and Water
Pollution Monitoring, Protection and Remediation, 2006, pp.
351–367.
- S.M. Kanan, M.C. Kanan, H. Patterson, Photoluminescence
spectroscopy as a probe of silver doped zeolites as photocatalysts,
Curr. Opin. Solid State Mater. Sci., 7 (2003) 443–449.
- S. Kanan, I. Abu-Yousef, N. Abdo, The Photodecomposition of
phosmet over UV irradiated silver nanoclusters doped in mordenite
zeolite, Appl. Catal. B: Environ., 74 (2007) 130–136.
- S. Kanan, S. Nusri, The effect of silver and silver-platinum
doped into 5A zeolite on the degradation of naptalam, Adv.
Mater. Res., 856 (2014) 43–47.
- J. Ahern, S. Kanan, Z. Sara, T. Job, R. Alnaizy, N. Abu Farha, H.
Patterson, Photocatalysis of fenoxycarb over silver-modified
zeolites, Environ. Sci. Pollut. Res., 22 (2014) 3186–3192.
- J. Ahern, S. Kanan, H. Patterson, Heterogeneous photocatalysis
with nanoclusters of D10 metal ions doped in zeolites,
Comm. Inorg. Chem., 35 (2015) 59–81.
- A.J. Hernandez-Maldonado, R.T. Yang, Desulfurization of liquid
fuels by adsorption via π complexation with Cu (I) -Y and
Ag-Y zeolites, Indust. Eng. Chem. Res., 42 (2003) 123–129.
- A. Luengnaruemitchai, P. Naknam, S. Wongkasemjit, Investigation
of double-stage preferential CO oxidation reactor over
bimetallic Au-Pt supported on A-zeolite catalyst, Indust. Eng.
Chem. Res., 21 (2008) 8160–8165.
- B. Valle, A.G. Gayubo, A. Alonso, A. Aguayo, J. Bilbao, Hydrothermally
stable HZSM-5 zeolite catalysts for the transformation
of crude bio-oil into hydrocarbons, Appl. Catal. B:
Environ., 100 (2010) 318–327.
- J.M. Escola, J. Aguado, D.P. Serrano, A. Garcia, A. Peral, L. Briones,
R. Calvo, E. Fernandez, Catalytic hydroreforming of the
polyethylenethermal cracking oil over Ni supported hierarchical
zeolites and mesostructured aluminosilicates, Appl. Catal.
B: Environ., 106 (2011) 405–415.
- S.M. Kanan, Study of argenate, dicyanoargenate, and dicyanoaurate
clusters doped in zeolites and the photoassisted degradation
of NOx, malathion, carbofuran, and carbaryl, Ph.D.
Dissertation, University of Maine (2000).
- F. Samara, E. Jermani, S. Kanan, Photocatalytic UV-degradation
of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the
presence of silver doped zeolite, Arab. J. Chem. (2015), http://
dx.doi.org/10.1016/j.arabjc.2014.12.009.
- F. Samara, M. Al Shamsi, F. Kannan, S. Kanan, Photocatalytic
UV degradation of 2,3,7,8-tetrachlorodibenzofuran in the presence
of silver zeolite: Res. Chem. Intermed. (2016). doi: 10.1007/
s11164-017-2913-8.
- M.C. Kanan, A study of the Photodegradation of carbaryl: The
influence of natural organic matter and the use of silver zeolite
Y as a catalyst, M.S. Thesis, University of Maine (2001).
- S.M. Kanan, C.P. Tripp, R.N. Austin, H. Patterson, Photoluminescence
and Raman spectroscopy as probes to investigate silver
and gold dicyanide clusters doped in A-zeolite and their
photoassisted degradation of carbaryl, J. Phys. Chem. B, 105
(2001) 9441–9448.
- M.C. Kanan, S.M. Kanan SM, R.N. Austin, H. Patterson, Photo
decomposition of carbaryl in the presence of silver-doped zeolite
Y and Suwannee River natural organic matter, Environ.
Sci. Technol., 37 (2003) 2280–2285.
- S.M. Kanan, M.C. Kanan, H. Patterson, Photophysical properties
of Ag(I)-exchanged zeolite A and the photoassisted degradation
of malathion, J. Phys. Chem. B, 105 (2001) 7508–7516.
- S.M. Kanan, N. Abdo, M. Khalil, X. Li, I. Abu-Yousef, F. Barilrobert,
H. Patterson, A study of the effect of microwave treatment
on metal zeolites and their use as photocatalysts toward
naptalam, Appl. Catal. B: Environ., 106 (2011) 350–358.
- S.M. Kanan, M.C. Kanan, H. Patterson, Silver nanoclusters
doped in X and mordenite zeolites as heterogeneous catalysts
for the decomposition of carbamate pesticides in solution, Res.
Chem. Interm., 32 (2006) 871–885.
- S.M. Kanan M.A. Omary, M. Matsuoka H. Patterson, M. Anpo,
Characterization of the excited states responsible for the action
of silver (I)-doped ZSM-5 zeolites as photocatalysts for nitric
oxide decomposition, J. Phys. Chem. B, 104 (2000) 3507–3517.
- R.S. Gomez, X. Li, R.L. Yson, H. Patterson, Zeolite-supported
silver and silver–iron nanoclusters and their activities as photodecomposition
catalysts, Res. Chem. Interm., 37 (2011) 729–
745.
- J. Kaduk, J. Faber, Crystal structure of zeolite Y as a function of
ion exchange, The Rigaku J., 12 (1995) 14–34.
- J. Sullivan, Chemistry and environmental fate of fenoxycarb,
Rev. Environ. Contam. Toxicol., 202 (2000) 155–184.
- S. Oda, T. Norihisa W. Hajime, M. Morita, T. Iguchi, Production
of male neonates in four cladoceran species exposed to a Juvenile
hormone analogs, Chemosphere, 61 (2005) 1168–1174.
- M.C. Kanan, S. Kanan, H. Patterson, Luminescence properties
of silver(I)-exchanged zeolite Y and its use as a catalyst to photodecompose
carbaryl in the presence of natural organic matter,
Res. Chem. Interm., 29 (2003) 691–704.