References

  1. M. Liu, H. Yang, H. Liu, Y. Wu, Development of high-performance liquid chromatography and non-aqueous capillary electrophoresis methods for the determination of fenoxycarb residues in wheat samples, J. Sci. Food Agric., 67 (2008) 62–67.
  2. M. Angelo, The Law and Ecology of Pesticides and Pest Management, Routledge, Taylor & Francis, 2013.
  3. S. Oda, N. Tatarazako, H. Watanabe, M Morita, T. Iguchi, Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb, Chemosphere, 60 (2005) 74–78.
  4. W. Palmer, P. Bromley, R. Brandenburg, Wildlife and Pesticides - Peanuts. North Carolina State University, 2015.
  5. P. Payá, J. Mulero, J. Oliva, M.A. Cámara, A. Barba, Influence of the matrix in bioavailability of flufenoxuron, lufenuron, pyriproxyfen and fenoxycarb residues in grapes and wine, Food Chem. Toxicol., 60 (2013) 419–423.
  6. Environmental Protection Agency, Pesticides and Public Health, 2015.
  7. M. Al Hattab, A. Ghaly, Disposal and treatment methods for pesticide containing wastewaters: critical review and comparative analysis, J. Environ. Protect., 3 (2012) 431–453.
  8. S. Kanan, F. Samara, I. Abu-Yousef, N. Abdo, Silver nanoclusters doped in zeolite to decontaminate water resources from the quinalphos pesticide, Res. Chem. Int., 36 (2010) 473–482.
  9. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review, Chem. Rev., 115 (2015) 13362−13407.
  10. Z. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Water Treat., 57 (2016) 16483–16494.
  11. A. Nezamzadeh-Ejhieh, Z. Banan, Photodegradation of dimethyldisulfide by heterogeneous catalysis using nano CdS and nano CdO embedded on the zeolite A synthesized from waste porcelain, Desal. Water Treat., 52 (2014) 3328–3337.
  12. H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater., 321 (2017) 629–638.
  13. M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles, J. Hazard. Mater., 318 (2016) 291–301.
  14. J. Hupka, A. Zaleska, M. Janczarek, E. Kowalska, P. Górska, R. Aranowski, Uv/vis light-enhanced photocatalysis for water treatment and protection. NATO Science Series Soil and Water Pollution Monitoring, Protection and Remediation, 2006, pp. 351–367.
  15. S.M. Kanan, M.C. Kanan, H. Patterson, Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts, Curr. Opin. Solid State Mater. Sci., 7 (2003) 443–449.
  16. S. Kanan, I. Abu-Yousef, N. Abdo, The Photodecomposition of phosmet over UV irradiated silver nanoclusters doped in mordenite zeolite, Appl. Catal. B: Environ., 74 (2007) 130–136.
  17. S. Kanan, S. Nusri, The effect of silver and silver-platinum doped into 5A zeolite on the degradation of naptalam, Adv. Mater. Res., 856 (2014) 43–47.
  18. J. Ahern, S. Kanan, Z. Sara, T. Job, R. Alnaizy, N. Abu Farha, H. Patterson, Photocatalysis of fenoxycarb over silver-modified zeolites, Environ. Sci. Pollut. Res., 22 (2014) 3186–3192.
  19. J. Ahern, S. Kanan, H. Patterson, Heterogeneous photocatalysis with nanoclusters of D10 metal ions doped in zeolites, Comm. Inorg. Chem., 35 (2015) 59–81.
  20. A.J. Hernandez-Maldonado, R.T. Yang, Desulfurization of liquid fuels by adsorption via π complexation with Cu (I) -Y and Ag-Y zeolites, Indust. Eng. Chem. Res., 42 (2003) 123–129.
  21. A. Luengnaruemitchai, P. Naknam, S. Wongkasemjit, Investigation of double-stage preferential CO oxidation reactor over bimetallic Au-Pt supported on A-zeolite catalyst, Indust. Eng. Chem. Res., 21 (2008) 8160–8165.
  22. B. Valle, A.G. Gayubo, A. Alonso, A. Aguayo, J. Bilbao, Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons, Appl. Catal. B: Environ., 100 (2010) 318–327.
  23. J.M. Escola, J. Aguado, D.P. Serrano, A. Garcia, A. Peral, L. Briones, R. Calvo, E. Fernandez, Catalytic hydroreforming of the polyethylenethermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates, Appl. Catal. B: Environ., 106 (2011) 405–415.
  24. S.M. Kanan, Study of argenate, dicyanoargenate, and dicyanoaurate clusters doped in zeolites and the photoassisted degradation of NOx, malathion, carbofuran, and carbaryl, Ph.D. Dissertation, University of Maine (2000).
  25. F. Samara, E. Jermani, S. Kanan, Photocatalytic UV-degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the presence of silver doped zeolite, Arab. J. Chem. (2015), http:// dx.doi.org/10.1016/j.arabjc.2014.12.009.
  26. F. Samara, M. Al Shamsi, F. Kannan, S. Kanan, Photocatalytic UV degradation of 2,3,7,8-tetrachlorodibenzofuran in the presence of silver zeolite: Res. Chem. Intermed. (2016). doi: 10.1007/ s11164-017-2913-8.
  27. M.C. Kanan, A study of the Photodegradation of carbaryl: The influence of natural organic matter and the use of silver zeolite Y as a catalyst, M.S. Thesis, University of Maine (2001).
  28. S.M. Kanan, C.P. Tripp, R.N. Austin, H. Patterson, Photoluminescence and Raman spectroscopy as probes to investigate silver and gold dicyanide clusters doped in A-zeolite and their photoassisted degradation of carbaryl, J. Phys. Chem. B, 105 (2001) 9441–9448.
  29. M.C. Kanan, S.M. Kanan SM, R.N. Austin, H. Patterson, Photo decomposition of carbaryl in the presence of silver-doped zeolite Y and Suwannee River natural organic matter, Environ. Sci. Technol., 37 (2003) 2280–2285.
  30. S.M. Kanan, M.C. Kanan, H. Patterson, Photophysical properties of Ag(I)-exchanged zeolite A and the photoassisted degradation of malathion, J. Phys. Chem. B, 105 (2001) 7508–7516.
  31. S.M. Kanan, N. Abdo, M. Khalil, X. Li, I. Abu-Yousef, F. Barilrobert, H. Patterson, A study of the effect of microwave treatment on metal zeolites and their use as photocatalysts toward naptalam, Appl. Catal. B: Environ., 106 (2011) 350–358.
  32. S.M. Kanan, M.C. Kanan, H. Patterson, Silver nanoclusters doped in X and mordenite zeolites as heterogeneous catalysts for the decomposition of carbamate pesticides in solution, Res. Chem. Interm., 32 (2006) 871–885.
  33. S.M. Kanan M.A. Omary, M. Matsuoka H. Patterson, M. Anpo, Characterization of the excited states responsible for the action of silver (I)-doped ZSM-5 zeolites as photocatalysts for nitric oxide decomposition, J. Phys. Chem. B, 104 (2000) 3507–3517.
  34. R.S. Gomez, X. Li, R.L. Yson, H. Patterson, Zeolite-supported silver and silver–iron nanoclusters and their activities as photodecomposition catalysts, Res. Chem. Interm., 37 (2011) 729– 745.
  35. J. Kaduk, J. Faber, Crystal structure of zeolite Y as a function of ion exchange, The Rigaku J., 12 (1995) 14–34.
  36. J. Sullivan, Chemistry and environmental fate of fenoxycarb, Rev. Environ. Contam. Toxicol., 202 (2000) 155–184.
  37. S. Oda, T. Norihisa W. Hajime, M. Morita, T. Iguchi, Production of male neonates in four cladoceran species exposed to a Juvenile hormone analogs, Chemosphere, 61 (2005) 1168–1174.
  38. M.C. Kanan, S. Kanan, H. Patterson, Luminescence properties of silver(I)-exchanged zeolite Y and its use as a catalyst to photodecompose carbaryl in the presence of natural organic matter, Res. Chem. Interm., 29 (2003) 691–704.