References

  1. T. Rengarajan, P. Rajendran, N. Nandakumar, B. Lokeshkumar, P. Rajendran, I. Nishigaki, Exposure to polycyclic aromatic hydrocarbons with special focus on cancer, Asian Pac. J. Trop. Biomed., 5(3) (2015) 182–189.
  2. J. Arey, R. Atkinson, Photochemical reactions of PAH in the atmosphere, PAHs: An Ecotoxicological Perspective, P.E.T. Douben, ed., John Wiley and Sons Ltd, New York, 2003.
  3. G.D. Sun, Y. Xu, J.H. Jin, Z.P. Zhong, Y. Liu, M. Luo, Z.P. Liu, Pilotscale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain, J. Hazard. Mater., 233 (2012) 72–78.
  4. I.N. Nasr, M.H. Arief, A.H. Abdel-Aleem, F.M. Malhat, Polycyclic aromatic hydrocarbons (PAHs) in aquatic environment at El Menofiya Governorate, Egypt, J. Appl. Sci. Res., 6(1) (2010) 13–21.
  5. US EPA (Environmental Protection Agency), Polycyclic aromatic hydrocarbons (PAHs) — EPA fact sheet. National Center for Environmental Assessment, Office of Research and Development, Washington, DC, 2008. Available from: http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/pahs.pdf
  6. ATSDR (Agency for Toxic Substances and Disease Registry), Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry, Atlanta, GA, 2014. Available from: http://www.atsdr.cdc.gov/toxfaqs/TF.asp?id=121&tid=25.
  7. A. Nikolaou, M. Kostopoulou, G. Lofrano, S. Meric, Determination of PAHs in marine sediments: analytical methods and environmental concerns, Global NEST. J., 11(4) (2009) 391–405.
  8. IARC (International Agency for Research of Cancer), Overall Evaluations of Carcinogenicity: an Updating of IARC Monographs (2004). Available from: http://monographs.iarc.fr/ENG/Monographs/suppl7/Suppl7-5.pdf.
  9. V.J. Melendez-Colon, A. Luch, A. Seidel, W.M. Baird, Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites, Carcinogenesis, 20 (1999) 1885–1891.
  10. J. van Grevenynghe, M. Bernard, S. Langouet, C. Le Berre, T. Fest, O. Fardel, Human CD34-positive hematopoietic stem cells constitute targets for carcinogenic polycyclic aromatic hydrocarbons, J. Pharmacol. Exp. Ther., 314 (2005) 693–702.
  11. Z. Shi, L. Tian, Y. Zhang, Molecular biology approaches for understanding microbial polycyclic aromatic hydrocarbons (PAHs) degradation. Acta Ecol. Sin., 30 (2010) 292–295.
  12. S.D. Thomas, Q.X. Li, Immunoaffinity chromatography for analysis of polycyclic aromatic hydrocarbons in corals, Environ. Sci. Technol., 34 (2000) 2649–2654.
  13. F. Topuza, T. Uyara, Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water, J. Hazard. Mater., 335 (2007) 108–116.
  14. L. Luo, P. Wang, L. Lina, T. Luana, L. Ke, N. Fung Yee Tam, Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae, Process Biochem., 49 (2014) 1723–1732.
  15. H. Yuxiong, A.N. Fulton, A.A. Keller, Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents, Sci. Total Environ., 571 (2016) 1029–1036.
  16. A. Sarafraz-Yazdi, T. Rokhian, A. Amiri, F. Ghaemi, Carbon nanofibers decorated with magnetic nanoparticles as a new sorbent for the magnetic solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples, New J. Chem., 39 (2015) 5621–5627.
  17. C.O. Ania, B. Cabal, J.B. Parra, J.J. Pis, Importance of the hydrophobic character of activated carbons on the removal of naphthalene from the aqueous phase, Adsorpt. Sci. Technol., 25 (2007) 155–168.
  18. B. Cabal, C.O. Ania , J.B. Parra, J.J. Pis, Kinetics of naphthalene adsorption on an activated carbon: Comparison between aqueous and organic media, Chemosphere, 76 (2009) 433–438.
  19. C. Valderrama, J.L. Cortina, A. Farran, X. Gamisans, C. Lao, Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200), J. Colloid Interface Sci., 310 (2007) 35–46.
  20. C. Valderrama, X. Gamisans, A. de las Heras, A. Farran, J.L. Cortina, Kinetics of polycyclic aromatic hydrocarbons removal using hyper-cross-linked polymeric sorbetes Macronet Hypersol MN200, React. Funct. Polym., 67 (2007) 1515–1529.
  21. R.W. Walters, R.G. Luthy, Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon, Environ. Sci. Technol., 18 (1984) 395– 403.
  22. M. Seredych, A. Gierak, Influence of water on adsorption of organic compounds from its aqueous solutions on surface of synthetic active carbons, Colloids Surf. A., 245 (2004) 61–67.
  23. R. Moradi-Rad, L. Omidi, H. Kakooei, F. Golbabaei, H. Hassani, R. Abedin Loo, K. Azam, Adsorption of polycyclic aromatic hydrocarbons on activated carbons: kinetic and isotherm curve modeling, Int. J. Occup. Hyg., 6 (2014) 43–49.
  24. C. Zhang, X. Zhang, Z. Huang, D. Huang, Q. Cheng, Adsorption and desorption of polycyclic aromatic hydrocarbons on activated carbon, J. Environ. Anal. Toxicol, 2(1) (2012) 2161–0525.
  25. Y. El-Sayed, K.F. Loughlin, S. ur Rehman, D. Abouelnasr, I. Al-Zubaidy, Development of semi-static steam process for the production of sludge-based adsorbents, Adsorpt. Sci. Technol., 32(4) (2014) 291–304.
  26. Y. Elsayed, M. Khamis, F. Samara, M. Alqaydi, Z. Sara, I. Al Zubaidi, Md. M. Mortula, Novel method for water purification using activated adsorbents developed from sewage sludge, Desal. Water Treat., 57 (2016) 15649–15659.
  27. J.P. Olivier, Modeling physical adsorption on porous and nonporous solids using density functional theory, J. Por. Mater., 2 (1995) 9–17.
  28. Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
  29. B. Saha, C. Orvig, Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, Coord. Chem. Rev., 254(23–24) (2010) 2959–2972.
  30. A.S. Gulistan, Oil removal from produced water using natural materials, MSc Chemical Engineering, Department of Chemical Engineering, American University of Sharjah, Sharjah UAE, 2014.
  31. M. Al-Jabari, Kinetics models for the adsorption on mineral particels comparison bewteen Langmuir kinetics and mass transfer, Environ. Technol. Innov., 6 (2016) 27–37.
  32. Calgon Carbon, Activated Carbon, (2017). Available from: http://www.calgoncarbon.com/powdered-activated-carbon/.
  33. V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Activated carbons from sewage sludge, Desalination, 277(1) (2011) 377–382.
  34. Y. Li, W. Li, Q. Yue, B. Gao, X. Wang, Y. Qi, Y. Zhao, Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment, Desalination, 278(1) (2011) 179–185.
  35. D. Jung, Y. Chun, Characteristics on carbonization and steam activation of sewage sludge, Open Process Chem. J., 2 (2009) 12–19.
  36. M. Seredych, T.J. Bandosz, Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: The role of surface chemistry, J. Colloid Interface Sci., 302(2) (2006) 379– 388.
  37. A. Méndez, G. Gascó, M.M.A. Freitas, G. Siebielec, T. Stuczynski, J.L. Figueiredo, Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges, Chem. Eng. J., 108 (2005) 169–177.
  38. X. Chen, S. Jeyaseelan, N. Graham, Physical and chemical properties study of the activated carbon made from sewage sludge, Waste Manage., 22(7) (2002) 755–760.
  39. M.J. Martin, A. Artola, M.D. Balaguer, M. Rigola, Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions, Chem. Eng. J., 94(3) (2003) 231–239.
  40. F. Rozada, L.F. Calvo, A.I. García , J. Martín-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol., 87(3) (2003) 221–230.
  41. Y. Wang, X. Wang, X. Wang, X. Liang, M. Liu, D. Yin, Y. Zhang, Adsorption of copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation, Desalination, 278 (2011) 231–237.
  42. A. Linares-Solano, I. Martín-Gullon, C. Salinas-Martínez de Lecea, B. Serrano-Talavera, Activated carbons from bituminous coal: Effect of mineral matter content, Fuel, 79(6) (2000) 635–643.
  43. S. Rio, C. Faur-Brasquet, L.L. Coq, P. Courcoux, P.L. Cloirec, Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation – application to air and water treatments, Chemosphere, 58(4) (2005) 423–437.
  44. Z. Gong, K. Alef, B.M. Wilke, P. Li, Activated carbon adsorption of PAHs from vegetable oil used in soil remediation, J. Hazard. Mater., 143(1–2) (2007) 372–378.
  45. Z.C. Zeledon-Toruno, C. Lao-Luque, F.X.C. de las Heras, M. Sole-Sardans, Removal of PAHs from water using an immature coal (leonardite), Chemosphere, 67(3) (2007) 505–512.