References

  1. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  2. E. Neyens, J.A. Baeyens, Review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., B98 (2003) 33–50.
  3. K. Ikehata, N.J. Naghashkar, M.C. El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone Sci. Eng., 28 (2006) 353–414.
  4. A.A. Burbano, D.D. Dionysiou, M.T. Suidan, Effect of oxidant- to-substrate ratios on the degradation of MTBE with Fenton reagent, Wat. Res., 42 (2008) 3225–3239.
  5. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Wat. Poll., (2015) 167–176.
  6. M.I. Stefan, J. Mack, J.R. Bolton, Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O2 process, Environ. Sci. Technol., 34 (2000) 650–658.
  7. R.S. Cater, M.I. Stefan, J.R. Bolton, A. Safarzadeh-Amiri, UV/H2O2 treatment of methyl-tertbuthyl ether in contaminated water, Environ. Sci. Technol., 34 (2000) 659–662.
  8. M. Pera-Titus, V. Garcia-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B: Environ., 47 (2004) 219–256.
  9. B. Tawabini, N. Fayad, M.A. Morsy, The impact of groundwater quality on the removal of methyl tertiary-butyl ether (MTBE) using advanced oxidation technology, Wat. Sci. Tech., 60 (2009) 2161–2165.
  10. M.A. Morsy, Q. Al-Sharari, B.S. El-Tawabini, N.A. Al-Baghli, Electron paramagnetic resonance/spin trapping investigation of hydroxyl radical generation in advanced oxidation processes. ‘2nd European Conference on Environmental Application of Advanced Oxidation Processes, EAAOP2. Cyprus, September 9–11, 2009.
  11. N. Charton, C. Guilard, C. Hoang-Van, P. Pichat, Products of MTBE degraded in water by photo-Fenton reaction, PSI-Proc., 97 (1997) 65–67.
  12. N.K. Vel Leitner, A.L. Papailhou, J.P. Croue, J. Peyrot, M.. Dore, Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide, Ozone Sci. Eng., 16 (1994) 41–54.
  13. R.D. Barreto, K.A. Gray, K. Andre, Photocatalytic degradation of methyl-tert-butyl ether in TiO2 slurries: a proposed reaction scheme, Wat. Res., 29 (1995) 1243–1248.
  14. J. Wang, A.-N. Kawde, E. Sahlin, Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA, Analyst, 125(1) (2000) 5–7.
  15. I.G. David, D.E. Popa, M. Buleandra, Pencil graphite electrodes: a versatile tool in electroanalysis, J. Anal. Methods Chem. (2017). Article ID 1905968, https://doi. org/10.1155/2017/1905968.
  16. M.A. Morsy, A.M. kawde, Electron paramagnetic resonance monitoring for on-demand electrochemically-generated radicals, Electrochim. Acta, 160 (2015) 22–27.
  17. A. Kawde, N. Baig, M. Sajid, Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications, RSC Adv., 6 (2016) 91325–91340.
  18. A. Kawde, M.A. Aziz, Porous copper-modified graphite pencil electrode for the amperometric detection of 4-nitrophenol, Electroanalysis, 26(11) (2014) 2484–2490.
  19. K. Asadpour-Zeynali, P. Najafi-Marandi, Bismuth modified disposable pencil-lead electrode for simultaneous determination of 2-nitrophenol and 4-nitrophenol by net analyte signal standard addition method, Electroanalysis, 23(9) (2011) 2241–2247.
  20. F. Lucking, H. Koser, M. Jank, A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Res., 32(9) (1998) 2607–2614.
  21. M.A. Anderson, Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites, Environ. Sci. Technol., 34 (2000) 725–727.
  22. G. Decher, J. Hong, Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Makromolekulare Chemie. Macromolecular Symposia, 46 (1991) 321–327.
  23. G. Decher, J.B. Schlenoff, Eds. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003.
  24. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 105 (2005) 1025–1102.
  25. T.G. Spiro, W.M. Stigliani, Environmental issues in chemical prespective, SUNY Press 1980.
  26. C.N. Satterfield, T.W. Stein, Homogeneous decomposition of hydrogen peroxide vapor, J. Phys. Chem., 61 (1957) 537–540.
  27. C.N. Satterfield, T.W. Stein, Decomposition of hydrogen peroxide vapor on relatively inert surfaces, Ind. Eng. Chem., 49 (1957) 1173–1180.
  28. P. Attri, Y.U. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm, K.N. Kim, A. Fridman, E.H. Choi, Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis, Sci. Reports, 5 (2017) 1–8.
  29. J. Weiss, The interaction of OH radicals and of similar free radicals, Trans. Faraday Soc., 36 (1940) 856–861.
  30. P.A. Giguere, I.D. Liu, kinetics of the thermal decomposition of hydrogen peroxide vapor, Can. J. Chem., 35 (1957) 283–293.
  31. P.R. Marriott, M.J. Erkins, D. Griller, Spin trapping for hydroxyl in water: a kinetic evaluation of two popular traps, Can. J. Chem., 58 (1980) 803–807.
  32. H. Utsumi, M. Hakoda, S. Shimbara, H. Nagaoka, Y. Chung, A. Hamada, Active oxygen species generated during chlorination and ozonation, Wat. Sci. Tech., 30 (1994) 91–99.
  33. S.K. Han, K. Ichikawa, H. Utsumi, Quantitative analysis for the enhancement of hydroxyl radical generation by phenols during ozonation of water, Wat. Res., 32 (1998) 3261–3266.
  34. M.A. Grela, M.E.J. Coronel, A.J. Colussi, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols. Implications for the mechanism of photocatalysis, J. Phys. Chem., 100 (1996) 16940–16946.
  35. C.D. Jaeger, A.J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems, J. Phys. Chem., 83 (1979) 3146–3152.
  36. V. Brezová, D. Dvoranová, A. Staško, Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy, Res. Chem. Intermed., 33 (2007) 251–268.
  37. V. Brezová, P. Billik, Z. Vrecková, G. Plesch, Photoinduced formation of reactive oxygen species in suspensions of titania mechanochemically synthesized from TiCl4, J. Mol. Catal. A Chem., 327 (2010) 101–109.
  38. D. Dvoranová, Z. Barbieriková, V. Brezová, Radical intermediates in photoinduced reactions on TiO2 (An EPR Spin Trapping Study), 19 (2014) 17279–17304.