References

  1. N.D. Mu’azu, N. Jarrah, M.H. Essa, Binary adsorption of phenol and O-cresol from aqueous solution on date palm pits based activated carbon: a fixed-bed column study, Desal. Water Treat., 58 (2017) 192–201.
  2. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—a critical review, Chemosphere, 58 (2005) 1049–1070.
  3. N.D. Mu’azu, N. Jarrah, M. Zubair, O. Alagha, Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review, Int. J. Environ. Res. Public Health, 14 (2017) 1094.
  4. F. Rozada, M. Otero, J.B. Parra, A. Morán, A.I. García, Producing adsorbents from sewage sludge and discarded tyres: Characterization and utilization for the removal of pollutants from water, Chem. Eng. J., 114 (2005) 161–169.
  5. X. Wang, N. Zhu, B. Yin, Preparation of sludge-based activated carbon and its application in dye wastewater treatment, J. Hazard. Mater., 153 (2008) 22–27.
  6. J. Hong, J. Hong, M. Otaki, O. Jolliet, Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan, Waste Manage., 29 (2009) 696–703.
  7. E. Uggetti, I. Ferrer, J. Molist, J. García, Technical, economic and environmental assessment of sludge treatment wetlands, Water Res., 45 (2011) 573–582.
  8. F. Ping, C. Chaoping, C. Dingsheng, T. Zhixiong, Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0 adsorption in simulated flue gas, Chinese J. Chem. Eng., 18 (2010) 231–238.
  9. D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods—a review, Renew. Sustain. Energy Rev., 12 (2008) 116–140.
  10. A. Hospido, T. Moreira, M. Martín, M. Rigola, G. Feijoo, Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: Anaerobic digestion versus thermal processes, Int. J. Life Cycle Assess., 10 (2005) 336–345.
  11. V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Activated carbons from sewage sludge: application to aqueous-phase adsorption of 4-chlorophenol, Desalination, 277 (2011) 377–382.
  12. K. Smith, G. Fowler, S. Pullket, N.J.D. Graham, Sewage sludgebased adsorbents: a review of their production, properties and use in water treatment applications, Water Res., 43 (2009) 2569–2594.
  13. J. Xie, Q. Yue, H. Yu, W. Yue, R. Li, S. Zhang, X. Wang, Adsorption of reactive brilliant red K-2BP on activated carbon developed from sewage sludge, Front. Chem. China, 3 (2008) 33–40.
  14. J. Zou, Y. Dai, X. Wang, Z. Ren, C. Tian, K. Pan, S. Li, M. Abuobeidah, H. Fu, Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity, Bioresour. Technol., 142 (2013) 209–217.
  15. M. Masomi, A. Ghoreyshi, G. Najafpour, A. Mohamed, Adsorption of phenolic compounds onto the activated carbon synthesized from pulp and paper mill sludge: Equilibrium isotherm, kinetics, thermodynamics and mechanism studies, Int. J. Eng.-Trans. A: Basics, 27 (2014) 1485–1494.
  16. K. Pirzadeh, A.A. Ghoreyshi, Phenol removal from aqueous phase by adsorption on activated carbon prepared from paper mill sludge, Desal. Water Treat., 52 (2014) 6505–6518.
  17. A.H. Sulaymon, D.W. Abbood, A.H. Ali, A comparative adsorption/biosorption for the removal of phenol and lead onto granular activated carbon and dried anaerobic sludge, Desal. Water Treat., 51 (2013) 2055–2067.
  18. P. Devi, A.K. Saroha, Utilization of sludge based adsorbents for the removal of various pollutants: A review, Sci. Total Environ., 578 (2017) 16–33.
  19. G.S. Dos Reis, M.A. Adebayo, C.H. Sampaio, E.C. Lima, P.S. Thue, I.A.S. de Brum, S.L.P. Dias, F.A. Pavan, Removal of phenolic compounds from aqueous solutions using sludge-based activated carbons prepared by conventional heating and microwave-assisted pyrolysis, Water Air Soil Pollut., 228 (2016) 33.
  20. M. Otero, F. Rozada, L.F. Calvo, A.I. Garcıá , A. Morán, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  21. M. Zubair, N. Jarrah, M.S. Manzar, M. Al-Harthi, M. Daud, N.D. Mu’azu, S.A. Haladu, Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: Kinetic, equilibrium and thermodynamic studies, J. Mol. Liq., 230 (2017) 344–352.
  22. S. Bousbaa, A.H. Meniai, Removal of phenol from water by adsorption onto sewage sludge based adsorbent, Chem. Eng., 40 (2014).
  23. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman Jr, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172 (2011) 1111–1125.
  24. J.H. Tay, X.G. Chen, S. Jeyaseelan, N. Graham, Optimising the preparation of activated carbon from digested sewage sludge and coconut husk, Chemosphere, 44 (2001) 45–51.
  25. R.R.N. Marques, F. Stüber, K.M. Smith, A. Fabregat, C. Bengoa, J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham, Sewage sludge based catalysts for catalytic wet air oxidation of phenol: Preparation, characterisation and catalytic performance, Appl. Catal. B: Environmental, 101 (2011) 306–316.
  26. N. Mu’azu, N. Jarrah, M. Zubair, O. Alagha, Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review, Int. J. Environ. Res. Public Health, 14 (2017) 1094.
  27. N.A. Jarrah, Studying the influence of process parameters on the catalytic carbon nanofibers formation using factorial design, Chem. Eng. J., 151 (2009) 367–371.
  28. N.J.M. Zubair, M.A. Al-Harthi, M.S. Manzar, N.D. Muazu, Highly efficient removal of Pb (II) ion from aqueous phase using surface modified graphene. Equilibrium and kinetic study, Desal. Water Treat., 80 (2017) 174–183.
  29. H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier, 2006.
  30. Y.-M. Chang, W.-T. Tsai, M.-H. Li, Characterization of activated carbon prepared from chlorella-based algal residue, Bioresour. Technol., 184 (2015) 344–348.
  31. M. Zubair, M. Daud, G. McKay, F. Shehzad, M.A. Al-Harthi, Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation, Appl. Clay Sci., 143 (2017) 279–292.
  32. N.D. Mu’azu, A. Usman, N. Jarrah, O. Alagha, Pulsed Electrokinetic removal of chromium, mercury and cadmium from contaminated mixed clay soils, Soil Sedim. Contam. Int. J., 25 (2016) 757–775.
  33. M.H. Essa, N.D. Mu’azu, S. Lukman, A. Bukhari, Application of Box-Behnken design to hybrid electrokinetic-adsorption removal of mercury from contaminated saline-sodic clay soil, Soil Sedim. Contam. Int. J., 24 (2015) 30–48.
  34. G.N. Kasozi, A.R. Zimmerman, P. Nkedi-Kizza, B. Gao, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44 (2010) 6189–6195.
  35. Y. Liu, M. Gao, Z. Gu, Z. Luo, Y. Ye, L. Lu, Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing Gemini surfactants, J. Hazard. Mater., 267 (2014) 71–80.
  36. M.A. Bezerra, R.E. Santell, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  37. M. Amayreh, B. Chanbasha, K. Alhooshani, N.D. Mu’azu, H.K. Lee, Determination of N-nitrosamines by automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometry, J. Separ. Sci., 38 (2015) 1741–1748.