References

  1. J. Mulder, Basic Principles of Membrane Technology, 2nd ed., Springer, The Netharlands, 1996.
  2. G. Artuğ, Modelling and Simulation of Nanofiltration Membranes, Cuvillier Verlag, Germany, 2007.
  3. R. Skelton, Membrane filtration applications in food industry, Filt. Separ., 37 (2000) 28–30.
  4. T.F. O’Brien, T.V. Bommaraju, F. Hine, Handbook of Chlor-Alkali Technology, Springer, Heidelberg, 2005.
  5. Z.Q. Yan, L.M. Zeng, Q. Li, T.Y. Liu, H. Matsuyama, X.L. Wang, Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling, Sep. Purif. Technol., 166 (2016) 135–141.
  6. P. Fievet, C. Labbez, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Electrolyte transport through amphoteric nanofiltration membranes, Chem. Eng. Sci., 57 (2002) 2921–2931.
  7. A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish, Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes, J. Membr. Sci., 289 (2007) 40–50.
  8. A. Pérez-González, R. Ibáñez, P. Gómez, A.M. Urtiaga, I. Ortiz, J.A. Irabien, Nanofiltration separation of polyvalent and monovalent anions in desalination brines, J. Membr. Sci., 473 (2015) 16–27.
  9. S. Bandini, Modelling the mechanism of charge formation in NF membranes: theory and application, J. Membr. Sci., 264 (2005) 75–86.
  10. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  11. L. Bruni, S. Bandini, The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes, J. Membr. Sci., 308 (2008) 136–151.
  12. S. Déon, A. Escoda, P. Fievet, A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
  13. J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18–28.
  14. A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
  15. O. Labban, C. Liu, T.H. Chong, Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening, J. Membr. Sci., 521 (2017) 18–32.
  16. V. Geraldes, A.M.B. Alves, Computer program for simulation of mass transport in nanofiltration membranes, J. Membr. Sci., 321 (2008) 172–182.
  17. S. Déon, P. Dutournié, P. Fievet, L. Limousy, P. Bourseau, Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: Influence of the filtrated solution and operating conditions, Water Res., 47 (2013) 2260–2272.
  18. G. Bargeman, J. Westerink, O.G. Miguez, M. Wessling, The effect of NaCl and glucose concentration on retentions for nanofiltration membranes processing concentrated solutions, Sep. Purif. Technol., 134 (2014) 46–57.
  19. G. Bargeman, J.B. Westerink, C.F.H. Manuhutu, A. ten Kate, The effect of membrane characteristics on nanofiltration membrane performance during processing of practically saturated salt solutions, J. Membr. Sci., 485 (2015) 112–122.
  20. K. Maycock, C. Kotzo, F. Muret, Z. Twardowski, J. Ulan, Commercialisation of Kvaerner Chemetics’ Sulphate Removal System, in: J. Moorhouse (Ed.) Modern Chlor-Alkali Technology, Society of Chemical Industry, London, 2007, pp. 140.
  21. T. Kishi, T. Matsuoka, Process to Remove Sulphate, Iodide and Silica from Brine, in: J. Moorhouse (Ed.) Modern Chlor-Alkali Technology, Society of Chemical Industry, London, 2007, pp. 152.
  22. E. Couture, Chlorate and Chlorite Analysis in Seawater, Chlorate Sinks, and Toxicity to Phytoplankton in, Dalhousie University, Canada, 1998.
  23. R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons Inc., New York, 2001.
  24. R.K. Roy, A Primer on the Taguchi Method, 2nd ed., Society of Manufacturing Engineers, Michigan, 2010.
  25. S. Stowell, Using R for Statistics, 1st ed., Apress Berkeley, California, 2014.
  26. A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J. Pagetti, Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes, Adv. Colloid Interfac., 103 (2003) 77–94.
  27. D.L. Oatley, L. Llenas, R. Pérez, P.M. Williams, X. Martínez- Lladó, M. Rovira, Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Adv. Colloid Interfac., 173 (2012) 1–11.
  28. A.E. Yaroshchuk, Dielectric exclusion of ions from membranes, Adv. Colloid Interfac., 85 (2000) 193–230.
  29. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration—critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.
  30. S. Déon, A. Escoda, P. Fievet, R. Salut, Prediction of single salt rejection by NF membranes: An experimental methodology to assess physical parameters from membrane and streaming potentials, Desalination, 315 (2013) 37–45.
  31. A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. Van Dijk, The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration, J. Membr. Sci., 322 (2008) 52–66.
  32. M. Hesampour, A. Krzyzaniak, M. Nyström, The influence of different factors on the stability and ultrafiltration of emulsified oil in water, J. Membr. Sci., 325 (2008) 199–208.
  33. L. Meihong, Y. Sanchuan, Z. Yong, G. Congjie, Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: Preparation and performance, J. Membr. Sci., 310 (2008) 289–295.
  34. K.S. Spiegler, O. Kedem, Thermodynamics of hyper filtration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  35. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  36. R.R. Sharma, R. Agrawal, S. Chellam, Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters, J. Membr. Sci., 223 (2003) 69–87.
  37. H.Q. Dang, W.E. Price, L.D. Nghiem, The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270, Sep. Purif. Technol., 125 (2014) 43–51.
  38. O. Nakari, A. Pihlajamäki, M. Mänttäri, Permeability of dilute ionic liquid solutions through a nanofiltration membrane– Effect of ionic liquid concentration, filtration pressure and temperature, Sep. Purif. Technol., 163 (2016) 267–274.
  39. H. Yunoki, K. Nagata, K.I. Kokubo, A. Ito, A. Watanabe, Effects of the mixture ratio of amino acid and sodium chloride on the rejection of nanofiltration membranes under various operating conditions, J. Chem. Eng. Jpn., 35 (2002) 76–82.
  40. A.W. Mohammad, R. Othman, N. Hilal, Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electro less plating, Desalination, 168 (2004) 241–252.