References
- J. Mulder, Basic Principles of Membrane Technology, 2nd ed.,
Springer, The Netharlands, 1996.
- G. Artuğ, Modelling and Simulation of Nanofiltration Membranes,
Cuvillier Verlag, Germany, 2007.
- R. Skelton, Membrane filtration applications in food industry,
Filt. Separ., 37 (2000) 28–30.
- T.F. O’Brien, T.V. Bommaraju, F. Hine, Handbook of Chlor-Alkali
Technology, Springer, Heidelberg, 2005.
- Z.Q. Yan, L.M. Zeng, Q. Li, T.Y. Liu, H. Matsuyama, X.L. Wang,
Selective separation of chloride and sulfate by nanofiltration
for high saline wastewater recycling, Sep. Purif. Technol., 166
(2016) 135–141.
- P. Fievet, C. Labbez, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti,
Electrolyte transport through amphoteric nanofiltration
membranes, Chem. Eng. Sci., 57 (2002) 2921–2931.
- A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish, Prediction
of permeate fluxes and rejections of highly concentrated
salts in nanofiltration membranes, J. Membr. Sci., 289
(2007) 40–50.
- A. Pérez-González, R. Ibáñez, P. Gómez, A.M. Urtiaga, I. Ortiz,
J.A. Irabien, Nanofiltration separation of polyvalent and monovalent
anions in desalination brines, J. Membr. Sci., 473 (2015)
16–27.
- S. Bandini, Modelling the mechanism of charge formation in
NF membranes: theory and application, J. Membr. Sci., 264
(2005) 75–86.
- S. Bandini, D. Vezzani, Nanofiltration modeling: the role of
dielectric exclusion in membrane characterization, Chem. Eng.
Sci., 58 (2003) 3303–3326.
- L. Bruni, S. Bandini, The role of the electrolyte on the mechanism
of charge formation in polyamide nanofiltration membranes,
J. Membr. Sci., 308 (2008) 136–151.
- S. Déon, A. Escoda, P. Fievet, A transport model considering
charge adsorption inside pores to describe salts rejection by
nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
- J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical
review, J. Membr. Sci., 438 (2013) 18–28.
- A. Szymczyk, P. Fievet, Investigating transport properties of
nanofiltration membranes by means of a steric, electric and
dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
- O. Labban, C. Liu, T.H. Chong, Fundamentals of low-pressure
nanofiltration: Membrane characterization, modeling, and
understanding the multi-ionic interactions in water softening,
J. Membr. Sci., 521 (2017) 18–32.
- V. Geraldes, A.M.B. Alves, Computer program for simulation
of mass transport in nanofiltration membranes, J. Membr. Sci.,
321 (2008) 172–182.
- S. Déon, P. Dutournié, P. Fievet, L. Limousy, P. Bourseau, Concentration
polarization phenomenon during the nanofiltration
of multi-ionic solutions: Influence of the filtrated solution and
operating conditions, Water Res., 47 (2013) 2260–2272.
- G. Bargeman, J. Westerink, O.G. Miguez, M. Wessling, The
effect of NaCl and glucose concentration on retentions for
nanofiltration membranes processing concentrated solutions,
Sep. Purif. Technol., 134 (2014) 46–57.
- G. Bargeman, J.B. Westerink, C.F.H. Manuhutu, A. ten Kate,
The effect of membrane characteristics on nanofiltration membrane
performance during processing of practically saturated
salt solutions, J. Membr. Sci., 485 (2015) 112–122.
- K. Maycock, C. Kotzo, F. Muret, Z. Twardowski, J. Ulan, Commercialisation
of Kvaerner Chemetics’ Sulphate Removal System,
in: J. Moorhouse (Ed.) Modern Chlor-Alkali Technology,
Society of Chemical Industry, London, 2007, pp. 140.
- T. Kishi, T. Matsuoka, Process to Remove Sulphate, Iodide and
Silica from Brine, in: J. Moorhouse (Ed.) Modern Chlor-Alkali
Technology, Society of Chemical Industry, London, 2007, pp. 152.
- E. Couture, Chlorate and Chlorite Analysis in Seawater, Chlorate
Sinks, and Toxicity to Phytoplankton in, Dalhousie University,
Canada, 1998.
- R.K. Roy, Design of Experiments Using the Taguchi Approach:
16 Steps to Product and Process Improvement, John Wiley &
Sons Inc., New York, 2001.
- R.K. Roy, A Primer on the Taguchi Method, 2nd ed., Society of
Manufacturing Engineers, Michigan, 2010.
- S. Stowell, Using R for Statistics, 1st ed., Apress Berkeley, California,
2014.
- A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J.
Pagetti, Contribution of convection, diffusion and migration to
electrolyte transport through nanofiltration membranes, Adv.
Colloid Interfac., 103 (2003) 77–94.
- D.L. Oatley, L. Llenas, R. Pérez, P.M. Williams, X. Martínez-
Lladó, M. Rovira, Review of the dielectric properties of nanofiltration
membranes and verification of the single oriented
layer approximation, Adv. Colloid Interfac., 173 (2012) 1–11.
- A.E. Yaroshchuk, Dielectric exclusion of ions from membranes,
Adv. Colloid Interfac., 85 (2000) 193–230.
- W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane
nanofiltration—critical assessment and model development,
Chem. Eng. Sci., 57 (2002) 1121–1137.
- S. Déon, A. Escoda, P. Fievet, R. Salut, Prediction of single salt
rejection by NF membranes: An experimental methodology
to assess physical parameters from membrane and streaming
potentials, Desalination, 315 (2013) 37–45.
- A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk,
G.L. Amy, B. Van der Bruggen, J.C. Van Dijk, The role
of electrostatic interactions on the rejection of organic solutes
in aqueous solutions with nanofiltration, J. Membr. Sci., 322
(2008) 52–66.
- M. Hesampour, A. Krzyzaniak, M. Nyström, The influence of
different factors on the stability and ultrafiltration of emulsified
oil in water, J. Membr. Sci., 325 (2008) 199–208.
- L. Meihong, Y. Sanchuan, Z. Yong, G. Congjie, Study on the
thin-film composite nanofiltration membrane for the removal
of sulfate from concentrated salt aqueous: Preparation and
performance, J. Membr. Sci., 310 (2008) 289–295.
- K.S. Spiegler, O. Kedem, Thermodynamics of hyper filtration
(reverse osmosis): criteria for efficient membranes, Desalination,
1 (1966) 311–326.
- W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation
of nanofiltration membranes for predictive purposes—use
of salts, uncharged solutes and atomic force microscopy, J.
Membr. Sci., 126 (1997) 91–105.
- R.R. Sharma, R. Agrawal, S. Chellam, Temperature effects on
sieving characteristics of thin-film composite nanofiltration
membranes: pore size distributions and transport parameters,
J. Membr. Sci., 223 (2003) 69–87.
- H.Q. Dang, W.E. Price, L.D. Nghiem, The effects of feed solution
temperature on pore size and trace organic contaminant
rejection by the nanofiltration membrane NF270, Sep. Purif.
Technol., 125 (2014) 43–51.
- O. Nakari, A. Pihlajamäki, M. Mänttäri, Permeability of dilute
ionic liquid solutions through a nanofiltration membrane–
Effect of ionic liquid concentration, filtration pressure and
temperature, Sep. Purif. Technol., 163 (2016) 267–274.
- H. Yunoki, K. Nagata, K.I. Kokubo, A. Ito, A. Watanabe, Effects
of the mixture ratio of amino acid and sodium chloride on the
rejection of nanofiltration membranes under various operating
conditions, J. Chem. Eng. Jpn., 35 (2002) 76–82.
- A.W. Mohammad, R. Othman, N. Hilal, Potential use of nanofiltration
membranes in treatment of industrial wastewater
from Ni-P electro less plating, Desalination, 168 (2004) 241–252.