References
- J. Low, B. Cheng, J. Yu, Surface modification and enhanced
photocatalytic CO2 reduction performance of TiO2: a review,
Appl. Surf. Sci., 392 (2017) 658–686.
- D. Tang, G. Zhang, Ultrasonic-assistant fabrication of cocoonlike
Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced
visible-light photocatalytic activity, Ultrason. Sonochem., 37
(2017) 208–215.
- S. Girish Kumar, K.S.R. Koteswara Rao, Comparison of
modification strategies towards enhanced charge carrier
separation and photocatalytic degradation activity of metal
oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci.,
391 (2017) 124–148.
- L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts
for organic effluent treatment: fundamentals, mechanisms and
parametric review, Renew. Sustain. Energy Rev., 76 (2017)
1393–1421.
- H. Gan, G. Zhang, H. Huang, Enhanced visible-light-driven
photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites, J. Hazard. Mater., 250–251 (2013) 131–137.
- Z. Wan, G. Zhang, X. Wu, S. Yin, Novel visible-light-driven
Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced
pathway of organic pollutants degradation and proton assisted
electron transfer mechanism of Cr(VI) reduction, Appl. Catal.,
B, 207 (2017) 17–26.
- O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D.
Walck, J.T. Yates, Photochemical activity of nitrogen-doped
rutile TiO2(110) in visible light, J. Phys. Chem. B, 108 (2004)
6004–6008.
- J.X. Li, J.H. Xu, W.L. Dai, K.N. Fan, Dependence of Ag deposition
methods on the photocatalytic activity and surface state of TiO2
with twist like helix structure, J. Phys. Chem. C, 113 (2009)
8343–8349.
- H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae,
Comparison of Ag deposition effects on the photocatalytic
activity of nanoparticulate TiO2 under visible and UV light
irradiation, J. Photochem. Photobiol., A, 163 (2004) 37–44.
- J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and
characterization of Ag–TiO2 multiphase nanocomposite thin
films with enhanced photocatalytic activity, Appl. Catal., B, 60
(2005) 211–221.
- K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H.
Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic
photocatalyst consisting of silver nanoparticles embedded in
titanium dioxide, J. Am. Chem. Soc., 130 (2008) 1676–1680.
- A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M.
Manttari, M. Sillanpaa, A review on catalytic applications
of Au/TiO2 nanoparticles in the removal of water pollutant,
Chemosphere, 107 (2014) 163–174.
- L. Gomathi Devi, R. Kavitha, A review on plasmonic metal/TiO2 composite for generation, trapping, storing and dynamic
vectorial transfer of photogenerated electrons across the
Schottky junction in a photocatalytic system, Appl. Surf. Sci., 360
(2016) 601–622.
- W. Liu, D. Chen, S.H. Yoo, S.O. Cho, Hierarchical visible lightresponse
Ag/AgCl@TiO2 plasmonic photocatalysts for organic
dye degradation, Nanotechnology, 24 (2013) 405706–405712.
- B. Cai, J. Wang, S. Gan, D. Han, Z. Wu, L. Niu, A distinctive red
Ag/AgCl photocatalyst with efficient photocatalytic oxidative
and reductive activities, J. Mater. Chem. A, 2 (2014) 5280–5286.
- W. Liao, Y. Zhang, M. Zhang, M. Murugananthan, S. Yoshihara,
Photoelectrocatalytic degradation of microcystin-LR using
Ag/AgCl/TiO2 nanotube arrays electrode under visible light
irradiation, Chem. Eng. J., 231 (2013) 455–463.
- L. Qi, J. Yu, G. Liu, P.K. Wong, Synthesis and photocatalytic
activity of plasmonic Ag@AgCl composite immobilized on
titanate nanowire films, Catal. Today, 224 (2014) 193–199.
- D. Wang, Y. Li, G.L. Puma, C. Wang, P. Wang, W. Zhang, Q.
Wang, Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light
driven plasmon photocatalyst, Chem. Commun., 49 (2013)
10367–10369.
- J. Guo, B. Ma, A. Yin, K. Fan, W. Dai, Highly stable and efficient
Ag/AgCl@TiO2 photocatalyst: preparation, characterization,
and application in the treatment of aqueous hazardous
pollutants, J. Hazard. Mater., 211–212 (2012) 77–82.
- X.L. Wang, H.Y. Yin, Q.L. Nie, W.W. Wu, Y. Zhang, Q.L. Yuan,
Hierarchical Ag/AgCl-TiO2 hollow spheres with enhanced
visible-light photocatalytic activity, Mater. Chem. Phys., 185
(2017) 143–151.
- Y. Yang, R. Liu, G. Zhang, L. Gao, W. Zhang, Preparation and
photocatalytic properties of visible light driven Ag-AgCl-TiO2/palygorskite composite, J. Alloys Compd., 657 (2016) 801–808.
- L. Yinghua, W. Huan, L. Li, C. Wenquan, Facile synthesis of
Ag@AgCl plasmonic photocatalyst and its photocatalytic
degradation under visible light, Rare Met. Mater. Eng., 44 (2015)
1088–1093.
- S. Liu, J. Zhu, Q. Yang, P. Xu, J. Ge, X. Guo, Synthesis and
characterization of cube-like Ag@AgCl-doped TiO2/fly ash
cenospheres with enhanced visible-light photocatalytic activity,
Opt. Mater., 53 (2016) 73–79.
- H. Yin, X. Wang, L. Wang, Q.-L. Nie, Y. Zhang, Q. Yuan, W.
Wu, Ag/AgCl modified self-doped TiO2 hollow sphere with
enhanced visible light photocatalytic activity, J. Alloys Compd.,
657 (2016) 44–52.
- Z. Zhao, Y. Wang, J. Xu, C. Shang, Y. Wang, AgCl-loaded
mesoporous anatase TiO2 with large specific surface area for
enhancing photocatalysis, Appl. Surf. Sci., 351 (2015) 416–424.
- J. Zhou, Y. Cheng, J. Yu, Preparation and characterization of
visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2
nanocomposite thin films, J. Photochem. Photobiol., A, 223
(2011) 82–87.
- D. Wu, L. Wang, X. Song, Y. Tan, Enhancing the visible-lightinduced
photocatalytic activity of the self-cleaning TiO2-coated
cotton by loading Ag/AgCl nanoparticles, Thin Solid Films, 540
(2013) 36–40.
- J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Preparation,
characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2, Appl. Surf. Sci., 257 (2011) 7083–7089.
- P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme
photocatalytic systems, Adv. Mater., 26 (2014) 4920–4935.
- Y. Li, Y. Ding, Porous AgCl/Ag nanocomposites with enhanced
visible lightphotocatalytic properties, J. Phys. Chem. C, 114
(2010) 3175–3317.
- J. Tian, R. Liu, G. Wang, Y. Xu, X. Wang, H. Yu, Dependence of
metallic Ag on the photocatalytic activity and photoinduced stability
of Ag/AgCl photocatalyst, Appl. Surf. Sci., 319 (2014) 324–331.
- S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst
with high activity and easy separation prepared by a
hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
- P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D.
Tiwary, Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic,
sonocatalytic, and photosonocatalytic reactor, Desal. Wat.
Treat., 57 (2016) 20552–20564.
- L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts
from surface hybridization of TiO2 particles with graphite-like
carbon, Adv. Func. Mater., 18 (2008) 2180–2189.
- N.R. Khalid, A. Majid, M. Bilal Tahir, N.A. Niaz, S. Khalid,
Carbonaceous-TiO2 nanomaterials for photocatalytic
degradation of pollutants: a review, Ceram. Int., 43 (2017)
14552–14571.
- S.L. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeng, S.H. Hong,
Mechanical and electrical properties of cross-linked carbon
nanotubes, Carbon, 46 (2008) 482–488.
- P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers
in catalysis, Appl. Catal., A, 253 (2003) 337–358.
- W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation
of phenol on MWNT and titania composite catalysts prepared
by a modified sol–gel method, Appl. Catal., B, 56 (2005)
305–312.
- F. Shahrezaei, P. Pakravan, A. Hemati Azandaryani, M. Pirsaheb,
A.M. Mansouri, Preparation of multi-walled carbon nanotubedoped
TiO2 composite and its application in petroleum refinery
wastewater treatment, Desal. Wat. Treat., 57 (2016) 14443–14452.
- T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized
solar cell using TiO2 coated carbon nanotube, Thin Solid Films,
515 (2007) 5131–5135.
- Y. Yao, G. Li, S. Ciston, R.M. Lueptow, K.A. Gray, Photoreactive
TiO2/carbon nanotube composites: synthesis and reactivity,
Environ. Sci. Technol., 42 (2008) 4952–4957.
- J. Michałowicz, W. Duda, Phenols – sources and toxicity, Pol. J.
Environ. Stud., 16 (2007) 347–362.
- H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis
for decomposition of 2,4-dichlorophenol by supercritical water
oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
- M.M. Ba Abbad, A.A.H. Kadhum, A.A. Al Amiery, A.B. Abu
Bakar Mohamad, M.S. Takriff, Toxicity evaluation for low
concentration of chlorophenols under solar radiation using zinc
oxide (ZnO) nanoparticles, Int. J. Phys. Sci., 7 (2012) 48–52.
- K. Arnoldsson, P.L. Andersson, P. Haglund, Formation
of environmentally relevant brominated dioxins from
2,4,6,-tribromophenol via bromoperoxidase-catalyzed
dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
- J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, Sensitized
degradation of chlorophenols on Iron oxides induced by visible
light: comparison with titanium oxide, Appl. Catal., B, 34 (2001)
321–333.
- K.V. Baiju, P. Shajesh, W. Wunderlich, Effect of tantalum addition
on anatase phase stability and photoactivity of aqueous sol–gel
derived mesoporous titania, J. Mol. Catal. A, 276 (2007) 41–46.
- B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon
nanotubes synergistically enhance photocatalytic activity of
TiO2, Catal. Commun., 9 (2008) 1410–1413.
- W. Wang, P. Serp, P. Kalck, Visible light photodegradation of
phenol on MWNT-TiO2 composite catalysts prepared by a
modified sol–gel method, J. Mol. Catal. A: Chem., 235 (2005)
194–199.
- M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced
visible light induced photocatalytic activity: a combined
experimental, theoretical study, J. Appl. Phys., 114 (2013)
183514.
- S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumar,
K. Srinivasan, Biosynthesis of silver nanoparticles using citrus
sinensis peel extract and its antibacterial activity, Spectrochim.
Acta, 79 (2011) 594–598.
- Y. Wang, Y. Huang, W. Ho, Biomolecule-controlled
hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline
photocatalysts for NO removal under simulated solar light
irradiation, J. Hazard. Mater., 169 (2009) 77–87.
- E. Bae, W. Choi, Highly enhanced photoreductive degradation
of perchlorinated compounds on dye-sensitized metal/TiO2
under visible light, Environ. Sci. Technol., 37 (2003) 147–152.
- G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase
TiO2 nanoparticles/carbon nanotubes nanofibers: preparation,
characterization and photocatalytic properties, J. Mater. Sci., 42
(2007) 7162–7170.
- J. Garcia-Serrano, E. Gomez-Hernandez, M. Ocampo-
Fernandez, U. Pal, Effect of Ag doping on the crystallization
and phase transition of TiO2 nanoparticles, Curr. Appl. Phys., 9
(2009) 1097–1105.
- P. Wang, B.B. Huang, Z.Z. Lou, X.Y. Zhang, X.Y. Qin, Y. Dai,
Z.K. Zheng, X.N. Wang, Synthesis of highly efficient Ag@AgCl
plasmonic photocatalysts with various structures, Chem. A Eur.
J., 16 (2010) 538–544.
- C. An, S. Peng, Y. Sun, Facile synthesis of sunlight-driven
AgCl:Ag plasmonic nanophotocatalyst, Adv. Mater., 22 (2010)
2570–2574.
- M. Thommes, Physical adsorption characterization of
nanoporous materials, Chem. Ing. Tech., 82 (2010) 1059–1073.
- Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding,
W.K. Ge, P.K. Wong, Enhancement of photocatalytic activity of
mesoporous TiO2 by using carbon nanotubes, Appl. Catal., A,
289 (2005) 186–196.
- J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Single-walled carbon
nanotubes coated with titania nanoparticles, Carbon, 42 (2004)
895–899.
- A. Ebrahimian, M.A. Zanjanchi, Heterogeneous photocatalytic
degradation of 4-chlorophenol by immobilization of cobalt
tetrasulphophthalocyanine onto MCM-41, Korean J. Chem.
Eng., 31 (2014) 218–223.
- A. Ebrahimian, M.A. Zanjanchi, H. Noei, M. Arvand, Y.
Wang, TiO2 nanoparticles containing sulphonated cobalt
phthalocyanine: preparation, characterization and photocatalytic
performance, J. Environ. Chem. Eng., 2 (2014) 484–494.
- A. Ebrahimian, M.A. Zanjanchi, M. Arvand, Sulphonated
cobalt phthalocyanine–MCM-41: an active photocatalyst for
degradation of 2,4-dichlorophenol, J. Hazard. Mater., 175 (2010)
992–100.
- B.J.P.A. Cornish, L.A. Lawton, P.K.J. Robertson, Hydrogen
peroxide enhanced photocatalytic oxidation of microcystin-LR
using titanium dioxide, Appl. Catal., B, 25 (2000) 59–67.
- Q.J. Xiang, J.G. Yu, B. Cheng, H.C. Ong, Microwavehydrothermal
preparation and visible-light photoactivity
of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow
spheres, Chem. Asian J., 5 (2010) 1466–1474.
- J.G. Yu, G.P. Dai, B.B. Huang, Fabrication and characterization
of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2
nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
- P.V. Laxma Reddy, B. Kavitha, P.A. Kumar Reddy, K.-H. Kim,
TiO2-based photocatalytic disinfection of microbes in aqueous
media: a review, Environ. Res., 154 (2017) 296–303.
- G. Begum, J. Manna, R.K. Rana, Controlled orientation in
a bio-inspired assembly of Ag/AgCl/ZnO nanostructures
enables enhancement in visible-light-induced photocatalytic
performance, Chem. A Eur. J., 18 (2012) 6847–6853.
- X. Jia, Y. Liu, J. Sun, H. Sun, Z. Su, X. Pan, R. Wang, Theoretical
investigation of the reactions of CF3CHFOCF3 with the OH
radical and Cl atom, J. Phys. Chem. A, 114 (2009) 417–424.
- P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H.
Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst
active under visible light, Angew. Chem. Int. Ed., 47 (2008)
7931–7933.
- H. Xu, H.M. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-pot
synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS Appl. Mater. Interfaces, 3 (2011)
22–29.